Hydrogen 1s-2s experiment

13
Hydrogen 1s - 2s experiment Possible goals of improving laser system Improving resolution by decreasing the linewidth. For this purpose we need to improve reference cavity. Possibility of new experiments 1s-2s spectroscopy of Tritium in Karlsruhe. Carrier collapse problem of ECDL laser.

Transcript of Hydrogen 1s-2s experiment

Page 1: Hydrogen 1s-2s experiment

Hydrogen 1s-2s experiment

Possible goals of improving laser system

• Improving resolution by decreasing the

linewidth. For this purpose we need to

improve reference cavity.

• Possibility of new experiments – 1s-2s

spectroscopy of Tritium in Karlsruhe.

Carrier collapse problem of ECDL laser.

Page 2: Hydrogen 1s-2s experiment

Vertical cavity

Horizontal cavity Vertical cavity

The idea of vertical cavity by Mark Notcutt:

M.Notcutt et al., Opt. Lett. 30, 1815 (2005)

( )g g t

Page 3: Hydrogen 1s-2s experiment

Spectrum of ECDL locked to the cavity

12 13 14 15 16 17 18

-80

-70

-60

-50

-40

-30

-20

-10

Sp

ec

tra

l p

ow

er

de

ns

ity

, d

B

Frequency, MHz

Power in central peak 93%

N.Beverini, M. Prevedelli, F. Sorrentino, B. Nushkov, A. Ruffini

Quantum electronics 34, 559-564 (2004)

Page 4: Hydrogen 1s-2s experiment

PDH Lock

Phase inside the

cavity φ0

Phase of laser φ0+φ

If laser frequency is in resonance with cavity mode then Error Signal

errorU

Beam from ECDL

RF Error signal for

feedback

errorU f

Page 5: Hydrogen 1s-2s experiment

Carrier collapse - theory

• Consider the process

with phase jitter :

If random phase is distributed normally:

Then spectrum of the process contains δ-function

(carrier). Fraction of power in carrier:

Consequently after frequency doubling:

In 8-photon process

0 cos( ( ))E E t t

( )t ( ) 0i t

te

( )t2

2( ) exp

2 rms

p

2exp rms

2 2 4exp (2 ) exp 4( )rms rms

64

eff IR

Page 6: Hydrogen 1s-2s experiment

Carrier collapse in pictures

14 16 26 28 30 32 34 36

-80

-70

-60

-50

-40

-30

-20

Feedback depth -11 dB P

ow

er

sp

ectr

al d

en

sity, d

B

Frequency, MHz

93% 75%

14 16 26 28 30 32 34 36

-80

-70

-60

-50

-40

-30

-20

Feedback depth -10 dB P

ow

er

sp

ectr

al d

en

sity, d

B

Frequency, MHz

92% 78%

14 16 26 28 30 32 34 36

-80

-70

-60

-50

-40

-30

-20

Feedback depth -9 dB P

ow

er

sp

ectr

al d

en

sity, d

B

Frequency, MHz

91% 78%

14 16 26 28 30 32 34 36

-80

-70

-60

-50

-40

-30

-20

Feedback depth -8 dB P

ow

er

sp

ectr

al d

en

sity, d

B

Frequency, MHz

95% 80%

14 16 26 28 30 32 34 36

-80

-70

-60

-50

-40

-30

-20

Feedback depth -7 dB P

ow

er

sp

ectr

al d

en

sity, d

B

Frequency, MHz

95% 76%

14 16 26 28 30 32 34 36

-80

-70

-60

-50

-40

-30

-20

Feedback depth -6 dB P

ow

er

sp

ectr

al d

en

sity, d

B

Frequency, MHz

95% 75%

14 16 26 28 30 32 34 36

-80

-70

-60

-50

-40

-30

-20

Feedback depth -5 dB P

ow

er

sp

ectr

al d

en

sity, d

B

Frequency, MHz

95% 74%

14 16 26 28 30 32 34 36

-80

-70

-60

-50

-40

-30

-20

Feedback depth -4 dB P

ow

er

sp

ectr

al d

en

sity, d

B

Frequency, MHz

93% 70%

14 16 26 28 30 32 34 36

-80

-70

-60

-50

-40

-30

-20

85% 69%

Feedback depth -3 dB P

ow

er

sp

ectr

al d

en

sity, d

B

Frequency, MHz

14 16 26 28 30 32 34 36

-80

-70

-60

-50

-40

-30

-20

52%81%

Feedback depth -2 dB P

ow

er

sp

ectr

al d

en

sity, d

B

Frequency, MHz

14 16 26 28 30 32 34 36

-80

-70

-60

-50

-40

-30

-20

72% 28%

Feedback depth -1 dB Y

Po

we

r sp

ectr

al d

en

sity, d

B

Frequency, MHz

14 16 26 28 30 32 34

-80

-70

-60

-50

-40

-30

-20

Full collapse

243 nm beatnote

Pow

er

spe

ctr

al d

en

sity, d

B

Frequency, MHz

486 nm beatnote

Feedback depth 0 dB

44%

Page 7: Hydrogen 1s-2s experiment

Feedback depth

-12 -10 -8 -6 -4 -2 0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0P

ow

er

in c

arr

ier

Feedback depth, dB

Blue light

UV light

Feedback influence on fraction of power in carrier

Page 8: Hydrogen 1s-2s experiment

Check of carrier collapse formula

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

Lo

g(

24

3)

, U

V lig

ht

be

atn

ote

Log(486

), blue light beatnote

Check of 4 theory.

Graph contain all points gathered

9.02.2006 and 13.02.2006

Fit y=Bx

B =3.89 +/- 0.18

Page 9: Hydrogen 1s-2s experiment

Central peak of small horizontal cavity

15.000 15.005 15.010

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

Po

we

r s

pe

ctr

al d

en

sit

y, V

2/H

z

Frequency, MHz

Beat signal

Gauss fit

Central peak of beatnote at 486 nm.

Small horizontal cavity - Huge horizontal cavity.

Width 470 Hz

30.005 30.010 30.015 30.020 30.025

0.00E+000

2.00E-009

4.00E-009

6.00E-009

8.00E-009

1.00E-008

1.20E-008

1.40E-008

1.60E-008

Beat signal

Gauss fit

Central peak of beatnote at 243 nm.

Small horizontal cavity - Huge horizontal cavity.

Po

we

r s

pe

ctr

al d

en

sit

y, V

2/H

z

Frequency, MHz

Width 985 Hz

Page 10: Hydrogen 1s-2s experiment

Central peak with vertical cavity

0 100 200 300 400

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Am

plitu

de

sp

ec

tra

l d

en

sit

y, V

/Hz

1/2

FFT Frequency, Hz

18 FFT Spectra of beatnote at 486 nm.

-600 -400 -200 0 200 400 600

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Am

plitu

de

sp

ec

tra

l d

en

sit

y, V

/Hz

1/2

Frequency detuning, Hz

FFT Averaging of 18 Onosokki Spectra.

Measurement A (Dye laser pump box open)

-800 -600 -400 -200 0 200 400 600 800

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Am

plitu

de

sp

ec

tra

l d

en

sit

y, V

/Hz

1/2

Frequency detuning, Hz

Lorentz fit of 18 averaged spectra of beatnote at 486 nm

Width 14 Hz

-1500 -1000 -500 0 500 1000

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Am

plitu

de

sp

ec

tra

l d

en

sit

y, V

/Hz

1/2

Frequency detuning, Hz

Width 71 Hz

Lorentz fit of 16 averaged spectra of beatnote at 243 nm.

Page 11: Hydrogen 1s-2s experiment

Why 2? Why 4?How to estimate linewidth

0( ) cos ( )E t E t t

( )t ( )t

t

The moment :

( ) 1

1

The linewidth could be

estimated as:

Page 12: Hydrogen 1s-2s experiment

Why 2? Why 4?Frequency noise model

( )p

t

0 cosE E t dt

Two important parameters

modulation depth

and correlation time

0

corrT

0

corrT

Page 13: Hydrogen 1s-2s experiment

Why 2? Why 4?

Linear phase drift and phase diffusion

......t

( )t

corrTt

N t

1 rad

/ 2

/ 4

Summary: Two principal cases:

Deep frequency noise. Gaussian profile. After frequency doubling

linewidth increases twice.

Fast frequency noise. Lorentz profile. After frequency doubling

linewidth increases by the factor 4.

1corrT

1corrT