Search for heavy neutrino in K‾→ µ‾ ν γ decay at ISTRA+ setup Viacheslav Duk, INR RAS...

Post on 06-Jan-2018

222 views 2 download

description

Kaon decays: motivation QFTHEP-2011 Relatively easy to get kaon beams Possibility to do precise measurements V.A.Duk, INR RAS Check SM predictions Search for NP 3 experimenttheory Low uncertainties in calculations within Standard Model (SM) New Physics (NP) contributions

Transcript of Search for heavy neutrino in K‾→ µ‾ ν γ decay at ISTRA+ setup Viacheslav Duk, INR RAS...

Search for heavy neutrino in K‾→ µ‾ ν γ decay at ISTRA+ setup

Viacheslav Duk, INR RAS

ISTRA+ collaboration

ISTRA+

IHEP U-70 (Protvino, Russia)

Plan

• LSND/KARMEN/MiniBooNE anomaly and heavy sterile neutrino νh

• Search for νh in kaon decays• ISTRA+ setup• Event selection for K‾→ µ‾ ν γ • Signal extraction• Limits for |Uµh|2

• Conclusions

QFTHEP-2011 2V.A.Duk, INR RAS

Kaon decays: motivation

QFTHEP-2011

Relatively easy to get kaon beamsPossibility to do precise measurements

V.A.Duk, INR RAS

Check SM predictionsSearch for NP

3

experiment theory

Low uncertainties in calculations within Standard Model (SM)New Physics (NP) contributions

Motivation for this work

Paper by S.N.Gninenko (INR RAS)Resolution of puzzles of LSND, KARMEN and

MiniBooNE experiments Phys.Rev.D83:015015,2011. arXiv: 1009.5536

QFTHEP-2011 4V.A.Duk, INR RAS

Neutrino oscillations: LSND

QFTHEP-2011 5V.A.Duk, INR RAS

Neutrino oscillations: KARMEN

QFTHEP-2011 6V.A.Duk, INR RAS

Neutrino oscillations: MiniBooNE, neutrino mode

QFTHEP-2011 7V.A.Duk, INR RAS

Neutrino oscillations: MiniBooNE, anineutrino mode

QFTHEP-2011 8V.A.Duk, INR RAS

Above 475 MeV:Event excess475-1250 MeV: 20.9±14.0475-3000 MeV: 24.7±18.0

Below 475 MeV:Event excess200-475 MeV: 18.5±14.3

LSND/KARMEN/MiniBooNE anomalies: summary

QFTHEP-2011 9V.A.Duk, INR RAS

Possible explanation of experimental results (S.Gninenko, INR RAS)

QFTHEP-2011 10V.A.Duk, INR RAS

Origin of excess

Possible explanation (S.N.Gninenko)

New weakly interacting particle νh:• Produced in NC• Mixing with νμ ( must be in CC, e.g. kaon

decays) or separate vertex (may be in NC only)• Decays radiatively via μtr

QFTHEP-2011 11V.A.Duk, INR RAS

Properties of a new particle νh

• m > 40 MeV: no event excess in KARMEN (threshold effect)

• m < 80 MeV: νh production in LSND suppressed by phase space factor for m > 80MeV

• τ(νh) > 10-11 sec: from LEP constraints: BR(Z→ννh) x BR(νh → ν γ) < 2.7 x 10-5

• τ(νh) < 10-9 sec: νh‘s decay within MiniBooNE detector volume

• 10-3 < |Uμh|2 < 10-2 : from event excess in MiniBooNE experiment

QFTHEP-2011 12V.A.Duk, INR RAS

New weakly interacting particle νh

QFTHEP-2011

Decays mostly as νh →νγ

40 MeV < m (νh) < 80 MeV 10-3 < |Uμh|2 < 10-2

10-11 sec < τ(νh) < 10-9 sec

13V.A.Duk, INR RAS

νh : limits from pion and kaon decays

QFTHEP-2011 14V.A.Duk, INR RAS

Muon energy in 2-body kaon decay

Search for νh in kaon decays

QFTHEP-2011

K→μνh : peak in Eμ (cms) background from K→μνμ insensitive to low masses of νh because of resolution

