Raleigh, NC North Carolina State University Department of … · A. A. Markov Anniversary Meeting...

Post on 03-Jul-2020

12 views 0 download

Transcript of Raleigh, NC North Carolina State University Department of … · A. A. Markov Anniversary Meeting...

UpdatingMarkovChains

Carl MeyerAmy Langville

Department of MathematicsNorth Carolina State UniversityRaleigh, NC

A. A. Markov Anniversary Meeting

June 13, 2006

IntroAssumptions

Very large irreducible chain

— m = O(109) number of states

— Qm×m old transition matrix

— φT = (φ1, φ2, . . ., φm) old stationary distribution

IntroAssumptions

Very large irreducible chain

— m = O(109) number of states

— Qm×m old transition matrix

— φT = (φ1, φ2, . . ., φm) old stationary distribution

Updates

Change some transition probabilities

Add or delete some states

— Pn×n new transition matrix (irreducible)

— πT = (π1, π2, . . ., πn) new distribution (unknown)

IntroAssumptions

Very large irreducible chain

— m = O(109) number of states

— Qm×m old transition matrix

— φT = (φ1, φ2, . . ., φm) old stationary distribution

Updates

Change some transition probabilities

Add or delete some states

— Pn×n new transition matrix (irreducible)

— πT = (π1, π2, . . ., πn) new distribution (unknown)

Aim

Use φT to compute πT

Exact (Theoretical) UpdatingPerturbation Formula

P = Q − E =⇒ πT = φT − εT

Exact (Theoretical) UpdatingPerturbation Formula

P = Q − E =⇒ πT = φT − εT εT = φTEZ(I + EZ)−1

Z ={

Fundamental Matrix

(I − Q)#(group inverse)

Exact (Theoretical) UpdatingPerturbation Formula

P = Q − E =⇒ πT = φT − εT εT = φTEZ(I + EZ)−1

Z ={

Fundamental Matrix

(I − Q)#(group inverse)Requires m = n (No states added or deleted)

Exact (Theoretical) UpdatingPerturbation Formula

P = Q − E =⇒ πT = φT − εT εT = φTEZ(I + EZ)−1

Z ={

Fundamental Matrix

(I − Q)#(group inverse)Requires m = n (No states added or deleted)

One Row At A Time (Sherman–Morrison)

pTi = qT

i − δTi =⇒ πT = φT − εT

Exact (Theoretical) UpdatingPerturbation Formula

P = Q − E =⇒ πT = φT − εT εT = φTEZ(I + EZ)−1

Z ={

Fundamental Matrix

(I − Q)#(group inverse)Requires m = n (No states added or deleted)

One Row At A Time (Sherman–Morrison)

pTi = qT

i − δTi =⇒ πT = φT − εT

εT =(

φi

1 + δTi A#

∗i

)δTA# A# = (I − Q)#

Exact (Theoretical) UpdatingPerturbation Formula

P = Q − E =⇒ πT = φT − εT εT = φTEZ(I + EZ)−1

Z ={

Fundamental Matrix

(I − Q)#(group inverse)Requires m = n (No states added or deleted)

One Row At A Time (Sherman–Morrison)

pTi = qT

i − δTi =⇒ πT = φT − εT

εT =(

φi

1 + δTi A#

∗i

)δTA# A# = (I − Q)#

(I − P)# = A# + eεT[A# − γI

]− A#

∗iεT

φiγ = εTA#

∗iφi

Exact (Theoretical) UpdatingPerturbation Formula

P = Q − E =⇒ πT = φT − εT εT = φTEZ(I + EZ)−1

Z ={

Fundamental Matrix

(I − Q)#(group inverse)Requires m = n (No states added or deleted)

One Row At A Time (Sherman–Morrison)

pTi = qT

i − δTi =⇒ πT = φT − εT

εT =(

φi

1 + δTi A#

∗i

)δTA# A# = (I − Q)#

(I − P)# = A# + eεT[A# − γI

]− A#

∗iεT

φiγ = εTA#

∗iφi

Not Practical For Large Problems

Restarted Power MethodxT

j+1 = xTj P with xT

0 = φT(assume aperiodic)

Restarted Power MethodxT

j+1 = xTj P with xT

0 = φT(assume aperiodic)

