Mobius transformations

Post on 10-Feb-2017

1.710 views 2 download

Transcript of Mobius transformations

Προβλήματα απεικονίσεων ευθείας και κωνικών

τομών μέσω μετασχηματισμών Möbius.

Στέφανος Ασωνίτης Μαθηματικός

MSc στην Επιστήμη της Πληροφορίας

asostef@gmail.com

Παράρτημα ΕΜΕ Κέρκυρας

7η Διάλεξη 2012-2013

Παρασκευή 25 Ιανουαρίου 2013

Αμφιθέατρο τμήματος Αρχειονομίας – Βιβλιοθηκονομίας

Κέρκυρα

Παράσταση λύσεων με το λογισμικό GeoGebra

Η έννοια του Προβλήματος στη γεωμετρία

Ευκλείδου Γεωμετρία. Στοιχεία. Βιβλία 1.2.3.4. Τόμος Ι

Σταμάτη, Ε., 1975

Πρόβλημα: η κατασκευή ορισμένου γεωμετρικού

σχήματος «όπερ έδει ποιήσαι»

Πάπυρος Rhind (εμπειρική

λύση δίχως απόδειξη)

Ahmes, 1700 π.χ.

Εισαγωγή στη Γεωμετρία.

Στεφανίδης, 1989

Κατασκευές με κανόνα και διαβήτη

Έχω ένα αρχικό σύστημα σημείων. Επιτρεπτές πράξεις: 1. Φέρω ευθεία που ορίζεται από δύο σημεία. 2. Γράφω περιφέρεια κύκλου, όπως ορίζεται από

δύο σημεία (το ένα σημείο είναι κέντρο του κύκλου ο οποίος διέρχεται από το άλλο σημείο)

3. Επιλέγω ένα ακριβώς νέο σημείο ως τομή ευθειών/κύκλων και το προσθέτω στο αρχικό σύστημα σημείων.

Κατασκευή είναι η διεύρυνση του αρχικού συστήματος σημείων μέσω μια πεπερασμένης ακολουθίας κατασκευαστικών βημάτων με χρήση των ανωτέρω πράξεων.

Γεωμετρικοί τόποι στο ευκλείδειο επίπεδο E2

Μεσοκάθετος

ευθυγράμμου τμήματος

Διχοτόμος γωνίας

«Κύκλος»

Έλλειψη

Παραβολή

Υπερβολή

Βασικοί γεωμετρικοί τόποι

Κωνικές

τομές

Κωνικές Τομές

Πηγή: http://en.wikipedia.org/wiki/File:Conic_sections_with_plane.svg

1 παραβολή

2 έλλειψη, κύκλος

3 υπερβολή

Η αφορμή

Elementary Mathematics.

Dorofeev, Potapov and Rozov, 1976

Να προσδιορίσετε(*) το γεωμετρικό τόπο των εικόνων των

μιγαδικών αριθμών z που ικανοποιούν την ισότητα: 21 z

Παράδειγμα

Λύση (β’ τρόπος)

1wz θεωρήσουμε να μπορούμε επιπλέον

2w άρα 1-z wΘέτουμε

1)( wwfz

w z

(*) λόγω της

φύσης του μέσου πέραν του προσδιορισμού θα κάνουμε και παράσταση του γεωμετρικού τόπου.

Τα σχήματα δημιουργήθηκαν με το λογισμικό GeoGebra

Το ταξίδι αρχίζει… Μετασχηματισμοί

1)( wwfz

Μετασχηματισμός στο μιγαδικό επίπεδο C

Ως μετασχηματισμό του X ορίζουμε μια ένα προς ένα και επί

απεικόνιση XX : f

Μετασχηματισμοί

Γεωμετρικοί μετασχηματισμοί στο που αποτελούν τα

δομικά στοιχεία των μετασχηματισμών Möbius

Μεταφορά

Στροφή

Αφφινικοί

Μετασχηματισμοί

Ομοιοθεσία

Αντιστροφή

Ισομετρίες

(ή στέρεες κινήσεις)

2

είναι αντιστρέψιμος αν και μόνο αν η ορίζουσά του 0det A

τότε:

AA

det

11

Ο πίνακας

A

Ένας μετασχηματισμός του επιπέδου της μορφής

όπου ο πίνακας Α είναι ένας (2x2) αντιστρέψιμος πίνακας,

ονομάζεται αφφινικός μετασχηματισμός του επιπέδου.

f bxAxf

)(

Αφφινικοί μετασχηματισμοί στο 2

Ορισμός

Όπου: και με Γ: αντιστρέψιμο.

