LENS, MINILENS STATUS R. S. Raghavan Virginia Tech For The LENS Collaboration TAUP 07

Post on 09-Jan-2016

38 views 2 download

description

LENS, MINILENS STATUS R. S. Raghavan Virginia Tech For The LENS Collaboration TAUP 07 Sendai, Japan Sep 13, 2007. Tagged ν – capture reaction in Indium-115. signal. delay. Tag cascade. LENS—Low Energy Neutrino Spectroscopy. - PowerPoint PPT Presentation

Transcript of LENS, MINILENS STATUS R. S. Raghavan Virginia Tech For The LENS Collaboration TAUP 07

Raghavan—TAUP07-9-12-07

LENS, MINILENS STATUSR. S. Raghavan

Virginia TechFor

The LENS Collaboration

TAUP 07Sendai, JapanSep 13, 2007

Raghavan—TAUP07-9-12-07

SnSneIne115*115115 2

Tagged ν –capture reaction in Indium-115

signal delay Tag cascade

LENS—Low Energy Neutrino Spectroscopy

R&D Funded now by NSF [ Placed in MUST FUND Category by two Review Panels]

LENS is the only CC detector developed to date for low energy solar neutrinos

Raghavan—TAUP07-9-12-07

115In ( 95.7%) = 6.4x1014 y

115Sn

B(GT) = 0.17; Q=114

e1

(e/)2 115.6 (e/ = 0.96)

3 497.3

115 In(p,n)100.8 (e/ =5.7)

= 4.76 s

max = 498.8

= 16 ps

= 231s

9/2+

1/2+

3/2+

7/2+

11/2-

0

497.3

612.8

713.6

7/2+ 1857

B(GT) ~0.01; Q =1362

e

115In ( 95.7%) = 6.4x1014 y

115Sn

B(GT) = 0.17; Q=114

e1

(e/)2 115.6 (e/ = 0.96)

3 497.3

115 In(p,n)100.8 (e/ =5.7)

= 4.76 s

max = 498.8

= 16 ps

= 231s

9/2+

1/2+

3/2+

7/2+

11/2-

0

497.3

612.8

713.6

7/2+ 1857

B(GT) ~0.01; Q =1362

e

The Indium Low Energy Neutrino Tag

115In ( 95.7%) = 6.4x1014 y

115Sn

B(GT) = 0.17; Q=114

e1

(e/)2 115.6 (e/ = 0.96)

3 497.3

115 In(p,n)100.8 (e/ =5.7)

= 4.76 s

max = 498.8

= 16 ps

= 231s

9/2+

1/2+

3/2+

7/2+

11/2-

0

497.3

612.8

713.6

7/2+ 1857

B(GT) ~0.01; Q =1362

e

115In ( 95.7%) = 6.4x1014 y

115Sn

B(GT) = 0.17; Q=114

e1

(e/)2 115.6 (e/ = 0.96)

3 497.3

115 In(p,n)100.8 (e/ =5.7)

= 4.76 s

max = 498.8

= 16 ps

= 231s

9/2+

1/2+

3/2+

7/2+

11/2-

0

497.3

612.8

713.6

7/2+ 1857

B(GT) ~0.01; Q =1362

e

The Indium Low Energy Neutrino Tag

Unique:• Specifies ν Energy

Eν = Ee + Q Complete LE nu spectrum• Lowest Q known 114 keV access to 95.5% pp nu’s• Target isotopic abundance

~96%• Powerful delayed coinc. Tag Can suppress bgd =1011 x

signalDownside:• Bgd from 115In radioactivity to ( pp nu’s only) rate= 1011 x

signalTools:1. Time & Space coinc.

Granularity (106suppression)2. Energy Resolution In betas <500 keV; ∑Tag =

613 keV3. Other analysis cuts

LE$NS Detection Scheme

Raghavan—TAUP07-9-12-07

LENS-Sol Signal =

SSM(low CNO) + LMAx

Detection Efficiency

pp: = 64% 7Be: = 85% pep: = 90%

Rate: pp 40 /y /t In 2000 pp ev. / 5y ±2.5% Design Goal: S/N ≥ 3

Expected Result: Low Energy Solar -Spectrum

Access to pp spectral Shape for

the first time

Signal electron energy (= Eν – Q) (MeV)