— Requires m = n (no states added or deleted)

Restarted Power MethodxT

j+1 = xTj P with xT

0 = φT(assume aperiodic)

— Requires m = n (no states added or deleted)

— Requires φT ≈ πT (generally means P ≈ Q)

Restarted Power MethodxT

j+1 = xTj P with xT

0 = φT(assume aperiodic)

— Requires m = n (no states added or deleted)

— Requires φT ≈ πT (generally means P ≈ Q)

— Asymptotic rate of convergence: R = − log10 |λ2|Need about 1/R iterations to eventually gain oneadditional significant digit of accuracy

Restarted Power MethodxT

j+1 = xTj P with xT

0 = φT(assume aperiodic)

— Requires m = n (no states added or deleted)

— Requires φT ≈ πT (generally means P ≈ Q)

— Asymptotic rate of convergence: R = − log10 |λ2|Need about 1/R iterations to eventually gain oneadditional significant digit of accuracy

Example:

� Suppose digit1(φT ) = digit1(πT )

� Want 12 digits of accuracy

Restarted Power MethodxT

j+1 = xTj P with xT

0 = φT(assume aperiodic)

— Requires m = n (no states added or deleted)

— Requires φT ≈ πT (generally means P ≈ Q)

— Asymptotic rate of convergence: R = − log10 |λ2|Need about 1/R iterations to eventually gain oneadditional significant digit of accuracy

Example:

� Suppose digit1(φT ) = digit1(πT )

� Want 12 digits of accuracy

� RPM — about 11/R iterations

� Start from scratch — about 12/R iterations

Restarted Power MethodxT

j+1 = xTj P with xT

0 = φT(assume aperiodic)

— Requires m = n (no states added or deleted)

— Requires φT ≈ πT (generally means P ≈ Q)

— Asymptotic rate of convergence: R = − log10 |λ2|Need about 1/R iterations to eventually gain oneadditional significant digit of accuracy

Example:

� Suppose digit1(φT ) = digit1(πT )

� Want 12 digits of accuracy

� RPM — about 11/R iterations

� Start from scratch — about 12/R iterations

� Only 8.3% reduction

Restarted Power MethodxT

j+1 = xTj P with xT

0 = φT(assume aperiodic)

— Requires m = n (no states added or deleted)

— Requires φT ≈ πT (generally means P ≈ Q)

— Asymptotic rate of convergence: R = − log10 |λ2|Need about 1/R iterations to eventually gain oneadditional significant digit of accuracy

Example:

� Suppose digit1(φT ) = digit1(πT )

� Want 12 digits of accuracy

� RPM — about 11/R iterations

� Start from scratch — about 12/R iterations

� Only 8.3% reduction

A Little Better, But Not Great

CensoringPartition (not necessarily NCD)

Pn×n =

⎛⎜⎜⎜⎝

G1 G2. . . Gk

G1 P11 P12. . . P1k

G2 P21 P22. . . P2k...

......

. . ....

Gk Pk1 Pk2. . . Pkk

⎞⎟⎟⎟⎠

CensoringPartition (not necessarily NCD)

Pn×n =

⎛⎜⎜⎜⎝

G1 G2. . . Gk

G1 P11 P12. . . P1k

G2 P21 P22. . . P2k...

......

. . ....

Gk Pk1 Pk2. . . Pkk

⎞⎟⎟⎟⎠

Censored Chains

Records state of process only when chain visits states in Gi.

Visits to states outside of Gi are ignored.

CensoringPartition (not necessarily NCD)

Pn×n =

⎛⎜⎜⎜⎝

G1 G2. . . Gk

G1 P11 P12. . . P1k

G2 P21 P22. . . P2k...

......

. . ....

Gk Pk1 Pk2. . . Pkk

⎞⎟⎟⎟⎠

Censored Chains

Records state of process only when chain visits states in Gi.

Visits to states outside of Gi are ignored.

Censored Transition Matrices

Ci = Pii + Pi�(I − P�i )−1P�i Stochastic Complements

Aggregation

Censored Distributions

sTi Ci = sT

i

Aggregation

Censored Distributions

sTi Ci = sT

i

Aggregation Matrix

Ak×k =

⎡⎣ sT

1P11e . . . sT1P1ke

.... . .

