PHY103A: Lecture # 5akjha/PHY103_Notes_HW_Solutions/...Semester II, 2017-18 Department of Physics,...

Post on 05-Mar-2021

20 views 0 download

Transcript of PHY103A: Lecture # 5akjha/PHY103_Notes_HW_Solutions/...Semester II, 2017-18 Department of Physics,...

Semester II, 2017-18 Department of Physics, IIT Kanpur

PHY103A: Lecture # 5

(Text Book: Intro to Electrodynamics by Griffiths, 3rd Ed.)

Anand Kumar Jha 12-Jan-2018

1

Summary of Lecture # 4:

2

โ€ข Gaussโ€™s Law

๐„๐„(๐ซ๐ซ) =1

4๐œ‹๐œ‹๐œ–๐œ–0๏ฟฝ๐‘‘๐‘‘๐‘‘๐‘‘r2

rฬ‚

ฮฆ๐ธ๐ธ = ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š

๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข

๐›๐› โ‹… ๐„๐„ =๐œŒ๐œŒ ๐œ–๐œ–0

โ€ข Scalar Potential : if ๐›๐› ร— ๐…๐… = 0 everywhere, ๐…๐… = โˆ’๐›๐›V

โ€ข Vector Potential : if ๐›๐› โ‹… ๐…๐… = 0 everywhere, ๐…๐… = ๐›๐› ร— ๐€๐€

โ€ข Coulombโ€™s Law:

โ€ข Electric Flux

๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š

๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข=๐‘„๐‘„enc๐œ–๐œ–0

(in integral form)

(in differential form)

๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š

๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข=๐‘„๐‘„enc๐œ–๐œ–0

This is the Gaussโ€™s law in integral form.

Q: (Griffiths: Ex 2.10): What is the flux through the shaded face of the cube due to the charge ๐‘‘๐‘‘ at the corner

Answer:

๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š

๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข=

124

๐‘‘๐‘‘๐œ–๐œ–0

3

Correction in Lecture # 4:

๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š ? ?

๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข

24 ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š

๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข=๐‘‘๐‘‘๐œ–๐œ–0

Gaussโ€™s Law from Coulombโ€™s Law:

4

๐„๐„(๐ซ๐ซ) =1

4๐œ‹๐œ‹๐œ–๐œ–0๏ฟฝ

rฬ‚r2

๐œŒ๐œŒ ๐ซ๐ซโ€ฒ ๐‘‘๐‘‘๐‘‘๐‘‘

Coulombโ€™s law gives the electric field due to a volume charge ๐œŒ๐œŒ ๐ซ๐ซโ€ฒ

If Coulombโ€™s Law and Gaussโ€™s law have the same information content, can we derive Gaussโ€™s law from Coulombโ€™s law?

Take the divergence of both sides of the equation

๐›๐› โ‹… ๐„๐„(๐ซ๐ซ) =1

4๐œ‹๐œ‹๐œ–๐œ–0๏ฟฝ๐›๐› โ‹…

rฬ‚r2

๐œŒ๐œŒ ๐ซ๐ซโ€ฒ ๐‘‘๐‘‘๐‘‘๐‘‘

We have: ๐›๐› โ‹… rฬ‚r2

= 4๐œ‹๐œ‹ ๐›ฟ๐›ฟ(r) = 4๐œ‹๐œ‹ ๐›ฟ๐›ฟ(๐ซ๐ซ โˆ’ ๐ซ๐ซ๐ซ)

๐›๐› โ‹… ๐„๐„ ๐ซ๐ซ =1

4๐œ‹๐œ‹๐œ–๐œ–0๏ฟฝ 4๐œ‹๐œ‹ ๐›ฟ๐›ฟ ๐ซ๐ซ โˆ’ ๐ซ๐ซโ€ฒ ๐œŒ๐œŒ ๐ซ๐ซโ€ฒ ๐‘‘๐‘‘๐‘‘๐‘‘ Therefore,

๐›๐› โ‹… ๐„๐„ =๐œŒ๐œŒ ๐œ–๐œ–0

The divergence of electric field is equal to the charge density divided by ๐œ–๐œ–0

=๐œŒ๐œŒ(๐ซ๐ซ) ๐œ–๐œ–0

Curl of the Electric Field:

5

๐„๐„(๐ซ๐ซ) =1

4๐œ‹๐œ‹๐œ–๐œ–0๐‘‘๐‘‘r2

rฬ‚

Electric field due to a single point charge ๐‘‘๐‘‘ is:

Letโ€™s take the simplest electric field:

We need to find the curl of it

๐›๐› ร— ๐„๐„ ๐ซ๐ซ =๐‘‘๐‘‘

4๐œ‹๐œ‹๐œ–๐œ–0๐›๐› ร—

1r2

rฬ‚

Take the area integral

๏ฟฝ ๐›๐› ร— ๐„๐„ ๐ซ๐ซ โ‹… ๐‘‘๐‘‘๐š๐š

๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข=

๐‘‘๐‘‘4๐œ‹๐œ‹๐œ–๐œ–0

๏ฟฝ ๐›๐› ร—1r2

rฬ‚ โ‹… ๐‘‘๐‘‘๐š๐š

๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข

๏ฟฝ ๐›๐› ร— ๐„๐„ ๐ซ๐ซ โ‹… ๐‘‘๐‘‘๐š๐š

๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข=

๐‘‘๐‘‘4๐œ‹๐œ‹๐œ–๐œ–0

๏ฟฝ1r2

rฬ‚ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ

Use Stokesโ€™s theorem

๏ฟฝ ๐›๐› ร— ๐„๐„ ๐ซ๐ซ โ‹… ๐‘‘๐‘‘๐š๐š

๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข=

=๐‘‘๐‘‘

4๐œ‹๐œ‹๐œ–๐œ–0๏ฟฝ

1r2๐‘‘๐‘‘๐‘‘๐‘‘

since ๐‘‘๐‘‘๐ฅ๐ฅ = ๐‘‘๐‘‘๐‘‘๐‘‘๐’“๐’“๏ฟฝ + ๐‘‘๐‘‘๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ๐œฝ๐œฝ๏ฟฝ

+๐‘‘๐‘‘sin๐‘Ÿ๐‘Ÿ๐‘‘๐‘‘๐œƒ๐œƒ๐“๐“๏ฟฝ

implies ๐›๐› ร— ๐„๐„ = ๐ŸŽ๐ŸŽ = 0 ๐‘‘๐‘‘

4๐œ‹๐œ‹๐œ–๐œ–0ร—

1๐‘‘๐‘‘๏ฟฝ๐‘ข๐‘ข๐‘Ž๐‘Ž

๐‘ข๐‘ข๐‘Ž๐‘Ž

Curl of the Electric Field (Digression):

6

๐›๐› ร— ๐„๐„ = ๐ŸŽ๐ŸŽ Curl of an electric field is zero. We have shown this for the simplest field, which is the field of a point charge. But it can be shown to be true for any electric field, as long as the field is static.

What if the field is dynamic, that is, what if the field changes as a function of time?

๐›๐› ร— ๐„๐„ = โˆ’๐‘‘๐‘‘๐๐๐‘‘๐‘‘๐‘‘๐‘‘

Faradayโ€™s Law in differential form.

Integrate over a surface

๏ฟฝ ๐›๐› ร— ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š

๐’”๐’”๐’–๐’–๐’“๐’“๐’–๐’–= ๏ฟฝ โˆ’

๐‘‘๐‘‘๐๐๐‘‘๐‘‘๐‘‘๐‘‘

โ‹… ๐‘‘๐‘‘๐š๐š

๐’”๐’”๐’–๐’–๐’“๐’“๐’–๐’–

Apply Stokesโ€™ theorem

๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ

๐‘๐‘๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž= โˆ’

๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๏ฟฝ ๐๐ โ‹… ๐‘‘๐‘‘๐š๐š

๐’”๐’”๐’–๐’–๐’“๐’“๐’–๐’–

E = โˆ’๐‘‘๐‘‘ฮฆ๐‘‘๐‘‘๐‘‘๐‘‘

EMF

Magnetic flux Faradayโ€™s Law in integral form.

Maxwellโ€™s Equations (Digression 2):

7

๐›๐› ร— ๐„๐„ = โˆ’๐‘‘๐‘‘๐๐๐‘‘๐‘‘๐‘‘๐‘‘

๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ

๐‘๐‘๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž= โˆ’

๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๏ฟฝ ๐๐ โ‹… ๐‘‘๐‘‘๐š๐š

๐’”๐’”๐’–๐’–๐’“๐’“๐’–๐’–

๐›๐› โ‹… ๐„๐„ =๐œŒ๐œŒ ๐œ–๐œ–0

๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š

๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข=๐‘„๐‘„enc๐œ–๐œ–0

๐›๐› โ‹… ๐๐ = 0

๐›๐› ร— ๐๐ = ๐œ‡๐œ‡0๐‰๐‰ โˆ’ ๐œ‡๐œ‡0๐œ–๐œ–0๐‘‘๐‘‘๐„๐„๐‘‘๐‘‘๐‘‘๐‘‘

Gaussโ€™s Law

Faradayโ€™s Law

Amperesโ€™s Law with Maxwellโ€™s correction

No name; Magnetic Monopole does not exist

When fields do not vary as a function of time, it is called Electrostatics / Magnetostatics. (before mid-sem) When fields do vary as a function of time, then the two fields have to be studied together as an electromagnetic field, and one consequence of a changing electric and magnetic field is the electromagnetic radiation. (after mid-sem) When the energy of the field is quantized (photons) then it is called quantum electrodynamics. (Not for this course). Applications: Quantum computers, Quantum cryptography, Quantum teleportation

Electric Potential:

(1) โˆซ ๐…๐… โ‹… d๐ฅ๐ฅb

a is independent of path. (2) โˆฎ๐…๐… โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ = 0 for any closed loop.