K→μνh , νh →ν γ: peak in Eμ (cms) signature the same as for K→ µ ν γ no background from K→μνμ

sensitive to low masses of νh

secondary decay vertex

Suitable for ISTRA+

Muon energy in 2-body kaon decay

15V.A.Duk, INR RAS

ISTRA+ collaboration

QFTHEP-2011

Institute for High Energy Physics, Protvino (IHEP) Institute for Nuclear Research, Moscow (INR) Joint Institute for Nuclear Research, Dubna (JINR)

ISTRA+

16V.A.Duk, INR RAS

ISTRA+ setup

C1-C4 – thresh. cherenkov counters; S1-S5 – scintillation counters; PC1-PC3 – proportional chambers; SP2 – veto calorimeter; SP1 – lead-glass calorimeter; DC – drift chambers; DT-drift tubes; MH – matrix scintilation godoscopeQFTHEP-2011

T0=S1 . S2 . S3 . S4 . C0 . C1 . C2 . S5 (prescaled by a factor of ~10)

T1=T0 . (∑SP1 > MIP)

17V.A.Duk, INR RAS

ISTRA+ setup: beam part

C1-C4 – thresh. cherenkov counters; S1-S5 – scintillation counters; PC1-PC3 – proportional chambers; SP2 – veto calorimeter; SP1 – lead-glass calorimeter; DC – drift chambers; DT-drift tubes; MH – matrix scintilation godoscopeQFTHEP-2011

T0=S1 . S2 . S3 . S4 . C0 . C1 . C2 . S5 (prescaled by a factor of ~10)

T1=T0 . (∑SP1 > MIP)

18V.A.Duk, INR RAS

ISTRA+ setup: decay volume

C1-C4 – thresh. cherenkov counters; S1-S5 – scintillation counters; PC1-PC3 – proportional chambers; SP2 – veto calorimeter; SP1 – lead-glass calorimeter; DC – drift chambers; DT-drift tubes; MH – matrix scintilation godoscopeQFTHEP-2011

T0=S1 . S2 . S3 . S4 . C0 . C1 . C2 . S5 (prescaled by a factor of ~10)

T1=T0 . (∑SP1 > MIP)

vacuum

He

19V.A.Duk, INR RAS

ISTRA+ setup: magnetic spectrometer

C1-C4 – thresh. cherenkov counters; S1-S5 – scintillation counters; PC1-PC3 – proportional chambers; SP2 – veto calorimeter; SP1 – lead-glass calorimeter; DC – drift chambers; DT-drift tubes; MH – matrix scintilation godoscopeQFTHEP-2011

T0=S1 . S2 . S3 . S4 . C0 . C1 . C2 . S5 (prescaled by a factor of ~10)

T1=T0 . (∑SP1 > MIP)

20V.A.Duk, INR RAS

ISTRA+ setup: ECAL, HCAL

C1-C4 – thresh. cherenkov counters; S1-S5 – scintillation counters; PC1-PC3 – proportional chambers; SP2 – veto calorimeter; SP1 – lead-glass calorimeter; DC – drift chambers; DT-drift tubes; MH – matrix scintilation godoscopeQFTHEP-2011

T0=S1 . S2 . S3 . S4 . C0 . C1 . C2 . S5 (prescaled by a factor of ~10)

T1=T0 . (∑SP1 > MIP)

21V.A.Duk, INR RAS

K→µνh (νh→νγ) event reconstruction: primary and secondary vertex for signal

QFTHEP-2011

K

K

μ

μ

νμ

ν

γ

γνh

A

A

B

B

Pγ calculated using A, B

Pγ calculated using A, B:additional energy smearing

Eνh ~ 240 MeV , mνh ~ 40–80 MeV

smearing not crucial

22V.A.Duk, INR RAS

K→µνh (νh→νγ): primary and secondary vertices

QFTHEP-2011

Zνh - ZK

(Zνh – ZK)/(ZECAL – ZK)