...sT

k Pk1e . . . sTk Pkke

⎤⎦ e =

⎡⎣ 1...

1

⎤⎦

Aggregation

Censored Distributions

sTi Ci = sT

i

Aggregation Matrix

Ak×k =

⎡⎣ sT

1P11e . . . sT1P1ke

.... . .

...sT

k Pk1e . . . sTk Pkke

⎤⎦ e =

⎡⎣ 1...

1

⎤⎦

Aggregated Distribution

αTA = αT αT = (α1, α2, . . ., αk)

Aggregation

Censored Distributions

sTi Ci = sT

i

Aggregation Matrix

Ak×k =

⎡⎣ sT

1P11e . . . sT1P1ke

.... . .

...sT

k Pk1e . . . sTk Pkke

⎤⎦ e =

⎡⎣ 1...

1

⎤⎦

Aggregated Distribution

αTA = αT αT = (α1, α2, . . ., αk)

Aggregation Theorem

πT = (πT1 |πT

2 | . . . |πTk ) = (α1sT

1 |α2sT2 | . . . |α2sT

2 )

PartitioningIntuition

Update relatively small number of states in large sparse chain

— Effects are primarily local

— Most stationary probabilities not significantly affected.

PartitioningIntuition

Update relatively small number of states in large sparse chain

— Effects are primarily local

— Most stationary probabilities not significantly affected.

State Space Partition

S = G ∪ G G ={

states likely to be most affectednewly added states

PartitioningIntuition

Update relatively small number of states in large sparse chain

— Effects are primarily local

— Most stationary probabilities not significantly affected.

State Space Partition

S = G ∪ G G ={

states likely to be most affectednewly added states

— g = |G| << |G|

PartitioningIntuition

Update relatively small number of states in large sparse chain

— Effects are primarily local

— Most stationary probabilities not significantly affected.

State Space Partition

S = G ∪ G G ={

states likely to be most affectednewly added states

— g = |G| << |G|

Induced Matrix Partition

Pn×n =

( G GG P11 P12

G P21 P22

)=

⎡⎢⎢⎢⎣

p11. . . p1g P1�

......

...pg1

. . . pgg Pg�

P�1. . . P�g P22

⎤⎥⎥⎥⎦

Specialized AggregationCensored Transition Matrices

C1 = . . . = Cg = [1]1×1 Cg+1 = P22 + P21(I − P11)−1P12

Specialized AggregationCensored Transition Matrices

C1 = . . . = Cg = [1]1×1 Cg+1 = P22 + P21(I − P11)−1P12

Censored DistributionssT

1 = . . . = sTg = 1 sT

g+1 = sTg+1Cg+1

Specialized AggregationCensored Transition Matrices

C1 = . . . = Cg = [1]1×1 Cg+1 = P22 + P21(I − P11)−1P12

Censored DistributionssT

1 = . . . = sTg = 1 sT

g+1 = sTg+1Cg+1

Aggregation Matrix

A =[

P11 P12esT

g+1P21 1 − sTg+1P21e

](g+1)×(g+1)

Specialized AggregationCensored Transition Matrices

C1 = . . . = Cg = [1]1×1 Cg+1 = P22 + P21(I − P11)−1P12

Censored DistributionssT

1 = . . . = sTg = 1 sT

g+1 = sTg+1Cg+1

Aggregation Matrix Aggregated Distribution

A =[

P11 P12esT

g+1P21 1 − sTg+1P21e

](g+1)×(g+1)

αT =(α1, . . ., αg, αg+1

)Aggregation Theorem

πT =(π1, . . ., πg |πT

)= (α1, . . ., αg, |αg+1sT

g+1)

Specialized AggregationCensored Transition Matrices

C1 = . . . = Cg = [1]1×1 Cg+1 = P22 + P21(I − P11)−1P12

Censored DistributionssT

1 = . . . = sTg = 1 sT

g+1 = sTg+1Cg+1

Aggregation Matrix Aggregated Distribution

A =[

P11 P12esT

g+1P21 1 − sTg+1P21e

](g+1)×(g+1)

αT =(α1, . . ., αg, αg+1

)Aggregation Theorem

πT =(π1, . . ., πg |πT

)= (α1, . . ., αg, |αg+1sT

g+1)