This is because of Stokesโ€™ theorem

๏ฟฝ ๐›๐› ร— ๐…๐… โ‹… ๐‘‘๐‘‘๐š๐š = ๏ฟฝ ๐…๐… โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ

๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž

๐‘†๐‘†๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข

โ€ข This is because Curl of a gradient is zero ๐›๐› ร— ๐›๐›V = ๐ŸŽ๐ŸŽ (3) ๐…๐… is the gradient of a scalar function: ๐…๐… = โˆ’๐›๐›V

If the curl of a vector field ๐…๐… is zero, that is, if ๐›๐› ร— ๐…๐… = 0 everywhere, then:

8

Recall:

(1) โˆซ ๐„๐„ โ‹… d๐ฅ๐ฅb

a is independent of path. (2) โˆฎ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ = 0 for any closed loop.

This is because of Stokesโ€™ theorem

๏ฟฝ ๐›๐› ร— ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š = ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ

๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž

๐‘†๐‘†๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข

(3) ๐„๐„ is the gradient of a scalar function:

The curl of Electric field ๐„๐„ is zero, that is,๐›๐› ร— ๐„๐„ = 0 everywhere. Therefore:

V is called the electric potential. It is a scalar quantity, the gradient of which is equal to the electric field

๐„๐„ = โˆ’๐›๐›V

Electric Potential:

9

Use the fundamental Theorem for Gradient:

How to write electric potential in terms of the electric field?

โˆ’๐›๐›V = ๐„๐„

Take the line integral of the above equation over a path

๏ฟฝ๐›๐›V โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ๐’ƒ๐’ƒ

๐’‚๐’‚

= โˆ’๏ฟฝ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ๐’ƒ๐’ƒ

๐’‚๐’‚

V ๐›๐› โˆ’ V(๐š๐š) = โˆ’๏ฟฝ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ๐’ƒ๐’ƒ

๐’‚๐’‚

๏ฟฝ ๐›๐›V โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ = V ๐‘๐‘ โˆ’ V(๐‘Ž๐‘Ž) ๐’ƒ๐’ƒ

๐’‚๐’‚ ๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž

โ€ข Absolute potential cannot be defined. โ€ข Only potential differences can be defined.

Since ๐›๐› ร— ๐„๐„ = 0 everywhere, ๐„๐„ = โˆ’๐›๐›V

Electric Potential:

10

(5) V ๐›๐› โˆ’ V(๐š๐š) = โˆ’โˆซ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ๐’ƒ๐’ƒ๐’‚๐’‚ . Absolute potential cannot be defined. In

electrostatics, usually one takes the reference point to infinity and set the potential at infinity to zero, that is, take V ๐š๐š = V โˆž = 0. Also if V ๐›๐› = V(๐ซ๐ซ),

V ๐ซ๐ซ = โˆ’ ๏ฟฝ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ๐ซ๐ซ

โˆž

(1) Electric potential is different from electric potential energy. Unit of electric potential is Newton-meter per Coulomb ( Nโ‹…m

C ) or Volt.

(2) The potential obeys superposition principle, i.e., the potential due to several charges is equal to the sum of the potentials due to individual ones: V = V1 + V2 + โ‹ฏ

(4) The electric field is a vector quantity, but we still get all the information from the potential (a scalar quantity). This is because different components are interrelated: ๐›๐› ร— ๐„๐„ = 0, i.e., ๐œ•๐œ•Ex

๐œ•๐œ•๐œ•= ๐œ•๐œ•Ey

๐œ•๐œ•๐œ•; ๐œ•๐œ•Ez

๐œ•๐œ•๐œ•= ๐œ•๐œ•Ey

๐œ•๐œ•๐œ•; ๐œ•๐œ•Ex

๐œ•๐œ•๐œ•= ๐œ•๐œ•Ez

๐œ•๐œ•๐œ•;

(3) If one knows the electrical potential (a scalar quantity), the electric field (a vector quantity) can be calculated

Electric Potential due to a point charge at origin:

11

๐„๐„(๐ซ๐ซ๐Ÿ๐Ÿ) =1

4๐œ‹๐œ‹๐œ–๐œ–0๐‘‘๐‘‘๐‘‘๐‘‘12

๐ซ๐ซ๐Ÿ๐Ÿ๏ฟฝ

Electric field ๐„๐„(๐ซ๐ซ๐Ÿ๐Ÿ) at ๐ซ๐ซ๐Ÿ๐Ÿ due to a single point charge ๐‘‘๐‘‘ at origin:

V ๐ซ๐ซ = โˆ’ ๏ฟฝ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ๐‘ข๐‘ข

โˆž

Electric potential V ๐ซ๐ซ at ๐ซ๐ซ due to a single point charge ๐‘‘๐‘‘ at origin:

The line element is: ๐‘‘๐‘‘๐ฅ๐ฅ๐Ÿ๐Ÿ = ๐‘‘๐‘‘๐‘‘๐‘‘1 r๐Ÿ๐Ÿ๏ฟฝ + ๐‘‘๐‘‘1๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ1 ๐›‰๐›‰๐Ÿ๐Ÿ๏ฟฝ + ๐‘‘๐‘‘1sin๐‘Ÿ๐‘Ÿ1๐‘‘๐‘‘๐œƒ๐œƒ1 ๐“๐“๐Ÿ๐Ÿ๏ฟฝ

V ๐ซ๐ซ = โˆ’ ๏ฟฝ1

4๐œ‹๐œ‹๐œ–๐œ–0๐‘‘๐‘‘๐‘‘๐‘‘12

๐’“๐’“

โˆž

๐‘‘๐‘‘๐‘‘๐‘‘1

V ๐ซ๐ซ =๐‘‘๐‘‘

4๐œ‹๐œ‹๐œ–๐œ–01๐‘‘๐‘‘

= โˆ’ ๏ฟฝ๐„๐„(๐ซ๐ซ๐Ÿ๐Ÿ) โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ๐Ÿ๐Ÿ

๐’“๐’“

โˆž

=๐‘‘๐‘‘

4๐œ‹๐œ‹๐œ–๐œ–01๐‘‘๐‘‘

= โˆ’๐‘‘๐‘‘

4๐œ‹๐œ‹๐œ–๐œ–0๏ฟฝ

1๐‘‘๐‘‘12

๐’“๐’“

โˆž

๐‘‘๐‘‘๐‘‘๐‘‘1

Electric Potential due to localized charge distribution:

V ๐ซ๐ซ =๐‘‘๐‘‘

4๐œ‹๐œ‹๐œ–๐œ–01r

V ๐ซ๐ซ =1

4๐œ‹๐œ‹๐œ–๐œ–0๏ฟฝ

๐‘‘๐‘‘๐‘–๐‘–ri

๐‘›๐‘›

๐‘–๐‘–=1

V ๐ซ๐ซ =๐‘‘๐‘‘

4๐œ‹๐œ‹๐œ–๐œ–01๐‘‘๐‘‘

Potential due to a point charge ๐‘‘๐‘‘ at origin:

Potential due to a point charge ๐‘‘๐‘‘ at ๐ซ๐ซ๐ซ:

Potential due to a collection of point charges

V(๐ซ๐ซ) =1

4๐œ‹๐œ‹๐œ–๐œ–0๏ฟฝ๐‘‘๐‘‘๐‘‘๐‘‘r

For a line charge ๐‘‘๐‘‘๐‘‘๐‘‘ = ๐œ†๐œ† ๐ซ๐ซโ€ฒ ๐‘‘๐‘‘๐‘‘๐‘‘๐ซ For a surface charge ๐‘‘๐‘‘๐‘‘๐‘‘ = ๐œŽ๐œŽ ๐ซ๐ซโ€ฒ ๐‘‘๐‘‘๐‘Ž๐‘Ž๐ซ For a volume charge ๐‘‘๐‘‘๐‘‘๐‘‘ = ๐œŒ๐œŒ ๐ซ๐ซโ€ฒ ๐‘‘๐‘‘๐‘‘๐‘‘๐ซ

Potential due to a a continuous charge distribution is

12

Ease of calculating the Electric Field

โ€ข If the above two is not applicable, one has to go back to the Coulombโ€™s law and then calculate the electric field.

โ€ข The easiest way to calculate the electric field is using Gaussโ€™s law. But this is possible only when there is some symmetry in the problem.

โ€ข The next best thing: if the electric potential is known, one can calculate the electric field by just taking the gradient of the potential ๐„๐„ = โˆ’๐›๐›V. Sometimes, it is very effective to calculate the electric potential first and then the electric field from there.

13