Glycopeptides Derived from Glucosaminic Acid · 1 Glycopeptides Derived from Glucosaminic Acid...

Post on 17-Sep-2020

5 views 0 download

Transcript of Glycopeptides Derived from Glucosaminic Acid · 1 Glycopeptides Derived from Glucosaminic Acid...

1

Glycopeptides Derived from Glucosaminic Acid

Ester Abtew+, Abraham J Domb*, and Arijit Basu*

Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem,

Jerusalem, Israel 91120

List of Figures

Figure 1. 1H NMR of δ-gluconolactone (1). ............................................................................................................. 2

Figure 2. Top 1H NMR and bottom

13 C NMR for methyl 3,4;5,6-di-O-isopropylidene-D-gluconate (2). .................. 3

Figure 3. ESI MS (positive ionization mode) for methyl 3,4;5,6-di-O-isopropylidene-D-gluconate (2) .................... 4

Figure 4. Top 1H NMR and bottom

13 C NMR for methyl 3,4;5,6-di-O-isopropylidene-2-azido-2-deoxy-D-mannate

(3). ................................................................................................................................................................. 5

Figure 5. Overlay of FTIR spectra revealing the conversion of Azide (compound 3, 2100 cm−1

correspond to azide)

to amine (compound 4). ................................................................................................................................ 6

Figure 6. 1H NMR spectra of methyl 3,4;5,6-di-O-isopropylidene-2-amino-2-deoxy-D-mannate (4). ...................... 7

Figure 7. Top 1H NMR and bottom ESI MS (positive ionization mode) for methyl 3,4;5,6-di-O-isopropylidene-2-

(Boc-amino)-2-deoxy-D-mannate(5). ............................................................................................................. 8

Figure 8. Top 1H NMR and bottom

13 C NMR for methyl 3,4;5,6-di-O-isopropylidene-2-azido-2-deoxy-D-mannate

(3). ................................................................................................................................................................. 9

Figure 9. Overlay of FTIR spectra revealing the conversion to N-carboxyanhydride -compound 6 to compound 7

(1790 and 1820 cm−1

, correspond to -C=O, oxazolidine-2,5-dione). ............................................................. 10

Figure 10. Top 13

C NMR and bottom 1H NMR for 4-(2,2,6,6-tetramethyltetrahydro-[1,3]dioxino[5,4-d][1,3]dioxin-

4-yl)oxazolidine-2,5-dione (7). ..................................................................................................................... 11

Figure 11. 1H NMR of the acetonide protected polymer compound (8). ............................................................... 12

Figure 12. HSQC NMR spectrum of the acetonide protected polymer compound (8) ........................................... 13

Figure 13. Overlay of FTIR spectra revealing the conversion of N-carboxyanhydride -compound 7 to the

acetonide protected polymer compound 8 (1600, 1620 cm−1

(-CONH-, polyamide). .................................... 14

Figure 14. 1H NMR of the de-protected polymer compound (9). ......................................................................... 15

Figure 15. Representative DSC thermograph of poly glucosaminic acid. .............................................................. 16

Electronic Supplementary Material (ESI) for Polymer Chemistry.This journal is © The Royal Society of Chemistry 2016

2

Figure 1. 1H NMR of δ-gluconolactone (1).

*

3

Figure 2. Top 1H NMR and bottom

13 C NMR for methyl 3,4;5,6-di-O-isopropylidene-D-

gluconate (2).

4

Figure 3. ESI MS (positive ionization mode) for methyl 3,4;5,6-di-O-

isopropylidene-D-gluconate (2)

5

Figure 4. Top 1H NMR and bottom

13 C NMR for methyl 3,4;5,6-di-O-isopropylidene-2-azido-

2-deoxy-D-mannate (3).

6

Figure 5. Overlay of FTIR spectra revealing the conversion of Azide (compound 3, 2100 cm−1

correspond to azide) to amine (compound 4).

7

Figure 6. 1H NMR spectra of methyl 3,4;5,6-di-O-isopropylidene-2-amino-2-deoxy-D-mannate

(4).

8

Figure 7. Top 1H NMR and bottom ESI MS (positive ionization mode) for methyl

3,4;5,6-di-O-isopropylidene-2-(Boc-amino)-2-deoxy-D-mannate(5).

9

Figure 8. Top 1H NMR and bottom

13 C NMR for methyl 3,4;5,6-di-O-

isopropylidene-2-azido-2-deoxy-D-mannate (3).

10

Figure 9. Overlay of FTIR spectra revealing the conversion to N-carboxyanhydride -compound

6 to compound 7 (1790 and 1820 cm−1

, correspond to -C=O, oxazolidine-2,5-dione).

11

Figure 10. Top 13

C NMR and bottom 1H NMR for 4-(2,2,6,6-tetramethyltetrahydro-

[1,3]dioxino[5,4-d][1,3]dioxin-4-yl)oxazolidine-2,5-dione (7).

12

Figure 11. 1H NMR of the acetonide protected polymer compound (8).

13

Figure 12. HSQC NMR spectrum of the acetonide protected polymer compound (8)

14

Figure 13. Overlay of FTIR spectra revealing the conversion of N-carboxyanhydride -compound

7 to the acetonide protected polymer compound 8 (1600, 1620 cm−1

(-CONH-, polyamide).

15

Figure 14. 1H NMR of the de-protected polymer compound (9).

16

Figure 15. Representative DSC thermograph of poly glucosaminic acid.