Section 2.4: Applications of the Vis-Viva Equation: The...

Post on 01-Oct-2020

3 views 0 download

Transcript of Section 2.4: Applications of the Vis-Viva Equation: The...

MAE 5540 - Propulsion Systems!

Section 2.4: Applications of the Vis-Viva Equation: The Hohmann Transfer!

FeasibleTransfer Orbit

Not-FeasibleTransfer Orbit

Rc1

Rc2

1!

MAE 5540 - Propulsion Systems!

Orbital Energy Review!

= −µ2a33!

MAE 5540 - Propulsion Systems!

Total Specific Energy (concluded)

• gathering up the terms

rpraVperigeeVapogee

εT = constant

εT = kineticenergy

V2

2

potential energy

- µ r perigee

= kineticenergy

V2

2

potential energy

- µ r anywhere

totalenergy

= - µ2 a

(6)"

32!

MAE 5540 - Propulsion Systems!

•  !

Total …!

2!

MAE 5540 - Propulsion Systems!

Vis-Viva Equation for All the Conic-Sections!

See Appendix 2.3.2 for Hyperbolic Trajectory Proof!37!

MAE 5540 - Propulsion Systems!

Excess-energy transfer orbit"

“Wasted”! ΔV!

3!

MAE 5540 - Propulsion Systems!

Optimal-energy transfer Orbit"Two curves!Are tangential!In space!

Target!Orbit!

4!

MAE 5540 - Propulsion Systems!

… The Hohmann Transfer!

5!

MAE 5540 - Propulsion Systems!

The Hohmann transfer!

• Most fuel efficient method – All velocity changes are tangential – (change velocity magnitude but not direction)

• Between circular or (aligned elliptical orbits)

• Takes longer than other less efficient transfers

• Tangential elliptical transfer orbit

• (example: Geosynchronous Transfer Orbit GTO) 6!

MAE 5540 - Propulsion Systems!

Hohmann Transfer Steps

• 1: Calculate circular velocity of parking orbit• 2: Calculate perigee velocity of transfer orbit• 3: Determine perigee delta V• 4: Calculate apogee velocity of transfer orbit• 5: Calculate circular velocity of final orbit• 6: Determine apogee delta V• 7: Determine total delta V

• 0 : Calculate transfer orbit semi-major axis & eccentricity

7!

MAE 5540 - Propulsion Systems!

Hohmann Transfer: Calculating "the ΔV’s!

8!

MAE 5540 - Propulsion Systems!

Hohmann Transfer: Calculating "the ΔV’s!

9!

MAE 5540 - Propulsion Systems!

Hohmann Transfer: Calculating "the ΔV’s!

10!

MAE 5540 - Propulsion Systems!

Hohmann Transfer: Calculating "the ΔV’s!

11!

MAE 5540 - Propulsion Systems! 12!

MAE 5540 - Propulsion Systems!

Hohmann Transfer:"Total ΔV!

-1!

13!

MAE 5540 - Propulsion Systems!

Hohmann Transfer Problem … Solved!!

14!

MAE 5540 - Propulsion Systems! 15!

MAE 5540 - Propulsion Systems!

Example:"ΔV required for Hohmann Transfer from LEO to GEO!

16!

MAE 5540 - Propulsion Systems!

Example:"ΔV required for Hohmann Transfer from LEO to

GEO (cont’d)!

• Compute Orbit ratio!

• Compute Normalized ΔV!

17!

MAE 5540 - Propulsion Systems!

Example:"ΔV required for Hohmann Transfer from LEO to

GEO (cont’d)!

• Compute Initial Orbit Velocity!

• Compute Required ΔV!

18!

MAE 5540 - Propulsion Systems!

Example:"ΔV required for Hohmann Transfer from LEO to GEO

(cont’d)!

19!

MAE 5540 - Propulsion Systems!

Orbital Plane Changes (1)!• Once Launch Systems burns out … .. And payload is placed !in orbit … … ignoring the small effects of … drag and !gravity perturbations … your orbit inclination is fixed unless !You … add energy to the orbit!

20!

MAE 5540 - Propulsion Systems!

Orbital Plane Changes (2)!• Launch Puts you into a fixed orbit inclination!• What does it cost (ΔV) to change orbit planes?!

• You can only change planes!When the planes at your !orbits cross!

21!

MAE 5540 - Propulsion Systems!

Simple Plane Change!

22!

MAE 5540 - Propulsion Systems!

Simple Plane Change (cont’d)!

23!

MAE 5540 - Propulsion Systems!

Simple Plane Change (cont’d)!

24!