Coincidence delay time μs

Tag Delayed coincidenceTime Spectrum

Signal area

BgdS/N = 1

S/N = 3

Fitted Solar Nu Spectrum(Signal+Bgd) /5 yr/10 t In

Indium Bgd

S/N=3pp

7Be

pepCNO

7Be*

Raghavan—TAUP07-9-12-07

Science from LENS—Hi precision low energy Nu fluxes (pp 3-4%)

1.Neutrino Physics –Energy dependence of Pee

Oscillation Phenomenology2. Solar Luminosity vs Photon

Lluminosity—Astrophysics/Neutrino physics3. Gamow Energy of pp fusion—Energy production in sun4. Physics beyond Std model—Sterile Neutrinos from LENS+Source5. Solar model independent Fluxes –CC+NC (LENS + Borexino)

Raghavan—TAUP07-9-12-07

New Technology of LENS

Developed in last three years

Raghavan—TAUP07-9-12-07

Technology and Bgd Control

< Towards Hi Precision pp neutrino flux >

• Hi Quality InLS • New Detector Design• Background Analysis Insights -115 In decay bgd suppressed S/N ~3 for first time

UV/Vis absorbance of zVt45 (pH 6.88) with time

-0.01

0

0.01

0.02

0.03

0.04

0.05

350 390 430 470 510 550 590 630 670l (nm)

No

rmal

ized

Ab

sorb

ance

10/06/05

01/23/06

03/22/06

05/31/06

8.6 m after 8 months

Transparency of InLS

  StatusDesign of Detector Cubic Lattice

Chamber

InLS: In contentLight attenutation L(1/e)

Signal Eff Pe/MeV

>8% >8m900

Indium Mass(1900 pp/5y)

10 ton

Total Mass 125 ton

PMT’s 13,300

Neutrino detection eff. 64%

Raghavan—TAUP07-9-12-07

1. Indium concentration ~8%wt (higher may be viable)2. Scintillation signal efficiency (working value): 8000 h/MeV3. Transparency at 430 nm: L(1/e) (working value): 8m4. Chemical and Optical Stability: at least 1 year5. InLS Chemistry – Robust

New = LAB based InLSBasic Bell Labs Patent,

Chandross, Raghavan

1

10

100

1000

10000

0 50 100 150 200 250

8% InLS (PC:PBD/MSB) 10800 hν / MeV

BC505 Std12000 h/MeV

In 8%-photo

Light Yield from Compton edgesof 137Cs -ray Spectra

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

350 390 430 470 510 550 590 630 670l (nm)

Nor

m.

Abs

orba

nce

in 1

0 cm

L(1/e)(InLS 8%) ~ L(PC Neat) !

ZVT39: Abs/10cm ~0.001;

L(1/e)(nominally) >>20 m

InLS

PC Neat

Indium Liquid Scintillator Status

Milestones unprecedented in metal LS technology

LS technique relevant to many other applications

Raghavan—TAUP07-9-12-07

3D Digital Localizability of Hit within one cube ~75mm precision vs. 600 mm (±2σ) by TOF in longitudinal modules x8 less vertex vol. x8 less random coinc. Big effect on Background Hit localizability independent of event energy

Test of double foilmirror in liq. @~2bar

New Detector Technology –hi event position localization

The Scintillation Lattice Chamber

Light channeling in 3-d totally Internally reflecting cubic Lattice GEANT4 sim. of concept.

Demonstration Acrylic Model

Raghavan—TAUP07-9-12-07

Raghavan—TAUP07-9-12-07

Lattice StructureSingle Foil Double Foil

Solid teflon segmentation Double-layer (air-gap) lattice

Raghavan—TAUP07-9-12-07

Raghavan—TAUP07-9-12-07

Raghavan—TAUP07-9-12-07

Indium --Background Structure – Space / Time coincidenceSignal

E() -114 keV

116 keV

497 keV

115In

115Sn

e/

=4.76s

Background:

Random time and space coincidencebetween two -decays ( );Extended shower ( ) can be created

by:a) 498 keV from decay to excited

state;b) Bremsstrahlungs -rays created

by ;c) Random coincidence (~10 ns) of

more -decays;Or any combination of a), b) and c).