Old Distribution (reorded)

φT = (φ1, φ2, . . . |φT)

Specialized AggregationCensored Transition Matrices

C1 = . . . = Cg = [1]1×1 Cg+1 = P22 + P21(I − P11)−1P12

Censored DistributionssT

1 = . . . = sTg = 1 sT

g+1 = sTg+1Cg+1

Aggregation Matrix Aggregated Distribution

A =[

P11 P12esT

g+1P21 1 − sTg+1P21e

](g+1)×(g+1)

αT =(α1, . . ., αg, αg+1

)Aggregation Theorem

πT =(π1, . . ., πg |πT

)= (α1, . . ., αg, |αg+1sT

g+1)

Old Distribution (reorded)

φT = (φ1, φ2, . . . |φT)

The Assumption

φT ≈ πT

Specialized AggregationCensored Transition Matrices

C1 = . . . = Cg = [1]1×1 Cg+1 = P22 + P21(I − P11)−1P12

Censored DistributionssT

1 = . . . = sTg = 1 sT

g+1 = sTg+1Cg+1

Aggregation Matrix Aggregated Distribution

A =[

P11 P12esT

g+1P21 1 − sTg+1P21e

](g+1)×(g+1)

αT =(α1, . . ., αg, αg+1

)Aggregation Theorem

πT =(π1, . . ., πg |πT

)= (α1, . . ., αg, |αg+1sT

g+1)

Old Distribution (reorded)

φT = (φ1, φ2, . . . |φT)

The Assumption

φT ≈ πT =⇒ φ

T ≈ αg+1sTg+1

Specialized AggregationCensored Transition Matrices

C1 = . . . = Cg = [1]1×1 Cg+1 = P22 + P21(I − P11)−1P12

Censored DistributionssT

1 = . . . = sTg = 1 sT

g+1 = sTg+1Cg+1

Aggregation Matrix Aggregated Distribution

A =[

P11 P12esT

g+1P21 1 − sTg+1P21e

](g+1)×(g+1)

αT =(α1, . . ., αg, αg+1

)Aggregation Theorem

πT =(π1, . . ., πg |πT

)= (α1, . . ., αg, |αg+1sT

g+1)

Old Distribution (reorded)

φT = (φ1, φ2, . . . |φT)

The Assumption

φT ≈ πT =⇒ φ

T ≈ αg+1sTg+1 =⇒ sT

g+1 ≈ φT

φT

e

Specialized AggregationCensored Transition Matrices

C1 = . . . = Cg = [1]1×1 Cg+1 = P22 + P21(I − P11)−1P12

Censored DistributionssT

1 = . . . = sTg = 1 sT

g+1 = sTg+1Cg+1

Aggregation Matrix Aggregated Distribution

A =[

P11 P12esT

g+1P21 1 − sTg+1P21e

](g+1)×(g+1)

αT =(α1, . . ., αg, αg+1

)Aggregation Theorem

πT =(π1, . . ., πg |πT

)= (α1, . . ., αg, |αg+1sT

g+1)

Old Distribution (reorded)

φT = (φ1, φ2, . . . |φT)

The Assumption

φT ≈ πT =⇒ φ

T ≈ αg+1sTg+1 =⇒ sT

g+1 ≈ φT

φT

e

Specialized AggregationCensored Transition Matrices

C1 = . . . = Cg = [1]1×1 Cg+1 = P22 + P21(I − P11)−1P12

Censored DistributionssT

1 = . . . = sTg = 1 sT

g+1 = sTg+1Cg+1

Aggregation Matrix Aggregated Distribution

A =[

P11 P12esT

g+1P21 1 − sTg+1P21e

](g+1)×(g+1)

−−−−−→ αT =(α1, . . ., αg, αg+1

)Aggregation Theorem

πT =(π1, . . ., πg |πT

)= (α1, . . ., αg, |αg+1sT

g+1)

Old Distribution (reorded)

φT = (φ1, φ2, . . . |φT)