MAE 5540 - Propulsion Systems!

Simple Plane Change (cont’d)!

• ΔV can be expressed in polar form also!

25!

MAE 5540 - Propulsion Systems!

Simple Plane Change (cont’d)!

• Evaluate magnitude of ΔV!

26!

MAE 5540 - Propulsion Systems!

Simple Plane Change (cont’d)!

Why no Vr component?!

27!

MAE 5540 - Propulsion Systems!

Simple Plane Change (cont’d)!• Define “Flight path angle”!

28!

MAE 5540 - Propulsion Systems!

Simple Plane Change (cont’d)!• Define “Flight path angle”!

29!

MAE 5540 - Propulsion Systems!

Simple Plane Change (cont’d)!

• In-Plane Velocity Vector!

perifocal!

30!

MAE 5540 - Propulsion Systems!

Simple Plane Change (cont’d)!

Circular orbit!

31!

MAE 5540 - Propulsion Systems! 32!

MAE 5540 - Propulsion Systems!

Example Geo-synchronous "Transfer"

iii) Hohmann transfer!To geo-synchronous!orbit!

Calculate required ΔV!

33!

MAE 5540 - Propulsion Systems!

Orbital Speed!

34!

MAE 5540 - Propulsion Systems!

Gravitational Specific Energy!• Equivalent specific energy required to lift unit !mass to Orbital altitude !

35!

MAE 5540 - Propulsion Systems!

Vboost Due to Earth’s Rotation!

36!

MAE 5540 - Propulsion Systems!

Plane Change ΔV!

37!

MAE 5540 - Propulsion Systems!

Total Delta V required to Reach Equatorial Leo Orbit from KSC!

than what is required just to obtain orbit!!

38!

MAE 5540 - Propulsion Systems!

How About Transfer to Geo-Stationary Orbit!

39!

MAE 5540 - Propulsion Systems!

Hohmann transfer!

40!

MAE 5540 - Propulsion Systems!

• 28.5° North Latitude LaunchMinimum Total Delta V to GEO

ΔVtotal = ΔVlaunch + ΔV Plane

Change + ΔV1

hohmann + ΔV2

hohmann =

7455.6 + 3846.1 + 2467.0 + 1481.4 m

sec = 15250.0 msec

• THAT'S almost twice orbital velocity ... How do we ever get there?

KSC Launch example: Option 1!

41!

MAE 5540 - Propulsion Systems!

OK, lets try another approach!

“where V is smaller”!42!

MAE 5540 - Propulsion Systems!

Option 2!

43!

MAE 5540 - Propulsion Systems!

Vinitial

VfinalΔI ΔVplane change

44!

MAE 5540 - Propulsion Systems! 45!

MAE 5540 - Propulsion Systems!

Plane Change at Apogee!

46!

MAE 5540 - Propulsion Systems!

KSC Launch Option 2!

47!

MAE 5540 - Propulsion Systems!

KSC Launch Option 2!

• Better …. But can we still do better than this?!

48!

MAE 5540 - Propulsion Systems!

Combined Plane Change!

49!

MAE 5540 - Propulsion Systems!

Combined Plane Change (cont’d)!

Angle between vectors!50!

MAE 5540 - Propulsion Systems!

Combined Plane Change (cont’d)!

Vν2

V1V2

Vν1

Vr

Δi

γ1

γ2

51!

MAE 5540 - Propulsion Systems!

Combined Plane Change (cont’d)!

52!

MAE 5540 - Propulsion Systems!

Combined Plane Change (cont’d)!

53!

MAE 5540 - Propulsion Systems!

Option 3!

54!

MAE 5540 - Propulsion Systems! 55!

MAE 5540 - Propulsion Systems! 56!

MAE 5540 - Propulsion Systems!

Option 3 (concluded)!

57!

MAE 5540 - Propulsion Systems! 58!

MAE 5540 - Propulsion Systems!

Option 4!

59!

MAE 5540 - Propulsion Systems! 60!

MAE 5540 - Propulsion Systems! 61!

MAE 5540 - Propulsion Systems! 62!

MAE 5540 - Propulsion Systems! 63!

MAE 5540 - Propulsion Systems! 64!

MAE 5540 - Propulsion Systems!

Cost to get to GEO from Equatorial Launch!

65!

MAE 5540 - Propulsion Systems!

Cost to get to GEO from Equatorial Launch!

• That’s the bottom Line … get a satellite to GEO-stationary!Orbit from KSC costs you >3% ΔV Compared to!Equatorial LAUNCH!

66!

MAE 5540 - Propulsion Systems! 67!