τ=10-11 sec τ=10-10 sec

τ=10-9 sec

τ=10-9 sec

τ=10-10 secτ=10-11 sec

dz, cm dz, cm dz, cm

23V.A.Duk, INR RAS

K→µνh (νh→νγ): Eγ smearing

QFTHEP-2011

τ=10-11 sec τ=10-10 sec τ=10-9 sec

dE, GeV dE, GeV dE, GeV

dE = Etrue - Emeasured

24V.A.Duk, INR RAS

K→µνh (νh→νγ): kinematics in kaon rest frame

QFTHEP-2011

νh ν

γ

μ

Eνh ~ 240 MeV , mνh ~ 40–80 MeV Eγ > 50 MeV

kaon decay vertex

Pγ: kaon rest frameP*γ: νh rest frame θ – (γ-νh) angle

cos θμγ ~ (-1)

peak sharper for smaller mh

25V.A.Duk, INR RAS

*

general caseassumed isotropic

*

K→µνh (νh→νγ) event selection: K→µνγ signature• Track requirements (one primary track, one secondary track,

cuts on track quality)• Veto requirements (no signals above threshold)• Vertex requirements (400 < z < 1600 cm, cut on vertex fit

probability)• Particle ID : Photon: isolated shower in ECAL Muon: 1) MIP in ECAL 2) ADC sum in HCAL < 200 3) relative energy deposition in last 3 layers of HCAL > 0.05

QFTHEP-2011 26V.A.Duk, INR RAS

K→µνγ : decay rate and kinematical variables

QFTHEP-2011

Kinematical variables:x=2*Eγ(cms)/Mk y=2*Eµ(cms)/Mk

3 main terms: IB – dominant SD±, INT± - most interesting (→ Fv , FA)

x

y

IBDalits-plot

27V.A.Duk, INR RAS

K→µνh (νh→νγ): background rejection and signal observation• Main background:• K→ µ ν γ (Kµ2γ)• K→ µ ν π0 (Kµ3)with 1 gamma lost (from π0→γγ) • K→ π π0 (Kπ2)with 1 gamma lost (from π0→γγ) and π misidentification• Signal observation: peaks in y and cos θμγ where θμγ is the angle between pµ and pγ in kaon rest frame. θμγ peaks at (-1) for signalBackground rejection procedure: scanning over (y, x) Dalits-plot and looking for a peak in cos θμγ

QFTHEP-2011 28V.A.Duk, INR RAS

K→µνh (νh→νγ): (y, x) Dalits plot

QFTHEP-2011

Kµ2γ (MC)

Kµ3 (MC)Kπ2 (MC) X

XX

Y

signal (MC)X

Y

29V.A.Duk, INR RAS

data

X

X

Y

Y Y

main background: Kπ2

K→µνh (νh→νγ): signal extraction

• (y, x) dalits-plot is divided into stripes with Δx=0.05 width (x-stripes)

• cut on y is put in each x-stripe: 1 < y < 1.2• Simultaneous fit of y and cos θμγ is done in x-stripes

QFTHEP-2011

X

y

signal (MC)

7 x-stripes selected for further analysisin the following region:1 < y < 1.20.2 < x < 0.55