Είναι

και ομοίως άρα:

•Η σύνθεση δύο αφφινικών μετασχηματισμών είναι αφφινικός

μετασχηματισμός .

Πράγματι,

Έστω: και axAxf

)(

xBxg )(

xaBxaxABxfgxfg )())(())((

AB

2

1

2

11111 )())((

2

11 ))(( IBABA 111)( BABA

Αν f ,g, h είναι αφφινικοί μετασχηματισμοί του

επιπέδου τότε:

Αφφινικοί μετασχηματισμοί στο 2

•Ισχύει η προσεταιριστική ιδιότητα:

Συνεπώς

Το σύνολο όλων των αφφινικών μετασχηματισμών του επιπέδου

σχηματίζουν ομάδα.

•Προφανώς και κάθε αφφινικός μετασχηματισμός του επιπέδου (με

πίνακα Α) έχει αντίστροφο μετασχηματισμό (με πίνακα ), ο

οποίος είναι και αυτός αφφινικός.

)()( hgfhgf

•Ο αφφινικός μετασχηματισμός με πίνακα If

10

01I

έχει την ιδιότητα: fffff II

για κάθε αφφινικό μετασχηματισμό f

1A

Αφφινικοί μετασχηματισμοί στο 2

Η ευκλείδεια γεωμετρία είναι η μελέτη των ιδιοτήτων των σχημάτων που παραμένουν αναλλοίωτες ως προς την ομάδα των αφφινικών μετασχηματισμών του επιπέδου όπου ο πίνακας Α είναι ορθογώνιος

Τι είναι η γεωμετρία;

Η μελέτη ιδιοτήτων των γεωμετρικών σχημάτων που παραμένουν αναλλοίωτες ως προς μια ομάδα μετασχηματισμών

2

Felix Klein – Erlangen Program

Κάθε στοιχείο της ομάδας μπορεί να θεωρηθεί ως σύνθεση μιας στροφής ή ανάκλασης και μιας μεταφοράς

Τι είναι ευκλείδεια γεωμετρία;

Αφφινικοί μετασχηματισμοί στο 2

1. Μεταφορά (Translation)

Ca C,z a,zT(z) : T

Μια μεταφορά είναι ένας αφφινικός μετασχηματισμός της

μορφής axaxIxf

2)(

Ο πίνακας του μετασχηματισμού είναι ο

10

012I

2

1

2

1

2

1

10

01

'

'

y

x

y

x

y

x

y

x

Η απεικόνιση

Στο μιγαδικό επίπεδο:

Αφφινικοί μετασχηματισμοί στο 2

2. Στροφή (Rotation)

θ C,z z,Τ(z) : ie

Μια στροφή κατά τη θετική φορά γύρω από την αρχή Ο είναι

ένας αφφινικός μετασχηματισμός της μορφής )()( xRxf

Ο πίνακας του μετασχηματισμού είναι ο

Η απεικόνιση

Στο μιγαδικό επίπεδο:

R

yx

yx

y

x

y

x

'

'

Τύπος του Euler (1740):

iei

Αφφινικοί μετασχηματισμοί στο 2

3. Ομοιοθεσία (Homothety)

Μια ομοιοθεσία με κέντρο την αρχή Ο είναι ένας αφφινικός

μετασχηματισμός της μορφής *λ ),()( xHxf O

Ο πίνακας του μετασχηματισμού είναι ο

0

0OH

Η απεικόνιση

y

x

y

x

y

x

0

0

'

'

Στο μιγαδικό επίπεδο:

*λ C,z z,T(z) : T

Αφφινικοί μετασχηματισμοί στο 2

Απεικονίσεις μέσω αφφινικών μετασχηματισμών

στο

Σχήμα Εικόνα μέσω αφφινικού μετασχηματισμού

Ευθεία Ευθεία

Έλλειψη Έλλειψη (*)

Παραβολή Παραβολή

Υπερβολή Υπερβολή

2

(*) ο κύκλος και η έλλειψη είναι σχήματα αφφινικά ισοδύναμα και λαμβάνουν την κανονική μορφή

The affine invariance and line symmetries of the conics.