The Assumption

φT ≈ πT =⇒ φ

T ≈ αg+1sTg+1 =⇒ sT

g+1 ≈ φT

φT

e

Specialized AggregationCensored Transition Matrices

C1 = . . . = Cg = [1]1×1 Cg+1 = P22 + P21(I − P11)−1P12

Censored DistributionssT

1 = . . . = sTg = 1 sT

g+1 = sTg+1Cg+1

Aggregation Matrix Aggregated Distribution

A =[

P11 P12esT

g+1P21 1 − sTg+1P21e

](g+1)×(g+1)

−−−−−→ αT =(α1, . . ., αg, αg+1

)Aggregation Theorem

πT = (α1, . . ., αg, |αg+1sTg+1)

Old Distribution (reorded) Updated Distribution

φT = (φ1, φ2, . . . |φT)

The Assumption

φT ≈ πT =⇒ φ

T ≈ αg+1sTg+1 =⇒ sT

g+1 ≈ φT

φT

e

SummaryReorder & Partition Updated State Space

S = G ∪ G G = {New + Most affected} G = {Less affected}

SummaryReorder & Partition Updated State Space

S = G ∪ G G = {New + Most affected} G = {Less affected}

Use Less Affected Components From Old Distribution

φT ← components from φT corresponding to states in G

SummaryReorder & Partition Updated State Space

S = G ∪ G G = {New + Most affected} G = {Less affected}

Use Less Affected Components From Old Distribution

φT ← components from φT corresponding to states in G

Approximate Censored Distribution

sT ← φT/(φ

Te)

SummaryReorder & Partition Updated State Space

S = G ∪ G G = {New + Most affected} G = {Less affected}

Use Less Affected Components From Old Distribution

φT ← components from φT corresponding to states in G

Approximate Censored Distribution

sT ← φT/(φ

Te)

Form Approximate Aggregation Matrix

A ←[

P11 P12esTP21 1 − sTP21e

](g+1)×(g+1)

SummaryReorder & Partition Updated State Space

S = G ∪ G G = {New + Most affected} G = {Less affected}

Use Less Affected Components From Old Distribution

φT ← components from φT corresponding to states in G

Approximate Censored Distribution

sT ← φT/(φ

Te)

Form Approximate Aggregation Matrix

A ←[

P11 P12esTP21 1 − sTP21e

](g+1)×(g+1)

Compute Approximate Aggregated DistributionαT ←

(α1, . . ., αg, αg+1

)

SummaryReorder & Partition Updated State Space

S = G ∪ G G = {New + Most affected} G = {Less affected}

Use Less Affected Components From Old Distribution

φT ← components from φT corresponding to states in G

Approximate Censored Distribution

sT ← φT/(φ

Te)

Form Approximate Aggregation Matrix

A ←[

P11 P12esTP21 1 − sTP21e

](g+1)×(g+1)

Compute Approximate Aggregated DistributionαT ←

(α1, . . ., αg, αg+1

)Approximate Updated Distribution

πT ← (α1, . . ., αg, |αg+1sT )

SummaryReorder & Partition Updated State Space

S = G ∪ G G = {New + Most affected} G = {Less affected}

Use Less Affected Components From Old Distribution

φT ← components from φT corresponding to states in G

Approximate Censored Distribution

sT ← φT/(φ

Te)

Form Approximate Aggregation Matrix

A ←[

P11 P12esTP21 1 − sTP21e

](g+1)×(g+1)

Compute Approximate Aggregated DistributionαT ←

(α1, . . ., αg, αg+1

)Approximate Updated Distribution

πT ← (α1, . . ., αg, |αg+1sT )

Iterate ?

SummaryReorder & Partition Updated State Space

S = G ∪ G G = {New + Most affected} G = {Less affected}

Use Less Affected Components From Old Distribution

φT ← components from φT corresponding to states in G

Approximate Censored Distribution

sT ← φT/(φ

Te)

Form Approximate Aggregation Matrix

A ←[

P11 P12esTP21 1 − sTP21e

](g+1)×(g+1)

Compute Approximate Aggregated DistributionαT ←

(α1, . . ., αg, αg+1

)Approximate Updated Distribution

πT ← (α1, . . ., αg, |αg+1sT )

Iterate ? No! — At A Fixed Point

Iterative AggregationMove Off Of Fixed Point With Power Step

sT ← φT/(φ

Te)

A ←[

P11 P12esTP21 1 − sTP21e

](g+1)×(g+1)

