ECHo Experiment ECHocrunch.ikp.physik.tu-darmstadt.de/erice/2013/sec/... · ECHo Experiment...

Post on 09-Aug-2020

6 views 0 download

Transcript of ECHo Experiment ECHocrunch.ikp.physik.tu-darmstadt.de/erice/2013/sec/... · ECHo Experiment...

ECHo Experiment

Loredana Gastaldo for the ECHo collaboration

Kirchhoff-Institut für Physik

Heidelberg University

ECHo

Contents • Electron capture process: The case of 163Ho

• Metallic Magnetic Calorimeters

• Recent results

• ECHo experiment

ν 1 meV

n p p p n n

e-

e-

e-

e- n p p p n n n

e-

e-

e-

p

A non- zero neutrino mass affects the de-excitation energy spectrum

Electron Capture

n p p p n n

e-

e-

e-

e- n p p p n n n

e-

e-

e-

p

Atomic de-excitation: •X-ray emission •Auger electrons •Coster-Kronig transitions

A non- zero neutrino mass affects the de-excitation energy spectrum

Electron Capture

n p p p n n

e-

e-

e-

e- n p p p n n n

e-

e-

e-

p

Atomic de-excitation: •X-ray emission •Auger electrons •Coster-Kronig transitions

A non- zero neutrino mass affects the de-excitation energy spectrum

Calorimetric measurement

Electron Capture

. . . . . . . eν

n p p p n n

e-

e-

e-

e- n p p p n n n

e-

e-

e-

p

Atomic de-excitation: •X-ray emission •Auger electrons •Coster-Kronig transitions

Electron Capture

( )( )

( )( )

∑ Γ+−

Γ

−−−Α=

H2

H2HC

H

2H2

CEC

22

CECC

4

201EE

BEQ

mEQdEdW

Hπϕν

A non- zero neutrino mass affects the de-excitation energy spectrum

Calorimetric measurement

The case of 163Ho

C16366

*16366

e*163

6616367

DyDy

DyHo

E+→

+→ ν • QEC ≅ 2.5 keV • τ1/2 ≅ 4570 years

MI

MII

NI NII

mν=10 eV mν=0 eV

The case of 163Ho

• QEC ≅ 2.5 keV • τ1/2 ≅ 4570 years C

16366

*16366

e*163

6616367

DyDy

DyHo

E+→

+→ ν

Neutrino mass sensitivity

∆EFWHM = 1 eV, fpp = 10-5, QEC = 2600 eV

From M. Galeazzi et al., arXiv:1202.4763v2 [physics.ins-det]

Neutrino mass sensitivity

From M. Galeazzi et al., arXiv:1202.4763v2 [physics.ins-det]

∆EFWHM = 1 eV, fpp = 10-5, QEC = 2600 eV

Neutrino mass sensitivity

∆EFWHM = 1 eV fpp = Aβ τr = 10-5

Nev = 1014 , QEC = 2600 eV

From M. Galeazzi et al., arXiv:1202.4763v2 [physics.ins-det]

Neutrino mass sensitivity

∆EFWHM = 1 eV fpp = Aβ τr = 10-5

Nev = 1014 , QEC = 2600 eV fpp < 10-5

From M. Galeazzi et al., arXiv:1202.4763v2 [physics.ins-det]

Neutrino mass sensitivity

∆EFWHM = 1 eV fpp = Aβ τr = 10-5

Nev = 1014 , QEC = 2600 eV ∆E FWHM < 10 eV

From M. Galeazzi et al., arXiv:1202.4763v2 [physics.ins-det]

fpp < 10-5

Neutrino mass sensitivity

Nev > 1014

∆EFWHM < 10 eV τr ∼ 0.1 µs Aβ ≈ 10 s -1 ≥105 detectors

Neutrino mass sensitivity

Low temperature Metallic Magnetic Calorimeter

Nev > 1014

∆EFWHM < 10 eV τr ∼ 0.1 µs Aβ ≈ 10 s -1 ≥105 detectors

MMCs: Concept

Thermal bath

Ctot

G

totCEΔT ≅

GC=τ tot

t

T T∆

E

Thermal bath

Ctot

G

E

• Working temperature below 100 mK small specific heat large temperature change small thermal noise • Very sensitive temperature sensor

totCEΔT ≅

GC=τ tot

t

T T∆

MMCs: Concept

abssensSS ΔΦ ΔΦ

C+CE

TMΔT

TM

∂∂

∝→∂∂

• Paramagnetic Au:Er sensor

MMCs: Concept

abssensSS ΔΦ ΔΦ

C+CE

TMΔT

TM

∂∂

∝→∂∂

• Paramagnetic Au:Er sensor

MMCs: Concept

Talk of Philipp Ranitzsch

∼ 1 %

Mea

sure

d en

ergy

E [k

eV]