Signal Signature:

Prompt e- ( )followed bylow energy (e-/) ( )and Compton-scattered ( )->time/space coincidence-> tag fixed energy 613keV->compton scattered shower

115In

β0 + n (BS) (Emax = 499 keV)

498 keV

β1 (Emax< 2 keV)(b = 1.2x10-6)*

115Sn

Bgd

Raghavan—TAUP07-9-12-07

Results of GEANT4 Monte Carlo simulation (cell size = 7.5cm, S/N=3)

Signal (pp) y-1 t In)-1

Bgd (In)

y-1 (t In)-1

RAW rate 62.5 79 x 1011

A. Tag in Space/Time delayed coincidence

with prompt event in vertex50 2.76 x 105

B. + ≥3 Hits in tag shower 46 2.96 x 104

C. +Tag Energy = 614 keV 44 306

D. +Tag topology 40 13 ± 0.6

Background rejection steps for pp detection (other neutrinos detected free of Indium background):

A. Time/space coincidence in the same cell required for trigger;

B. Tag requires at least three ‘hits’;C. Narrow energy cut;D. A tag topology: multi- vs. Compton shower;

Classification of events according to hit multiplicity; Cut parameters optimized for each event class improved efficiency;

Reduction by ~3.107 through

time/space coincidence

Indium --Background Discrimination

Raghavan—TAUP07-9-12-07

• Test of MSW LMA physics - no specific physics proof yet !Pee(pp)=0.6 (vac. osc.) Pee(8B)=0.35 (matter osc.), as predicted?

• Non-standard Fundamental Interactions? Strong deviations from the LMA profile of Pee(E) ?

• Mass Varying Neutrinos? (see above)

• CPT Invariance of Neutrinos?so far LMA only from Kamland , is this truealso for “neutrinos” ?

• RSFP/ Nu magnetic moments Time Variation of pp and 7Be signals? (No Var. of 8B nus !)

(Chauhan et al JHEP 2005)

Neutrino Phenomenology – from LENS

In the first 2 years (no calibration with -source needed):

e

Low Energy Neutrinos:

Only way to answer these questions !e

Raghavan—TAUP07-9-12-07

Solar Luminosity: Neutrino vs. photon

Will be met under these conditions:1. Fusion reactions are the sole source of energy production in the sun2. The sun is in a quasi-steady state (change in 40,000 years is negligible)3. The neutrino oscillation model is correct & no other physics involved;

From a single detector:

Test of astrophysics, solar model;Test of neutrino physics (LMA-MSW at low E, NSI, mass-varying s, 13, …);

Measured neutrino fluxes at earth + oscillation physics

nuclear reaction rates energy release in the sun

Solar luminosityas measured by photon flux

=?

inferredL hL

Energy Balance:

Raghavan—TAUP07-9-12-07

Main contributions: pp 0.917Be 0.074(CNO 0.014)

8B 0.00009

Neutrino inferred Luminosity of the Sun - Experimental Status

Measured neutrino fluxes at the earth:8B (SK, SNO) known very well7Be + 8B (Cl) sensitive mostly to 8Bpp + 7Be + 8B (Ga)7Be (Borexino, Kamland – in the future)

in principle can deduce pp- fluxProblem: disentangling fluxes from individual neutrino

sources

Experimental status – No useful constraint!

37.06.01

2.03.0(inferred) 4.1/ hLL 2.02.1/(inferred) hLL

R.G.H.Robertson, Prog. Part. Nucl. Phys. 57, 90 (2006)J.N.Bahcall and C.Peña-Garay, JHEP 0311, 4 (2003)

Raghavan—TAUP07-9-12-07hep:

Relative kinetic particle energies add to the Q-value of capture and fusion reactions.Not all energies contribute evenly:

32

150 91.5 TkeVE

Temperature in the Solar Core impacts Neutrino Energies, not just relative fluxes

E0

pep

pp

pp- and pep neutrino production temperatureand related Gamow peak energy:

7Be electron capture: maxwellian energy distribution shifts mean energy of 7Be line by <E> ~ 1.29 keV

32

)105.1/(73.10 70 KTkeVE

pp-fusion:Gamow Peak at 5.2 keVpp endpoint shifted up by~5.2keV

J.N. Bahcall, Phys. Rev. D 44(6), 1644(1991)

32

)105.1/(91.5 70 KTkeVE

J.N. Bahcall, Phys. Rev. D 44(6), 1644(1991)

pep: combination, delta <E> ~ 6.6 keVJ.N. Bahcall, Phys. Rev. D 49(8), 3923 (1994)