αT ←(α1, . . ., αg, αg+1

)πT ← (α1, . . ., αg, |αg+1sT )ψT ← πTP (Also makes progress toward convergence when aperiodic)

If ‖ψT − χT‖ < τ then quit — else

sT ←− ψT/(ψTe)

−−→

Iterative AggregationMove Off Of Fixed Point With Power Step

sT ← φT/(φ

Te)

A ←[

P11 P12esTP21 1 − sTP21e

](g+1)×(g+1)

αT ←(α1, . . ., αg, αg+1

)πT ← (α1, . . ., αg, |αg+1sT )ψT ← πTP (Also makes progress toward convergence when aperiodic)

If ‖ψT − χT‖ < τ then quit — else

sT ←− ψT/(ψTe)

−−→

TheoremIf C = P22 + P21(I − P11)−1P12 is aperiodic, then convergent forall partitions S = G ∪ G

Iterative AggregationMove Off Of Fixed Point With Power Step

sT ← φT/(φ

Te)

A ←[

P11 P12esTP21 1 − sTP21e

](g+1)×(g+1)

αT ←(α1, . . ., αg, αg+1

)πT ← (α1, . . ., αg, |αg+1sT )ψT ← πTP (Also makes progress toward convergence when aperiodic)

If ‖ψT − χT‖ < τ then quit — else

sT ←− ψT/(ψTe)

−−→

TheoremIf C = P22 + P21(I − P11)−1P12 is aperiodic, then convergent forall partitions S = G ∪ G

— |λ2(C)| determines rate of convergence

Google’s PageRankRandom Walk On WWW Link Structure

Hij ={

1/(total # outlinks from page Pi) if Pi → Pj,

0 otherwise

Google’s PageRankRandom Walk On WWW Link Structure

Hij ={

1/(total # outlinks from page Pi) if Pi → Pj,

0 otherwise

Google Matrix

P = α(H + E) + (1 − α)F

— (H + E) & F are stochastic rank (E) = rank (F) = 1

— 0 < α < 1

Google’s PageRankRandom Walk On WWW Link Structure

Hij ={

1/(total # outlinks from page Pi) if Pi → Pj,

0 otherwise

Google Matrix

P = α(H + E) + (1 − α)F

— (H + E) & F are stochastic rank (E) = rank (F) = 1

— 0 < α < 1

— PageRank = πT

Google’s PageRankRandom Walk On WWW Link Structure

Hij ={

1/(total # outlinks from page Pi) if Pi → Pj,

0 otherwise

Google Matrix

P = α(H + E) + (1 − α)F

— (H + E) & F are stochastic rank (E) = rank (F) = 1

— 0 < α < 1

— PageRank = πT

Power Law Distribution

If ordered by magnitude π(1) ≥ π(2) ≥ . . . ≥ π(n), then

— π(i) ≈ αi−k for k ≈ 2.109[Donato, Laura, Leonardi, 2002]

[Pandurangan, Raghavan,& Upfal, 2004]

— Relatively few large states (i.e., important sites)

“L” Curves

0 200 400 6000

0.005

0.01

0.015

0.02

0.025

0.03

0.035censorship

0 200 400 6000

0.01

0.02

0.03

0.04movies

0 200 400 6000

0.01

0.02

0.03

0.04

0.05mathworks

0 1000 2000 0 5000 100000

0.005

0.01

0.015

0.02

0.025abortion

0 1000 2000 30000

0.005

0.01

0.015

0.02

0.025

0

0.002

0.004

0.008

0.006

0.01genetics CA

Experiments

The Updates

# Nodes Added = 3

# Nodes Removed = 50

# Links Added = 10 (Different values have little effect on results)

# Links Removed = 20

Stopping Criterion

1-norm of residual < 10−10

Movies

Power Method Iterative Aggregation

Iterations Time

17 .40

|G| Iterations Time

5 12 .3910 12 .3715 11 .3620 11 .3525 11 .3150 9 .31100 9 .33200 8 .35300 7 .39400 6 .47

nodes = 451 links = 713

Censorship

Power Method Iterative Aggregation

Iterations Time

38 1.40

|G| Iterations Time

5 38 1.6810 38 1.6615 38 1.5620 20 1.0625 20 1.0550 10 .69100 8 .55200 6 .53300 6 .65400 5 .70