Photon energy E [keV]

∆E [e

V]

maXs: 1d-array for soft x-rays (T=20 mK)

Rise Time: 90 ns Non-Linearity < 1% @6keV

∆EFWHM = 1.6 eV @ 6 keV

250 µm

∼ 1 %

Mea

sure

d en

ergy

E [k

eV]

Photon energy E [keV]

∆E [e

V]

maXs: 1d-array for soft x-rays (T=20 mK)

Rise Time: 90 ns Non-Linearity < 1% @6keV

∆EFWHM = 1.6 eV @ 6 keV

250 µm

ECHo experiment: First detector prototype

Meander

Absorber

Source

Sensor

• Absorber for calorimetric measurement ion implantation @ ISOLDE-CERN • Two pixels have been simultaneusly measured • 55Fe calibration source was collimated only on one pixel

ECHo experiment: Calorimetric spectrum

Rise Time ~ 130 ns

ECHo experiment: Calorimetric spectrum

∆EFWHM = 7.6 eV @ 6 keV

• Fast rise-time

Rise Time ~ 130 ns

ECHo experiment: Calorimetric spectrum • Fast rise-time • Good energy resolution

Non-Linearity < 1% @6keV

∆EFWHM = 7.6 eV @ 6 keV

Rise Time ~ 130 ns

ECHo experiment: Calorimetric spectrum • Fast rise-time • Good energy resolution • Good linearity

∆EFWHM = 7.6 eV @ 6 keV

Non-Linearity < 1% @6keV

Rise Time ~ 130 ns

ECHo experiment: Calorimetric spectrum • Fast rise-time • Good energy resolution • Good linearity • 163Ho spectrum

MII

MI

NII

NI

144Pm

OI

∆EFWHM = 7.6 eV @ 6 keV

Non-Linearity < 1% @6keV

EH lit. EH exp. ΓH lit. ΓH exp

MI 2.047 2.040 13.2 13.7

MII 1.845 1.836 6.0 7.2

NI 0.420 0.411 5.4 5.3

NII 0.340 0.333 5.3 8.0

OI 0.050 0.048 5.0 4.3

Most precise 163Ho spectrum

QEC =(2.80±0.08) keV

Rise Time ~ 130 ns

ECHo experiment: Calorimetric spectrum • Fast rise-time • Good energy resolution • Good linearity • 163Ho spectrum

MII

MI

NII

NI

144Pm

OI

∆EFWHM = 7.6 eV @ 6 keV

Non-Linearity < 1% @6keV

EH lit. EH exp. ΓH lit. ΓH exp

MI 2.047 2.040 13.2 13.7

MII 1.845 1.836 6.0 7.2

NI 0.420 0.411 5.4 5.3

NII 0.340 0.333 5.3 8.0

OI 0.050 0.048 5.0 4.3

Most precise 163Ho spectrum

QEC =(2.80±0.08) keV

Rise Time ~ 130 ns

Talk of Philipp Ranitzsch

• Fast rise-time • Good energy resolution • Good linearity • 163Ho spectrum

MII

MI

NII

NI

144Pm

OI

NI

NII

OI

First calorimetric measurement

of the OI line

ECHo experiment: Calorimetric spectrum

∆EFWHM = 7.6 eV @ 6 keV

Non-Linearity < 1% @6keV

Most precise 163Ho spectrum

Rise Time ~ 130 ns

(a) F. Gatti et al., Physics Letters B 398 (1997) 415-419 (b) E. Laesgaard et al., Proceeding of 7th International Conference on Atomic Masses and Fundamental Constants (AMCO-7), (1984). (c) F.X. Hartmann and R.A. Naumann, Nucl. Instr. Meth. A 3 13 (1992) 237.

Cryogenic detector

Si(Li) detector

Proportional Counter

F. Gatti et al., Physics Letters B 398 (1997) 415-419

MII

MI

NII

NI

144Pm

OI

ECHo experiment: Calorimetric spectrum

Detectors MMC : ∆E ∼ 2 eV τR ∼ 100 ns

ECHo experiment

Sub-eV Neutrino

mass

Detectors MMC : ∆E ∼ 2 eV τR ∼ 100 ns

High purity 163Ho source

ECHo experiment

Sub-eV Neutrino

mass

ECHo experiment: 163Ho source • Required activity in the detectors: Final experiment >106 Bq >1017 atoms

ECHo experiment: 163Ho source • Required activity in the detectors: Final experiment >106 Bq >1017 atoms