Villiers, M. ,1993

122 yx

Oι αφφινικοί μετασχηματισμοί απεικονίζουν ευθείες σε ευθείες και κάθε κωνική τομή σε κωνική τομή του ίδιου είδους:

Απεικονίσεις μέσω μεταφοράς/στροφής/ομοιοθεσίας

στο 2

Οι μετασχηματισμοί μεταφοράς, στροφής και ομοιοθεσίας, καθώς και οι συνθέσεις αυτών απεικονίζουν ευθείες σε ευθείες και κάθε κωνική τομή σε κωνική τομή του ίδιου είδους:

Σχήμα Εικόνα

Ευθεία Ευθεία

Κύκλο Κύκλο

Έλλειψη Έλλειψη

Παραβολή Παραβολή

Υπερβολή Υπερβολή

Αν οι εικόνες του μιγαδικού z κινούνται στην ευθεία y=x

Να βρεθούν οι εικόνες των μιγαδικών w με

α)

β)

γ)

Παραδείγματα μεταφοράς/στροφής/ομοιοθεσίας [1/6]

Στροφή ευθείας

Αν οι εικόνες του μιγαδικού z κινούνται στην ευθεία y=x

Να βρεθούν οι εικόνες των μιγαδικών w με

iziw2

1

2

1

zezizfwi

2)(

Στροφή & μεταφορά ευθείας

ziw

1 ziw

rotation_line

rotation_translation_line

Αν οι εικόνες του μιγαδικού z κινούνται έλλειψη με εξίσωση:

Στροφή & μεταφορά έλλειψης

11625

22

yx

Να βρεθούν οι εικόνες των μιγαδικών w με

α)

β) iziw 1

ziw

Στροφή & μεταφορά κύκλου

Παραδείγματα μεταφοράς/στροφής/ομοιοθεσίας [2/6]

Αν οι εικόνες του μιγαδικού z κινούνται στον κύκλο με εξίσωση:

1)3()3( 22 yx

Να βρεθούν οι εικόνες των μιγαδικών w με

α)

β) iziw 1

ziw rotation_circle

rotation_ellipse

rotation_translation_ellipse

Αν για τους μιγαδικούς z είναι:

Να βρεθούν οι εικόνες των μιγαδικών w με:

α)

β)

γ)

δ)

122 iz

zw 3

Ομοιοθεσία κύκλου

zw3

1

Αν οι εικόνες του μιγαδικού z κινούνται στην ευθεία y=x

Να βρεθούν οι εικόνες των μιγαδικών w με:

α)

β) zw 2

Ομοιοθεσία ευθείας

zw2

1

Παραδείγματα μεταφοράς/στροφής/ομοιοθεσίας [3/6]

zw 3

zw3

1

homothety_line

homothety_circle

Ομοιοθεσία/στροφή κύκλου

Αν για τους μιγαδικούς z είναι:

Να βρεθούν οι εικόνες των μιγαδικών w με

α)

β)

ziw 2

1

zezfwi

2

3

2)(

ziw 2

1z

Παραδείγματα μεταφοράς/στροφής/ομοιοθεσίας [4/6]

homothety_rotation_circle

Ομοιοθεσία/στροφή & μεταφορά κύκλου

Αν για τους μιγαδικούς z είναι:

Να βρεθούν οι εικόνες των μιγαδικών w με:

α)

β)

γ)

δ)

zw2

1

1z

12

1 zw

zw 2

izw 12

Παραδείγματα μεταφοράς/στροφής/ομοιοθεσίας [5/6]

homothety_rotation_translation_circle

Ομοιοθεσία έλλειψης

Αν οι εικόνες του μιγαδικού z κινούνται έλλειψη με εξίσωση:

11625

22

yx

Να βρεθούν οι εικόνες των μιγαδικών w με

zw 2

Παραδείγματα μεταφοράς/στροφής/ομοιοθεσίας [6/6]

homothety_ellipse

Γεωμετρική Αντιστροφή

Γεωμετρική αντιστροφή ως προς το μοναδιαίο κύκλο

)(1' 2rOAOA

(0,0)y)(x, ),x

y ,(),(

2222

yyx

xyx

Στο μιγαδικό επίπεδο:

*Cz ,1

T(z) : z

T

(0,0)y)(x, ,11

2222

i

yx

y

yx

x

yixz

(0,0)y)(x, ),,( yxA

Η Γεωμετρία της Αντιστροφής: Ιστορική Αναδρομή, Διδακτικές προεκτάσεις και Εφαρμογές, Κακούρης, Μ. ,2008

Τα σχήματα δημιουργήθηκαν με το λογισμικό Geogebra

Μιγαδική Αντιστροφή(*) στο

Γεωμετρική αντιστροφή ως προς το μοναδιαίο κύκλο

και ανάκλαση ως προς τον x-άξονα.