nodes = 562 links = 736

MathWorks

Power Method Iterative Aggregation

Iterations Time

54 1.25

|G| Iterations Time

5 53 1.1810 52 1.2915 52 1.2320 42 1.0525 20 1.1350 18 .70100 16 .70200 13 .70300 11 .83400 10 1.01

nodes = 517 links = 13,531

Abortion

Power Method Iterative Aggregation

Iterations Time

106 37.08

|G| Iterations Time

5 109 38.5610 105 36.0215 107 38.0520 107 38.4525 97 34.8150 53 18.80100 13 5.18250 12 5.62500 6 5.21750 5 10.221000 5 14.61

nodes = 1,693 links = 4,325

Genetics

Power Method Iterative Aggregation

Iterations Time

92 91.78

|G| Iterations Time

5 91 88.2210 92 92.1220 71 72.5350 25 25.42100 19 20.72250 13 14.97500 7 11.141000 5 17.761500 5 31.84

nodes = 2,952 links = 6,485

California

Power Method Iterative Aggregation

Iterations Time

176 5.85

|G| Iterations Time

500 19 1.121000 15 .921250 20 1.041500 14 .902000 13 1.175000 6 1.25

nodes = 9,664 links = 16,150

“L” Curves

0 200 400 6000

0.005

0.01

0.015

0.02

0.025

0.03

0.035censorship

0 200 400 6000

0.01

0.02

0.03

0.04movies

0 200 400 6000

0.01

0.02

0.03

0.04

0.05mathworks

0 1000 2000 0 5000 100000

0.005

0.01

0.015

0.02

0.025abortion

0 1000 2000 30000

0.005

0.01

0.015

0.02

0.025

0

0.002

0.004

0.008

0.006

0.01genetics CA

“L” Curves

0 200 400 6000

0.005

0.01

0.015

0.02

0.025

0.03

0.035censorship

1000 200

50400 600

0

0.01

0.02

0.03

0.04movies

500 200 400 600

0

0.01

0.02

0.03

0.04

0.05mathworks

2500 1000 2000

0

0.005

0.01

0.015

0.02

0.025abortion

2500 1000 2000 3000

0

0.005

0.01

0.015

0.02

0.025genetics

20000 5000 10000

0

0.002

0.004

0.008

0.006

0.01CA

Quadratic Extrapolationnodes = 10,000 links = 101,118 [Kamvar, Haveliwala, Manning, Golub, 2003]

0 20 40 60 80 100 120 140 160 180 12

10 10

8 8

6 6

4 4

2 2

0

iteratioiteration

lolog 1010

res

idua

l r

esid

ual

power methopower methodpower method with quad. extrap.power method with quad. extrap.

Quadratic Extrapolationnodes = 10,000 links = 101,118 [Kamvar, Haveliwala, Manning, Golub, 2003]

0 20 40 60 80 100 120 140 160 180 12

10 10

8 8

6 6

4 4

2 2

0

iteratioiteration

lolog 1010

res

idua

l r

esid

ual

power methopower methodpower method with quad. extrap.power method with quad. extrap.i A D A D

Quadratic Extrapolationnodes = 10,000 links = 101,118 [Kamvar, Haveliwala, Manning, Golub, 2003]

0 20 40 60 80 100 120 140 160 180 12

10 10

8 8

6 6

4 4

2 2

0

iteratioiteration

lolog 1010

res

idua

l r

esid

ual

power methopower methodpower method with quad. extrap.power method with quad. extrap.i A D A Di A D A D with quad. extrap. with quad. extrap.

Timings

Iterations Time (sec) |G|

Power 162 9.69

Power+Quad 81 5.93

IAD 21 2.22 2000

IAD+Quad 16 1.85 2000

nodes = 10,000 links = 101,118

Conclusion

Iterative aggregation shows

promise for updating

Markov chains

Especially for those having

power law distributions

LevelingOffPointπ(i) ≈ αi−k

∣∣∣∣dπ(i)di

∣∣∣∣ ≈ ε for some user-defined tolerance ε

ilevel ≈(

ε

)1/k+1

Perhaps better: ilevel ≈ f (n)(

ε

)1/k+1

For WWW: gopt ≈ f (n)[2.109α

ε

]1/3.109