163Ho can be produced by charged particle activation through direct or indirect way natDy(p,xn) 163Ho natDy(α, xn) 163Er (ε) 163Ho 159Tb(7Li, 3n) 163Er (ε) 163Ho

ECHo experiment: 163Ho source • Required activity in the detectors: Final experiment >106 Bq >1017 atoms

163Ho can be produced by charged particle activation through direct or indirect way natDy(p,xn) 163Ho natDy(α, xn) 163Er (ε) 163Ho 159Tb(7Li, 3n) 163Er (ε) 163Ho 163Ho can be produced by via (n,γ)-reaction on 162Er • Purity: No radioactive contaminants

removed target material • Chemical form: depends on the absorber preparation : ion implantation dilute alloys

Two sources already produced Helmoltz Zentrum Berlin Institut Laue-Langevin in Grenoble

High efficiency purification methods

ECHo experiment: 163Ho source • Required activity in the detectors: Final experiment >106 Bq >1017 atoms

163Ho can be produced by charged particle activation through direct or indirect way natDy(p,xn) 163Ho natDy(α, xn) 163Er (ε) 163Ho 159Tb(7Li, 3n) 163Er (ε) 163Ho 163Ho can be produced by via (n,γ)-reaction on 162Er

Two sources already produced Helmoltz Zentrum Berlin Institut Laue-Langevin in Grenoble

ECHo experiment: 163Ho source • Required activity in the detectors: Final experiment >106 Bq >1017 atoms

163Ho can be produced by charged particle activation through direct or indirect way natDy(p,xn) 163Ho natDy(α, xn) 163Er (ε) 163Ho 159Tb(7Li, 3n) 163Er (ε) 163Ho 163Ho can be produced by via (n,γ)-reaction on 162Er • Purity: No radioactive contaminants and removed target material

High efficiency purification methods • Chemical form: depends on the absorber preparation (ion implantation, dilute alloys)

Two sources already produced Helmoltz Zentrum Berlin Institut Laue-Langevin in Grenoble

Detectors MMC : ∆E ∼ 2 eV τR ∼ 100 ns

High purity 163Ho source

Multiplexing and read-out

ECHo experiment

Sub-eV Neutrino

mass

ECHo experiment: µ-wave multiplexing

Talk of Philipp Ranitzsch

ECHo experiment: 64-pixel chip 9.

1 m

m

15.5 mm

ECHo experiment: 64-pixel chip 9.

1 m

m

15.5 mm

Detectors MMC : ∆E ∼ 2 eV τR ∼ 100 ns

High purity 163Ho source

Multiplexing and read-out

ECHo experiment

Sub-eV Neutrino

mass

Cryogenics

Detectors MMC : ∆E ∼ 2 eV τR ∼ 100 ns

High purity 163Ho source

Multiplexing and read-out

ECHo experiment

Sub-eV Neutrino

mass

Low background environment

Cryogenics

Detectors MMC : ∆E ∼ 2 eV τR ∼ 100 ns

High purity 163Ho source

Multiplexing and read-out

High precision determination of QEC

ECHo experiment

Sub-eV Neutrino

mass

Cryogenics Low

background environment

B

q/m

uniform B-field

1 q νc = 2π m B

quadrupole E-field

+ =

Penning Trap

ν+ - modified cyclotron ν- - magnetron νz - axial

ECHo experiment: QEC determination

Penning Trap mass spectroscopy

Next future : SHIPTRAP (GSI) QEC determination within 100 eV In few years: PENTATRAP (MPI-K HD) QEC determination within 1 eV

Courtesy S. Eliseev, MPI-K HD

Detectors MMC : ∆E ∼ 2 eV τR ∼ 100 ns

High purity 163Ho source

Multiplexing and read-out

Description of 163Ho EC spectrum Solid state effects

High precision determination of QEC

ECHo experiment

Sub-eV Neutrino

mass

Cryogenics Low

background environment

Detectors MMC : ∆E ∼ 2 eV τR ∼ 100 ns

High purity 163Ho source

Multiplexing and read-out

Data analysis

High precision determination of QEC

ECHo experiment

Sub-eV Neutrino

mass

Cryogenics Low

background environment

Description of 163Ho EC spectrum Solid state effects

163Ho experiments ♦ Started R&D in 2011 ♦ Small scale experiment with ∼100 pixels within the next three years ♦ Large scale experiment to reach sub-eV sensitivity to neutrino mass

http://www.kip.uni-heidelberg.de/echo/

ECHo

163Ho experiments ♦ Started R&D in 2011 ♦ Small scale experiment with ∼100 pixels within the next three years ♦ Large scale experiment to reach sub-eV sensitivity to neutrino mass

http://www.kip.uni-heidelberg.de/echo/

ECHo

HOLMES ♦ Established in 2013 (ERC Advanced Grants for Prof. S. Ragazzi)

