Gabriel Alvarez SEP120 pages: 365-376 Email:gabriel@sep ...sepMultiples in Image Space Gabriel...

Post on 23-Sep-2020

2 views 0 download

Transcript of Gabriel Alvarez SEP120 pages: 365-376 Email:gabriel@sep ...sepMultiples in Image Space Gabriel...

Multiples in Image Space

Gabriel Alvarez

SEP120 pages: 365-376

Email:gabriel@sep.stanford.edu

gabriel@sep.stanford.edu SEP120 pages 365-376

From Last Year

gabriel@sep.stanford.edu SEP120 pages 365-376 1

Residual Moveout (RMO) Equation

Biondi and Symes (2004) residual moveout equation:

∆nRMO = (ρ− 1) tan2 γ z0 n

where:

n: unit normal to the reflector.

ρ: true slowness/migration slowness.

γ: true half-aperture angle.

gabriel@sep.stanford.edu SEP120 pages 365-376 2

Aproximations of RMO Equation

This equations has several approximations:

gabriel@sep.stanford.edu SEP120 pages 365-376 3

Aproximations of RMO Equation

This equations has several approximations:

• Flat reflectors

gabriel@sep.stanford.edu SEP120 pages 365-376 3

Aproximations of RMO Equation

This equations has several approximations:

• Flat reflectors

• Rays are stationary: apparent angles taken as equal to

true angles.

gabriel@sep.stanford.edu SEP120 pages 365-376 3

Aproximations of RMO Equation

This equations has several approximations:

• Flat reflectors

• Rays are stationary: apparent angles taken as equal to

true angles.

• ρ is small.

gabriel@sep.stanford.edu SEP120 pages 365-376 3

RMO approximation for Multiples

V1

V2

Surface

For water-bottom multiples V2 >> V1 so apparent

aperture angle may be significantly different than true

aperture angle and ρ is not close to one.

gabriel@sep.stanford.edu SEP120 pages 365-376 4

RMO approximation for Multiples

V1

V2

Surface

For water-bottom multiples V2 >> V1 so apparent

aperture angle may be significantly different than true

aperture angle and ρ is not close to one.

What about diffracted multiples?

gabriel@sep.stanford.edu SEP120 pages 365-376 4

Motivation

• Understand the residual moveout of multiples in image

space when migrated with the velocity of the primaries.

gabriel@sep.stanford.edu SEP120 pages 365-376 5

Motivation

• Understand the residual moveout of multiples in image

space when migrated with the velocity of the primaries.

• Use the residual moveout to design the appropriate

Radon transform to attenuate the multiples in the

image space.

gabriel@sep.stanford.edu SEP120 pages 365-376 5

Raypath of Primary

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

Horizontal coordinate (m)

Dep

th (m

)

tp(hD) =

√t2p(0) +

(2hD

VNMO

)2VNMO = V

cos ϕ

hD: half-offset ϕ: reflector dip

gabriel@sep.stanford.edu SEP120 pages 365-376 6

Raypath of Water-bottom Multiple

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

Horizontal coordinate (m)

Dep

th (m

)

tm(hD) =

√t2m(0) +

(2hD

V̂NMO

)2V̂NMO = V

cos(2ϕ)

gabriel@sep.stanford.edu SEP120 pages 365-376 7

Raypath of Diffracted Multiple

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

Horizontal coordinate (m)

Dep

th (m

)

tm(hD) = 2(ZD−hD sinϕ) cos ϕcos(βs+3ϕ) + zd

V cos βr

βs, βr: take-off angles zd: diffractor position

gabriel@sep.stanford.edu SEP120 pages 365-376 8

Moveouts on a CMP Gather

0 500 1000 1500 2000 2500 3000

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Offset (m)

Tim

e (s

)CMP gather

PrimaryMultipleDiff PrimDiff Mul

gabriel@sep.stanford.edu SEP120 pages 365-376 9

Schematic of Moveout of Multiples

Tim

e

OffsetMidpo

int

Data spaceD

epth

Subsurface offsetImag

e point

Image space

Depth

Imag

e point

Aperture angle

Image space

gabriel@sep.stanford.edu SEP120 pages 365-376 10

Example with 2-D Synthetic Dataset

200 cmps

100 traces/cmp

0-2970 m offsets

20 m cmp interval

4 events:

? primary

? wb multiple

? primary diffraction

? diffracted multiple

gabriel@sep.stanford.edu SEP120 pages 365-376 11

Primary. Two Velocities

Zero subsurface-offset section SOCIG (x=6280)

gabriel@sep.stanford.edu SEP120 pages 365-376 12

Diffraction. Two Velocities

Zero subsurface-offset section SOCIG (x=5800)

gabriel@sep.stanford.edu SEP120 pages 365-376 13

Diffracted Multiple. Two Velocities

Zero subsurface-offset section SOCIG (x=4600)

gabriel@sep.stanford.edu SEP120 pages 365-376 14

WB Multiple. Two Velocities

Zero subsurface-offset section SOCIG (x=3600)

gabriel@sep.stanford.edu SEP120 pages 365-376 15

Primary. Two Velocities

Angle stack ADCIG (x=6280)

gabriel@sep.stanford.edu SEP120 pages 365-376 16

Diffraction. Two Velocities

Angle stack ADCIG (x=5800)

gabriel@sep.stanford.edu SEP120 pages 365-376 17

WB Multiple. Two Velocities

Angle stack ADCIG (x=4600)

gabriel@sep.stanford.edu SEP120 pages 365-376 18

WB Multiple. Two Velocities

Angle stack ADCIG (x=3600)

gabriel@sep.stanford.edu SEP120 pages 365-376 19

Primary. One Velocity

Angle stack ADCIG (x=6280)

gabriel@sep.stanford.edu SEP120 pages 365-376 20

Diffraction. One Velocity

Angle stack ADCIG (x=5800)

gabriel@sep.stanford.edu SEP120 pages 365-376 21

Diffracted Multiple. One Velocity

Angle stack ADCIG (x=4600)

gabriel@sep.stanford.edu SEP120 pages 365-376 22

WB Multiple. One Velocity

Angle stack ADCIG (x=3600)

gabriel@sep.stanford.edu SEP120 pages 365-376 23

Primary. No Diffraction. Two Velocities

Angle stack ADCIG (x=6280)

gabriel@sep.stanford.edu SEP120 pages 365-376 24

WB Multiple. No Diffraction. Two Vels

Angle stack ADCIG (x=6280)

gabriel@sep.stanford.edu SEP120 pages 365-376 25

Primary. No Diffraction. One Velocity

Angle stack ADCIG (x=6280)

gabriel@sep.stanford.edu SEP120 pages 365-376 26

Diffracted Multiple Only. Two Velocities

Angle stack ADCIG (x=4600)

gabriel@sep.stanford.edu SEP120 pages 365-376 27

Diffracted Multiple Only. One Velocity

Angle stack ADCIG (x=4600)

gabriel@sep.stanford.edu SEP120 pages 365-376 28

Conclusions

• Water-bottom multiples from a dipping interface

behave kinematically as primaries from an interface

with twice the dip at twice the depth.

gabriel@sep.stanford.edu SEP120 pages 365-376 29

Conclusions

• Water-bottom multiples from a dipping interface

behave kinematically as primaries from an interface

with twice the dip at twice the depth.

• Diffracted multiples do not behave like primaries and

are not properly migrated even if the correct velocity is

used.

gabriel@sep.stanford.edu SEP120 pages 365-376 29

Conclusions

• Water-bottom multiples from a dipping interface

behave kinematically as primaries from an interface

with twice the dip at twice the depth.

• Diffracted multiples do not behave like primaries and

are not properly migrated even if the correct velocity is

used.

• Understanding the correct moveout of the multiples in

the image space (diffracted multiples in particular) is

critical to the design of the proper Radon transform.

gabriel@sep.stanford.edu SEP120 pages 365-376 29

Future Work

• Formalize the residual moveout issue for the multiples

in the image space.

gabriel@sep.stanford.edu SEP120 pages 365-376 30

Future Work

• Formalize the residual moveout issue for the multiples

in the image space.

• Design the Radon transform that best focuses the

multiples in the image space.

gabriel@sep.stanford.edu SEP120 pages 365-376 30

Future Work

• Formalize the residual moveout issue for the multiples

in the image space.

• Design the Radon transform that best focuses the

multiples in the image space.

• Apply to synthetic and real 3D data.

gabriel@sep.stanford.edu SEP120 pages 365-376 30