(0,0)y)(x, ),x

y- ,()

x

y ,(),(

22222222

yyx

x

yyx

xyx

Στο μιγαδικό επίπεδο:

*Cz ,1

T(z) : z

T

(0,0)y)(x, ,11

2222

i

yx

y

yx

x

yixz

''' AAA αντιστροφή

ανάκλαση

C

(*)Visual Complex Analysis. Tristan Needham , 1997

Τα σχήματα δημιουργήθηκαν με το λογισμικό Geogebra

C

Η ευθεία διέρχεται από την αρχή των αξόνων.

Κάθε ευθεία που διέρχεται από την αρχή των αξόνων

μπορεί να πάρει τη μορφή: (1) 0α ,0 22 yx

Έστω ότι ζητάμε την εικόνα του

iz 0 yixz

Τότε η (1) γράφεται: 0)Re( 0 zz

0z ),(1

zAz

w

Έχουμε: 0)1

Re(z 0)1

Re(z 0)Re( 0

2

00w

ww

zz

0)Re(z 0)Re(z 0)Re( 00

2

0 ww

ww

w

wz

A Διδακτικές σημειώσεις στα Στοιχεία Μιγαδικών Συναρτήσεων,

Δανίκας, Ν., 1991

Ευθεία/Κύκλος μέσω Μιγαδικής Αντιστροφής στο

Το οποίο σημαίνει ότι κατά την μιγαδική αντιστροφή αν οι εικόνες του

κινούνται σε ευθεία ε «διατρυπημένη»(*) στην αρχή Ο των αξόνων

τότε και ο συζυγής μιγαδικός της εικόνας

Θα κινείται σε ευθεία «διατρυπημένη» στο Ο. Συνεπώς και ο μιγαδικός

(λόγω συμμετρίας με τον συζυγή του ως προς τον άξονα θα βρίσκεται και

αυτός σε ευθεία «διατρυπημένη» στην αρχή Ο.

0z

w 0 ,1

wz

w

w

xx'

Ευθεία/ Κύκλος μέσω Μιγαδικής Αντιστροφής στο C

Η ευθεία διέρχεται από την αρχή των αξόνων. A

(*) Η Γεωμετρία της Αντιστροφής: Ιστορική Αναδρομή, Διδακτικές προεκτάσεις και

Εφαρμογές, Κακούρης, Μ. ,2008

Το επεκτεταμένο μιγαδικό επίπεδο: C

Μιγαδική Αντιστροφή στο C

Στο επεκτεταμένο μιγαδικό επίπεδο:

z 0,

0z ,

0z ,1

)(:z

zTT

1

2

3

0

0

Μια ευθεία «διατρυπημένη» στο Ο απεικονίζεται σε «διατρυπημένη» στο Ο ευθεία.

Μια ευθεία η οποία διέρχεται από την αρχή Ο στο επεκτεταμένο μιγαδικό απεικονίζεται σε ευθεία που διέρχεται από το Ο

Α Ευθεία που διέρχεται από το Ο

Ευθεία που διέρχεται από το Ο

Απεικονίζεται σε

Επομένως για το μετασχηματισμό της μιγαδικής αντιστροφής στο επεκτεταμένο μιγαδικό επίπεδο, ισχύει ότι:

Β

Δ

Γ

Ευθεία που δεν διέρχεται από το Ο

Κύκλος που διέρχεται από το Ο

Κύκλος που δεν διέρχεται από το Ο

Κύκλος που διέρχεται από το Ο

Κύκλο

Ευθεία

Διδακτικές σημειώσεις στα Στοιχεία Μιγαδικών Συναρτήσεων,

Δανίκας, Ν., 1991

Απεικονίζεται σε

Αποδεικνύεται ότι για τον μετασχηματισμό της μιγαδικής αντιστροφής στο επεκτεταμένο μιγαδικό επίπεδο, ισχύει ότι:

Ευθεία/ Κύκλος μέσω Μιγαδικής Αντιστροφής στο C

Ευθεία/ Κύκλος μέσω Μιγαδικής Αντιστροφής στο C

Επομένως:

Το σύνολο των ευθειών και κύκλων στο επεκτεταμένο μιγαδικό επίπεδο απεικονίζεται μέσω της μιγαδικής αντιστροφής στον εαυτό του.