♦ Some R&D done already within the MARE experiment

http://artico.mib.infn.it/nucriomib/general-infos/holmes-approved

163Ho experiments ♦ Started R&D in 2011 ♦ Small scale experiment with ∼100 pixels within the next three years ♦ Large scale experiment to reach sub-eV sensitivity to neutrino mass

http://www.kip.uni-heidelberg.de/echo/

ECHo

HOLMES ♦ Established in 2013 (ERC Advanced Grants for Prof. S. Ragazzi)

♦ Some R&D done already within the MARE experiment

http://artico.mib.infn.it/nucriomib/general-infos/holmes-approved

OTHERS ♦ LANL + NIST (last two years) investigation for source production detector developement for calorimentric measurements

http://conference.ipac.caltech.edu/ltd-15 (Kunde, Schmidt, Croce, Fowler)

A. De Rujula arXiv:1305.4857v1 [hep-ph] 21 May 2013

Conclusion

Thank you! Department of Nuclear Physics, Comenius University, Bratislava, Slovakia Fedor Simkovic Department of Physics, Indian Institute of Technology Roorkee, India Moumita Maiti Institute for Nuclear Chemistry, Johannes Gutenberg University Mainz Christoph E. Düllmann, Klaus Eberhardt Institute of Nuclear Research of the Hungarian Academy of Sciences Zoltán Szúcs Institute for Theoretical and Experimental Physics Moscow, Russia Mikhail Krivoruchenko Institute for Theoretical Physics, University of Tübingen, Germany Amand Fäßler Kepler Center for Astro and Particle Physics, University of Tübingen Josef Jochum Kirchhoff-Institut for Physics, Heidelberg University, Germany Christian Enss, Andreas Fleischmann, Loredana Gastaldo, Clemens Hassel, Sebastian Kempf, Philipp Chung-On Ranitzsch, Mathias Wegner Max-Planck Institut for Nuclear Physics Heidelberg, Germany Klaus Blaum, Andreas Dörr, Sergey Eliseev Petersburg Nuclear Physics Institute, Russia Yuri Novikov Saha Institute of Nuclear Physics, Kolkata, India Susanta Lahiri

∆EFWHM = 1.6eV @ 6 keV

55Mn

70 µm

First single pixel prototype

absorber: 5µm gold, ∅ 150µm

decay time: 0.7 ms

Sandwiched sensor

Proton induced reaction

natDy(p,xn) 163Ho

σ ~350 mb at 19 MeV

Contributors:

163Dy (24.9%)(p,n)163Ho (σ~0.4 mb) 164Dy (28.2%)(p,2n)163Ho (σ~1254 mb)

0

100

200

300

400

500

600

5 10 15 20 25

Cros

s sec

tion

[mb]

Projectile Energy [MeV]

p+natDy

Ho-163Ho-162Ho-161Ho-160

α+Dy2O3

0

100

200

300

400

500

600

10 15 20 25 30 35 40 45 50Cr

oss s

ecio

n, m

b Energy, MeV

α+natDy

Er-165, 10.3hEr-163, 75mEr-161, 3.24hEr-160, 28.6hHo-163, 4750y

natDy(α, xn) 163Er (ε) 163Ho (σ ~500 mb at 40 MeV)

Irradiation parameters: Projectile : α EP = 40 MeV first target: 1 µA, 7 h irradiation second target: 3 µA, 11 h irradiation

Exhaustive Chemistry !!

Li-induced reaction

159Tb(7Li, 3n) 163Er (σ ~312 mb at 31 MeV)

0

200

400

600

800

1000

1200

25 30 35 40

Cros

s sec

tion

[mb]

Energy [MeV]

7Li+159Tb

163 Er

162 Er

163Ho experiment: Calorimetric spectrum

QEC=2.5 keV QEC=2.8 keV

Determination of the QEC value from the intensity of the lines for mν=0:

abssensSS ΔΦ ΔΦ

C+CE

TMΔT

TM

∂∂

∝→∂∂

∝• Paramagnetic Au:Er sensor

MMCs: Concept

Main differences to calorimeters with resistive thermometers

no dissipation in the sensor

no galvanic contact to the sensor

Inverse Temperature T−1 [K −1]

M

agne

tizat

ion

M [

A/m

]

Au:Er 300 ppm

Temperature T [mK]

Spe

cific

hea

t C

[1

0−4 J

mol

−1K−1

]

Au:Er 300 ppm