Pemrosesan Citra - Koreksi Atmosfer

Post on 07-Dec-2015

81 views 13 download

description

Pemrosesan Citra - Koreksi Atmosfer

Transcript of Pemrosesan Citra - Koreksi Atmosfer

Koreksi Atmosfer

Lalu Muhamad Jaelani, Ph.DLMJaelani.com

2

No atmosphere ρtoa

ρ w

Data yg diperoleh

Mengapa Koreksi Atmosfer diperlukan?

0

102030405060708090

100

Troposphere

Stratosphere

Mesosphere

Thermosphere

Altit

ude

(km

)

O3, N2, (NH4)2SO4

O2, H2O

ρ r

ρ a

++

Data yg diinginkan Water

Sun sensor

3

413 443 490 510 560 620 665 681 709 7540

0.0100000000000001

0.0200000000000002

0.0300000000000003

0.0400000000000003

Lake Kasumigaura

Wavelength (nm)

Rem

ote

Sens

ing

Ref

lect

ance

(sr-

1)

Data yang diperoleh (direkam oleh sensor)

Data yang diinginkan

Apa yang dimaksud dengan Koreksi Atmosfer?

Efek

Atm

osfe

r

= menghilangkan efek atmosfer dari data yang direkam oleh sensor

4

Teori Dasar

)()()()()( wArtoa t

Dari data satellite Dapat dihitung dari model

2 unknowns

TOA reflectance Aerosol scattering Water leaving reflectance

Rayleigh scattering transmittance

Koreksi Atmosfer di Air Jernih

NASA Ocean Biology Processing Group

5

Air Jernih ρw(NIR) ≈ 0.0

Dapat diasumsikan bahwa ρw pada kanal NIR (779 nm and 865 nm) = 0.0

Near Infra Red (NIR)

6

Mendapatkan Aerosol Scattering untuk kanal NIR di air jernih

)()()()()( NIRNIRtNIRNIRNIR wArtoa

)()()( NIRNIRNIR Artoa

One unknown

NIR bands = 779 and 865 nm

zero

at other wavelengths

at other wavelengths

Proses Koreksi Atmosfer di Air Jernih

ρA(779)ρA(865)

ρa(779)ρa(865)

)(

)()()()(

tArtoa

w

LUT

LUT )865,(

)865,779()865(

)779(

a

a

Aerosol type/model

Atmospheric corrected reflectance

Multiple scattering

Single scattering

ρa(λ)ρA(λ)Extent epsilon to

other wavelengths

8

412 443 490 510 560 620 665 681 709 754 762 779 865 885 9000

0.00500000000000001

0.01

0.015

0.02 Lake Kasumigaura

Wavelength (nm)

Rem

ote

Sens

ing

Ref

lect

ance

(sr-

1)Koreksi Atmosfer di Air Keruh (Turbid Water)

The spectral value at near infrared wavelength≠ 0

two unknowns

)()()()()( wArtoa tNear Infra Red (NIR)

Masalah Koreksi Atmosfer di Air Keruh

)()()()()( wArtoa t

One equation has two unknowns.

How to solve this problem ?

10

Several approaches to solve the above problem

)()()()()( wArtoa t

Two unknowns1. Directly predict the aerosol reflectance using different assumption [Ruddick et. al. (2000); Hu et. al. (2000); Wang and Shi (2007); Guanter et. al. (2007, 2010)]

2. Estimate water leaving reflectance firstly, and then estimate aerosol reflectance [Stumpf et. al. (2003); Bailey et. al (2010); Wang et. al. (2012)]3. Estimate water leaving reflectance and aerosol reflectance simultaneously [Schroeder et. al. (2007); Doerffer & Schiller (2007,2008); Kuchinke et al. (2009a, 2009b)]

Koreksi Atmosfer Sederhana

• Metode DOS (Dark Object Substraction)• Metode Radiative Transfer 6SV (Second

Simulation of a Satellite Signal in the Solar Spectrum – Vector)

DOS

• Data dalam format Reflektan-Sensor (ρtoa)• Nilai Pixel Minimum (NPM) dari citra harusnya

adalah NOL• Cari NPM minimum (> nol)• Semua Pixel dikurangi NPM• Hasil akhir berupa reflektan-permukaan (ρboa)

6SV

• Data dalam format radian,• Citra dikoreksi dengan menggunakan rumus:

• acrλ=yλ/(1.+xcλ*yλ)

• yλ=xaλ*( Lλ)-xbλ; • acrλ adalah reflektan-permukaan, Lλ adalah radian.• Parameter koreksi diperoleh dengan menjalankan perangkat

lunak 6SV berbasis web yang ada di http://6s.ltdri.org/. • Untuk mendifinisikan konsentrasi dari aerosol, digunakan

parameter meteorologi berupa horizontal visibility yang dapat dimasukkan secara langsung dalam 6SV.

6S input for ALOS-VNIR2

• Geometrical conditions

6S input for ALOS-VNIR2

• Geometrical conditions– Month =9 (year=2010)– Day=1– Solar Zenith Angle =90-Solar Elevation Angle=90-

61.88=28.12 – Solar Azimuth Angle=57.37– Sensor Zenith Angle = 0 (Img_PointingAngle)– Sensor Azimuth Angle =12

(Img_SceneCenterOrientation)

Band 1• atmospheric correction result *• * ----------------------------- *• * input apparent reflectance : 0.100 *• * measured radiance [w/m2/sr/mic] : 52.386 *• * atmospherically corrected reflectance *• * Lambertian case : -0.00674 *• * BRDF case : -0.00674 *• * coefficients xa xb xc : 0.00603 0.32266 0.14326 *• * y=xa*(measured radiance)-xb; • acr=y/(1.+xc*y)

Band 1• atmospheric correction result *• * ----------------------------- *• * input apparent reflectance : 0.100 *• * measured radiance [w/m2/sr/mic] : 52.386 *• * atmospherically corrected reflectance *• * Lambertian case : -0.00674 *• * BRDF case : -0.00674 *• * coefficients xa xb xc : 0.00603 0.32266 0.14326 *• * y=xa*(measured radiance)-xb; • acr=y/(1.+xc*y)