30V.A.Duk, INR RAS

Possible signature for νh in x-stripes; |Uµh|2=0.01, m=60 MeV, τ=10-10 sec

QFTHEP-2011

Stripe 1: 0.2 < x < 0.25

Stripe 4: 0.35 < x < 0.4

Stripe 7: 0.5 < x < 0.55

cos θµγ

cos θµγ

cos θµγ

Y

Y

Y

31V.A.Duk, INR RAS

magenta: signalgreen: K→µνγblue: Kμ3red: Kπ2

peak sharper for large x

Possible signature for different masses of νh ; |Uµh|2=0.01 , τ=10-10 sec

QFTHEP-2011

m=80 MeV m=60 MeV m=40 MeV

cos θµγ cos θµγ cos θµγ

32V.A.Duk, INR RAS

peak sharper for small mh

Possible signature for different lifetimes of νh ; |Uµh|2=0.01 , m=60 MeV

QFTHEP-2011

τ=10-9 sec τ=10-10 sec τ=10-11 sec

cos θµγ cos θµγ cos θµγ

33V.A.Duk, INR RAS

peak sharper for large τh

Signal efficiency

QFTHEP-2011

mh τ(lab) because of Lorentz boost

low efficiency for small mh

2 effects

mh E(cms)

cut on y (y>1) kills signal

34V.A.Duk, INR RAS

τ=10-9 sec

τ=10-11 sec

τ=10-10 sec

mνh, MeV

mνh, MeV

mνh, MeV

K→µνh (νh→νγ): simultaneous fit in x-stripes

QFTHEP-2011

fitting cos θμγ and y simultaneously is more reliable

Signal and background shapes taken from MC

magenta – signal, green – Kμ2γ, blue – Kμ3, red – Kπ2

0.4 < x < 0.45

0.3 < x < 0.35

35V.A.Duk, INR RAS

Y cos θµγ

Y cos θµγ

|Uµh|2 calculation

• BR(νh) measured from

BR(νh)/BR(Kμ2γ)• BR(Kμ2) taken from PDG• BR(Kμ2γ) taken from theory• f(mh) contains chirality flip

and phase space factors

QFTHEP-2011

blue (chirality flip): 1+(mh/mμ)2

red (total): f(mh , mμ)

f(mh , mµ)

f = 1.1 – 1.5

mνh, GeV

36V.A.Duk, INR RAS

|Uµh|2 calculation

• |Uµh|2 is calculated for each x-stripe

• Nexp(νh)/ Nmc(νh) obtained from simultaneous fit

• Values |Uµh|2 for x-stripes are averaged

• Upper limit is set for averaged |Uµh|2

QFTHEP-2011 37V.A.Duk, INR RAS

Averaging |Uµh|2

QFTHEP-2011

|Uµh|2 = (6.6 ± 3.9)*10-6

m=50 MeV, τ=10-10 sec

X

|Uµh|2

38V.A.Duk, INR RAS

|Uµh|2

X

1σ interval

|Uµh|2 for τ=10-9 , 10-10 and 10-11 sec

QFTHEP-2011 39V.A.Duk, INR RAS

|Uµh|2|Uµh|2|Uµh|2

mνh, MeVmνh, MeV mνh, MeV

τ=10-9 τ=10-10 τ=10-11

effect does not exceed 2σ

Main sources of systematics

• Fit (shape) systematics• bin size in cos histogram• x-stripe width (bin size in the final fit)• Cut on x (number of x-stripes in the final fit)• Cut on y in x-stripes (study in progress)

QFTHEP-2011 40V.A.Duk, INR RAS

Main sources of systematics

• Fit (shape) systematics• bin size in cos histogram• x-stripe width (bin size in the final fit)• Cut on x (number of x-stripes in the final fit)• Cut on y in x-stripes (study in progress)

QFTHEP-2011 41V.A.Duk, INR RAS

Fit (shape) systematics

• MC shape is not perfect• Errors of simultaneous fit scaled to χ2=1• New |Uµh|2 has larger error • Additional error is treated as shape systematics• Dominant source

QFTHEP-2011 42V.A.Duk, INR RAS

m = 80 MeV τ = 10-10 sec

x

|Uµh|2

|Uµh|2 = (0.9 ± 0.5)*10-5 |Uµh|2 = (0.7 ± 0.8)*10-5

|Uµh|2

x

Main sources of systematics

• Fit (shape) systematics• bin size in cos histogram• x-stripe width (bin size in the final fit)• Cut on x (number of x-stripes in the final fit)• Cut on y in x-stripes (study in progress)