Raghavan—TAUP07-9-12-07

Probing the Temperature Profile of Energy Production in the Sun with LENS

C. Grieb and R.S. Raghavan,Phys.Rev.Lett.98:141102,2007

Top:pp- spectrum with/without Gamow shift

Bottom: Signal spectrum in LENSwith/without Gamow shift12t Indium - 6years - E/E=6% at 300keV

Measured Gamow shift in improved LENS:10000 simulations with ~3000 pp events each=1.62keV

Conclusion: Slightly improved LENS can detect the predicted Gamowshift in the pp- endpoint E=5.2keV with 95% confidence.

Raghavan—TAUP07-9-12-07

Sterile Neutrinos – Physicsbeyond the Standard Model

•Fourth (fifth) mass state with high mass splitting triggered by LSND appearance of from beam at short base line ~30m!

•Implies Δm2 ~ 1eV2

•Also motivated from cosmology

Sorel et. al., Phys.Rev.D70:073004,2004.

e

(3+1) (3+2)

Raghavan—TAUP07-9-12-07

LENS Sterile

Cr source inside LENS

Raghavan—TAUP07-9-12-07

Active - Sterile Neutrino Oscillations in LENSSurvival probability of e:

5122

52541

224

24 sin)1(4sin)1(41 xUUxUUP eeeeee

• Cross terms such as are neglected

25

24 ee UU

)(/)()(27.1 22 MeVEmLeVmx ijij

Active – sterile mass splittings and mixingparameters compatible with LSND and thenull SBL data ( from Sorel et al., Phys.Rev.D70:073004,2004 )

With Δm2 ~ 1 eV2 and E ~ 0.753 MeV (from 51Cr),full flavor recovery occurs in ~2m,directly observable in a lab-scale detector.

Design options for LENS

Raghavan—TAUP07-9-12-07

Statistical precision of oscillation parameter measurement in LENS

Raghavan—TAUP07-9-12-07

Active – Sterile Oscillation Sensitivity with LENS

Raghavan—TAUP07-9-12-07

Raghavan—TAUP07-9-12-07

Solar Nu’s –Contd:Model independent fluxesBorexino & LENS

Borexino Signal

(CC + NC) νe+ νx

LENS Signal

(CC) ) νe only

Possibility of obtaining solar neutrino Fluxes independent of Solar models

7Be

Raghavan—TAUP07-9-12-07

5” PMTPassiveShield Mirror 5” PMTPassiveShield Mirror

Opt segmentation cage

InLS500 mm

InLS

LS Envelope

500 mm

MINILENSFinal Test detectorfor LENS

Goals for MINILENS

• Test detector technology Medium Scale InLS production Design and construction

• Test background suppression of In radiations by 10-11

Expect ~ 5 kHz In -decay singles rate; adequate to test trigger design, DAQ, and background suppression schemes

• Demonstrate In solar signal detection in the presence of high background (via “proxy”)

Direct blue print for full scale LENS

Raghavan—TAUP07-9-12-07

Proxy pp nu events in MINILENS from cosmogenic 115In(p,n)115Sn isomers

• Pretagged via , p tracks• Post tagged via n and 230 s delay

Gold plated 100 keV events (proxy pp), Tagged by same cascade as In- events

Demonstrate In- Signal detection even in MINILENS

Proxy pp- events in MINILENS

Raghavan—TAUP07-9-12-07

The Kimballton Underground Facility

Depth 1400 mwe

Raghavan—TAUP07-9-12-07

Raghavan—TAUP07-9-12-07

Raghavan—TAUP07-9-12-07

Russia: INR (Moscow): I. Barabanov, L. Bezrukov, V. Gurentsov,V. Kornoukhov, E. Yanovich;

U. S.: BNL: R. L. Hahn, M. Yeh; Indiana U. Rex Tayloe

U. North Carolina: A. Champagne; North Carolina State: Albert Young

Louisiana State: J. Blackmon, C. Rascoe, Q. Zeng;

Princeton U. : J. Benziger; South Carolina State: Z. Chang,

Virginia Tech: C. Grieb, M. Pitt, R.S. Raghavan, D. Rountree,

R.B. Vogelaar;

LENS Collaboration(Russia-US: 2007)