Διδακτικές σημειώσεις στα Στοιχεία Μιγαδικών Συναρτήσεων,

Δανίκας, Ν., 1991

Αν θεωρήσουμε την ευθεία ως κύκλο (γενικευμένος κύκλος ) που διέρχεται από το απ’ άπειρο σημείο του επεκτεταμένου μιγαδικού επιπέδου, τότε μέσω της μιγαδικής αντιστροφής :

Γενικευμένος Κύκλος Circline

Γενικευμένο Κύκλο

Circline

Απεικονίζεται σε

Γενικεύοντας:

Ευθεία/ Κύκλος μέσω Μιγαδικής Αντιστροφής στο C

Μεθοδολογία για τη λύση ασκήσεων

Διδακτικές σημειώσεις στα Στοιχεία Μιγαδικών Συναρτήσεων,

Δανίκας, Ν., 1991

εξετάζουμε αν υπάρχει

Τ(z) μεK z /z

ΝΑΙ ΌΧΙ(*)

Η εικόνα περιλαμβάνει το επ’ άπειρο σημείο του μιγαδικού επιπέδου και αναγκαστικά θα είναι ευθεία.

Η εικόνα είναι κύκλος.

Kz ή ,T(z) z(*)

Ευθεία/ Κύκλος μέσω Μιγαδικής Αντιστροφής στο

Παραδείγματα

C

Παράδειγμα A

Να βρείτε την εικόνα της ευθείας μέσω της μιγαδικής αντιστροφής.

xy :

ii

iiT

2

1

2

1

2

1

1

1)1(

)2

1,

2

1()1,1(

Συνεπώς η εικόνα είναι η ευθεία: xy

Παρατηρώ ότι για είναι 0z )(zT

Άρα η εικόνα είναι ευθεία που διέρχεται από Ο )(T

Αρκεί να προσδιορίσω ένα ακόμη σημείο.

inversion_line_origin

Παρατηρώ ότι για κάθε είναι z )(zT

Να βρείτε την εικόνα της ευθείας μέσω της μιγαδικής αντιστροφής.

Παράδειγμα B

Άρα η εικόνα είναι κύκλος )(T

1: xy

Ευθεία/ Κύκλος μέσω Μιγαδικής Αντιστροφής στο

Παραδείγματα

C

Για να προσδιορίσω τον κύκλο, αρκεί να προσδιορίσω τρία σημεία από τα οποία διέρχεται.

11

1)1(

T i

iiT

1)( 0)( T

Το κέντρο του κύκλου προσδιορίζεται ως η τομή των δύο μεσοκαθέτων των χορδών. Η ακτίνα ως η απόσταση του κέντρου από ένα από τα σημεία. Τελικά η εικόνα είναι ο κύκλος:

2

1)

2

1()

2

1( 22 yx

inversion_line_no_origin

Παρατηρώ ότι για είναι 0z )(zT

Να βρείτε την εικόνα του κύκλου μέσω της μιγαδικής αντιστροφής.

Παράδειγμα Γ

Άρα η εικόνα είναι ευθεία . )(KT

11: zK

Ευθεία/ Κύκλος μέσω Μιγαδικής Αντιστροφής στο

Παραδείγματα

C

Παρατηρώ ότι ο κύκλος Κ είναι σχήμα συμμετρικό ως προς τον άξονα x’x, άρα:

Συνεπώς και η εικόνα είναι η εικόνα Τ(Κ) είναι σχήμα συμμετρικό ως προς τον x-άξονα. Επομένως για να προσδιορίσω την ευθεία T(K) χρειάζομαι μόνο ένα σημείο από το οποίο διέρχεται.

(Διδακτικές σημειώσεις στα Στοιχεία Μιγαδικών Συναρτήσεων,

Δανίκας, Ν., 1991

Kzz Επιπλέον αν :

)()( KTzfw Είναι και :

)()(1

)1

()( KTzfzz

zfw

2

1)2( T )0,

2

1()0,2( Συνεπώς η εικόνα είναι η ευθεία:

2

1x

inversion_circle_origin

Να βρείτε την εικόνα του κύκλου μέσω της μιγαδικής αντιστροφής.

Παράδειγμα Δ

Άρα η εικόνα είναι κύκλος )(KT

12: zK

Ευθεία/ Κύκλος μέσω Μιγαδικής Αντιστροφής στο

Παραδείγματα

C

Συνεπώς και η εικόνα είναι η εικόνα Τ(Κ) είναι σχήμα συμμετρικό ως προς τον x-άξονα. Επομένως για να προσδιορίσω τον κύκλο T(K) χρειάζομαι μόνο τα δύο σημεία στα οποία τέμνει τον χ-άξονα.