QFTHEP-2011 43V.A.Duk, INR RAS

Bin size in simultaneous (cos histogram) and final (x-stripe width) fits

• Varying bin size in cos histogram: results are compatible

• Varying x-stripe width: results are compatible• No systematics found

QFTHEP-2011 44V.A.Duk, INR RAS

Main sources of systematics

• Fit (shape) systematics• bin size in cos histogram• x-stripe width (bin size in the final fit)• Cut on x (number of x-stripes in the final fit)• Cut on y in x-stripes (study in progress)

QFTHEP-2011 45V.A.Duk, INR RAS

Systematics of a cut on x

• Varying number of stripes in the final fit• Fitting dependency of |Uµh|2 on x• slope multiplied by stripe width gives error

estimation• εsyst < 0.2 εstat

QFTHEP-2011 46V.A.Duk, INR RAS

x-stripe number

|Uµh|2

Setting UL on |Uµh|2

QFTHEP-2011 47V.A.Duk, INR RAS

upper line – total errorbottom line – statistical error only

τ=10-11 τ=10-10

τ=10-9

UL (95% C.L.) UL (95% C.L.) UL (95% C.L.)

mνh, MeV mνh, MeV mνh, MeV

Comparison with Gninenko’s prediction

QFTHEP-2011

blue stripe: predictions from LSND, KARMEN. MiniBoonE

Black line: ISTRA+ upper limit @ 95% C.L.

48V.A.Duk, INR RAS

mνh, MeVmνh, MeV mνh, MeV

|Uµh|2 |Uµh|2|Uµh|2

Preliminary results• |Uµh|2 < (4-6) x 10-5 (95% CL) for τ=10-9 sec• |Uµh|2 < (1-2) x 10-5 (95% CL) for τ=10-10 sec• |Uµh|2 < (1.5-2) x 10-5 (95% CL) for τ=10-11 sec

• More detailed scan of (m, τ) and study of systematics is in progress

QFTHEP-2011 49V.A.Duk, INR RAS

conclusions Heavy sterile neutrino νh is proposed for LSND/KARMEN/MiniBoone anomaly

explanation:

40 MeV < m(νh) < 80 MeV, 10-11 sec < τ(νh) < 10-9 sec, 10-3 < |Uμh|2 < 10-2

νh can be effectively searched for in kaon decay K→µνh (νh→νγ)

First preliminary limits on |Uµh|2 are obtained from K‾→ µ‾ ν γ decay at ISTRA+ setup:

|Uµh|2 < (4-6) x 10-5 (95% CL) for τ=10-9 sec |Uµh|2 < (1-2) x 10-5 (95% CL) for τ=10-10 sec |Uµh|2 < (1.5-2) x 10-5 (95% CL) for τ=10-11 sec

more detailed study is in progress

QFTHEP-2011 50V.A.Duk, INR RAS

QFTHEP-2011 51V.A.Duk, INR RAS

THANK YOU!

Back-up slides

QFTHEP-2011 52V.A.Duk, INR RAS

LSND: oscillation interpretation

QFTHEP-2011 53V.A.Duk, INR RAS

Neutrinos in LSND and KARMEN

QFTHEP-2011 54V.A.Duk, INR RAS

Full list of cuts

QFTHEP-2011 55V.A.Duk, INR RAS

General formula for decay rate

QFTHEP-2011 56V.A.Duk, INR RAS

Taken from: D.Gorbunov, M.Shaposhnikov. JHEP 0710:015,2007

(х, cosθμγ) correlations

QFTHEP-2011

τ=10-9 sec

τ=10-9 sec

τ=10-11 sec

τ=10-11 sec

m=40MeV m=40MeV

m=80MeV m=80MeV

Kπ2Kμ3 cos θ ~ 1/Eγ for large νh mass (similar to π0)

х

х

х

х

х

х

cosθμγ

cosθμγcosθμγ

cosθμγcosθμγ

cosθμγ

57V.A.Duk, INR RAS