Παρατηρώ ότι για κάθε είναι Kz )(zT

Παρατηρώ ότι ο κύκλος Κ είναι σχήμα συμμετρικό ως προς τον άξονα x’x, άρα:

(Διδακτικές σημειώσεις στα Στοιχεία Μιγαδικών Συναρτήσεων,

Δανίκας, Ν., 1991

Kzz Επιπλέον αν :

)()( KTzfw Είναι και :

)()(1

)1

()( KTzfzz

zfw

11

1)1( T

3

1)3( T Συνεπώς η εικόνα είναι ο κύκλος:

9

1)

3

2( 22 yx

inversion_circle_no_origin

Ευθεία/ Κύκλος μέσω Μιγαδικής Αντιστροφής στο

Παραδείγματα

Παράδειγμα E

Να βρείτε την εικόνα του μοναδιαίου τετραγώνου μέσω της μιγαδικής αντιστροφής.

C

inversion_unit_square

Εικόνα της

μέσω της Μιγαδικής Αντιστροφής στο [1/3]

Να βρεθεί η εικόνα της παραβολής 0p ,22 pxy

Μέσω της μιγαδικής αντιστροφής

(0,0)y)(x, ),(),()x

y- ,(),(

2222

zfYX

yyx

xyxz

2222222

22)()(x xXyxxXy

yx

xX

2222222

22)()(x yYyxyYy

yx

yY

Διαιρώντας κατά μέλη έχουμε: x

p

x

px

x

y

X

Y 2222

2

2

2

Ισχυριζόμαστε ότι:

Xp

X

x

p

2

1

2

0p ,22 pxy

C

z 0,

0z ,

0z ,1

)(:z

zTT

(που ισχύει).

xx

x2p-1 2

2

12

2222 y

xx

yxXpX

pp

1x

122

22

22

2

22

2

yx

y

yx

x

yx

y

συνεπώς η (1) γράφεται:

(2)

2

1Y

2

122

2

2

Xp

XX

Xp

X

X

Y

Για την παραβολή έχουμε άρα και επομένως και 0p 0x 022

yx

xX

Από τη σχέση (2) προκύπτει ότι: 02

1 X

p

συνεπώς: X

p

XXY

2

1

Η εξίσωση αυτή περιγράφει την κισσοειδή του Διοκλή (Cissoid of Diocles)

0p ,22 pxy

C

Εικόνα της

μέσω της Μιγαδικής Αντιστροφής στο [2/3]

0

0

0p ,22 pxy

C

Εικόνα της

μέσω της Μιγαδικής Αντιστροφής στο [3/3]

inversion_parabola

Εικόνα της

μέσω της Μιγαδικής Αντιστροφής στο [1/3]

Να μελετηθεί η εικόνα της έλλειψης: 12

2

2

2

yx

12

2

2

2

yx

Μέσω της μιγαδικής αντιστροφής

C

Ellipses in the Inversive Plane,

Coffman, A. & Frantz, M. ,

Θεώρημα: Αν Ε είναι μια έλλειψη με κέντρο και

Τότε η εικόνα Τ(Ε) δεν είναι έλλειψη.

C0z

zT1

)(

z 0,

0z ,

0z ,1

)(:z

zTT

Εικόνα της

μέσω της Μιγαδικής Αντιστροφής στο [1/3]

12

2

2

2

yx

C

Ellipses in the Inversive Plane,

Coffman, A. & Frantz, M. ,

Η απόδειξη είναι στοιχειώδης όταν η εκκεντρότητα της έλλειψης είναι μεγάλη. Δηλαδή όταν (π.χ. για α > β) είναι:

2

Τότε ο κύκλος με κέντρο τέμνει την έλλειψη σε τρία σημεία, προφανώς το ένα από αυτά είναι το . Ο κύκλος αυτός διέρχεται από την αρχή Ο, άρα η εικόνα του μέσω της μιγαδικής αντιστροφής είναι ευθεία. Στην εικόνα αυτή (ευθεία) ανήκουν και οι εικόνες των τριών κοινών σημείων της έλλειψης με τον κύκλο. Άρα η εικόνα της έλλειψης είναι ένα σχήμα το οποίο έχει τρία κοινά σημεία με μία ευθεία και συνεπώς δεν μπορεί να είναι έλλειψη.

)0,2

(a

K)2

,(a

K

)0,(aA

inversion_ellipse

Εικόνα της

μέσω της Μιγαδικής Αντιστροφής στο [2/3]

(0,0)y)(x, ),(),()x

y- ,(),(

2222

zfYX

yyx

xyxz

2222

2

2

2

222

22

22 )(

)(

yxa

x

a

X

yx

xX

yx

xX

2222

2

2

2

222

22

22 )(

)(

yx

xY

yx

yY

yx

y

Προσθέτοντας κατά μέλη έχουμε:

(1) )(

1)(

)(

12222

2

2

2

2222

2

2

2

yx

yx

yx

YX

12

2

2

2

yx

Ellipses in the Inversive Plane,

Coffman, A. & Frantz, M. ,

Η γενική απόδειξη, μας οδηγεί σε μελέτη καμπύλης 4ου βαθμού

C

Παρατηρούμε ότι:

(2) )(

1

)(

)(

)(

2

)(

)(

)(

)()(

222422

222

422

22

422

22

422

22222

yxyx

yx

yx

yx

yx

y

yx

xYX

Από τις (1) και (2) έχουμε:

)( 222

2

2

2

2

YXYX

0) (- )(2

2

2

2222

YXYX

12

2

2

2

yx

Ellipses in the Inversive Plane,

Coffman, A. & Frantz, M. ,

Εικόνα της

μέσω της Μιγαδικής Αντιστροφής στο [3/3] C

Η εικόνα δεν είναι έλλειψη, αλλά ένα «οβάλ» (oval) σχήμα.

inversion_ellipse_2

Να βρεθεί η εικόνα της ισοσκελούς υπερβολής

Μέσω της μιγαδικής αντιστροφής

(0,0)y)(x, ),(),()x

y- ,(),(

2222

zfYX

yyx

xyxz

222

22

22 )(x

y

xX

yx

xX

)(x

22

22

22 y

yY

yx

yY

προσθέτοντας κατά μέλη έχουμε: 222

222

)(

1)(

yxYX

z 0,

0z ,

0z ,1

)(:z

zTT

222 ayx Εικόνα της

μέσω της Μιγαδικής Αντιστροφής στο [1/] C222 ayx

αφαιρώντας κατά μέλη έχουμε: 222

222

)( yx

aYX

222 ayx Εικόνα της

μέσω της Μιγαδικής Αντιστροφής στο [2/] C

)()1

()( 222222 YXa

YX

O λημνίσκος (lemniscate) του Bernoulli, σε καρτεσιανές συντεταγμένες έχει

εξίσωση (Finney, Weir, Giordano. Thomas’ calculus: early Transcendentals –10th ed.

2003): )(2)( 222222 yxayx

),0,(' aF Με εστίες: )0,(aF

Συνεπώς η εικόνα της ισοσκελούς υπερβολής 222 ayx

μέσω της μιγαδικής αντιστροφής είναι λημνίσκος του

Bernoulli με εστίες: ),0,2

2('

aF )0,

2

2(

aF

inversion_hyperbola

Μετασχηματισμοί Möbius

Ομογραφικοί μετασχηματισμοί

Διπλογραμμικοί μετασχηματισμοί

Ρητογραμμικοί μετασχηματισμοί

Ένας μετασχηματισμός Möbius είναι μια απεικόνιση:

CCT ˆˆ:

Της μορφής:

dcz

bazzT

)( με : 0 ,,,, cbadCdcba

Ορίζουμε:

0c ,

0c ,)(

c

aT 0c ,)( c

dT,

Μετασχηματισμοί Möbius

εκτελώντας τη διαίρεση: καταλήγουμε στη μορφή:

c

dz

c

adbc

c

a

dcz

bazzT

1)(

2

dcz

baz

0c

Τότε ο μετασχηματισμός γράφεται ως σύνθεση : ))(()( 12 ztirhtzT όπου:

μια μεταφορά κατά:

μια αλγεβρική αντιστροφή

μια ομοιοθεσία με:

μια μεταφορά κατά:

c

d1t

i

02

c

adbckh

2tc

a

)arg(2c

adbc r μια στροφή κατά:

0 ,,,, cbadCdcba

Μετασχηματισμοί Möbius

εκτελώντας τη διαίρεση:

καταλήγουμε στη μορφή: d

bz

d

azT )(

dcz

baz

0c

Τότε ο μετασχηματισμός γράφεται ως σύνθεση : ))(()( zrhtzT όπου:

μια μεταφορά κατά:

μια ομοιοθεσία με:

d

bt

,0d

akh

0 ,,,, cbadCdcba

0d 0 a

)arg(d

ar μια στροφή κατά:

Γενικά για τους μετασχηματισμούς Möbius

Carathéodory, C. Conformal Representation. (1998)

Republication of 1952 edition (Syndies of the Cambridge

University Press)

•Αντίστροφος μετασχηματισμός: 0bc-(-d)(-a) ,

acw

bdwz

•Το σύνολο όλων των μετασχηματισμών Möbius σχηματίζει

ομάδα

•Κάθε Möbius μετασχηματισμός είναι μια 1-1 σύμμορφη(*)

(conformal) απεικόνιση του επεκτεταμένου μιγαδικού επιπέδου

στον εαυτό του

•Το σύνολο των μετασχηματισμών Möbius είναι κλειστό με

πράξη τη σύνθεση συναρτήσεων

(*)διατηρεί το μέτρο και τον προσανατολισμό της γωνίας τομής δύο καμπυλών

Γενικά για τους μετασχηματισμούς Möbius

Κράλλης, Ι. Μετασχηματισμοί Möbius και η αναλυτική

προσέγγιση της Υπερβολικής και Ελλειπτικής Γεωμετρίας.

(2009)

Το ζεύγος όπου Μ η ομάδα των μετασχηματισμών Mobius

ορίζεται ως η Γεωμετρία Möbius

H γεωμετρία Möbius είναι υπερσύνολο των μη –Ευκλείδειων

Γεωμετριών

),ˆ( MC

Ο κύκλος είναι σχήμα συμμετρικό ως προς τον άξονα x’x. Άρα αν:

Παραδείγματα μετασχηματισμών Möbius

1ο Παράδειγμα.

Να βρείτε την εικόνα του κύκλου 2z

1

12)(

z

zzTw

Είναι:

Kz είναι: )(zT

Άρα οι εικόνες του βρίσκονται σε κύκλο w

K

Kz Kz

Επομένως οι εικόνες του w ανήκουν σε σχήμα συμμετρικό ως προς τον

άξονα x’x και επειδή το σχήμα είναι κύκλος, για να τον προσδιορίσω

αρκεί να βρω τα σημεία τομής του με τον πραγματικό άξονα.

στο μέσω της απεικόνισης:

Παρατηρούμε ότι για κάθε

01121112 cdab

Άρα πρόκειται για μετασχηματισμό Möbius

C

Είναι: wzfzfKT )()()(

Συνεπώς αν τότε και αντιστρόφως. )(KTw )(KTw

Παραδείγματα μετασχηματισμών Möbius

3

5

12

122)2(

f 3

1

3

12

1)2(2)2(

f

)0,3

7(K

3

2

2

33

5

mobius_circle_to_circle

Ο κύκλος είναι σχήμα συμμετρικό ως προς τον άξονα x’x. Άρα αν:

2ο Παράδειγμα.

Παραδείγματα μετασχηματισμών Möbius

1z

Παρατηρούμε ότι )1(T Επομένως οι εικόνες του βρίσκονται σε ευθεία w

Να βρείτε την εικόνα του κύκλου

1

12)(

z

zzTw

στο μέσω της απεικόνισης: C

Είναι: 01121112 cdab

Άρα πρόκειται για μετασχηματισμό Möbius

K

Kz Kz

Είναι: wzfzfKT )()()(

Συνεπώς αν τότε και αντιστρόφως. )(KTw )(KTw

Επομένως οι εικόνες του w ανήκουν σε σχήμα συμμετρικό ως προς τον

άξονα x’x και επειδή το σχήμα είναι ευθεία, για να την προσδιορίσω

αρκεί να βρω ένα σημείο από το οποίο διέρχεται.

Παραδείγματα μετασχηματισμών Möbius

2

3

11

112f(1) :1

Kz

Άρα η εικόνα είναι η ευθεία: 2

3x

Παρατήρηση

Αν το αρχέτυπο δεν είναι σχήμα συμμετρικό ως προς την αρχή των

αξόνων ή αν δεν ισχύει για τη συνάρτηση μετασχηματισμού η

ιδιότητα τότε:

Αν η εικόνα είναι ευθεία θα πρέπει να προσδιορίσουμε δύο σημεία

από τα οποία διέρχεται, ενώ αν η εικόνα είναι κύκλος τρία σημεία.

)()( zfzf

mobius_circle_to_line

3ο Παράδειγμα (Η αφίσα της Διάλεξης)

Παραδείγματα μετασχηματισμών Möbius

Να βρεθεί η εικόνα της ισοσκελούς υπερβολής

Μέσω του μετασχηματισμού:

122 yx

z 0,

0z ,

0z ,22

)(:z

i

zTT

poster_image_inversion_hyperbola

4ο Παράδειγμα (Κωνικές σε μη τυπική θέση

μέσω μιγαδικής αντιστροφής)

Παραδείγματα μετασχηματισμών Möbius

Παραβολή:

Έλλειψη:

Υπερβολή:

inversion_parabola_no_typical

inversion_ellipse_no_typical

inversion_hyperbola_no_typical

Παραδείγματα μετασχηματισμών Möbius

Möbius Transformations Revealed

Arnold, D.,N. & Rogness, J. , 2008

Möbius Transformations Revealed

Ευχαριστώ για την

προσοχή σας!