Department of Physics, University of Illinois at Urbana ... · 0.02 0.04 0.06 0.08 0.10 1920 1930...

Post on 25-Aug-2020

2 views 0 download

Transcript of Department of Physics, University of Illinois at Urbana ... · 0.02 0.04 0.06 0.08 0.10 1920 1930...

11Dept. of BiophysicsDept. of BiophysicsUniversity of UlmUniversity of UlmΦΦBIOBIO

Exploring the Rugged Conformational EnergyExploring the Rugged Conformational EnergyLandscape of ProteinsLandscape of Proteins

GerdGerd Ulrich Ulrich NienhausNienhausDepartment of Biophysics, University of Ulm, Germany,Department of Biophysics, University of Ulm, Germany,Department of Physics, University of Illinois at Urbana-Department of Physics, University of Illinois at Urbana-

ChampaignChampaign

22Dept. of BiophysicsDept. of BiophysicsUniversity of UlmUniversity of UlmΦΦBIOBIO

Proteins - Proteins - ParadigmsParadigms of of ComplexComplex Systems Systems

Systems

• Biomolecules

• Glass-forming liquids

• Synthetic polymers

• Spin glasses

Essential Properties

• Distributed physical parameters

• Wide range of time scales

• Nonlinearity

• Non-Arrhenius temperaturedependence

Disorder:

Frustration:

Spin glass

Rugged energy landscape

?

33Dept. of BiophysicsDept. of BiophysicsUniversity of UlmUniversity of UlmΦΦBIOBIO

ProteinsProteins

• Building blocks:

• Primary structure:

• Secondary structure:

• Tertiary structure:

20 different amino acidsbackbone

sidechain

peptide (covalent) bonds

hydrogen bonds

Sequence determines 3D fold

3D interactions:- hydrophobic- van der Waals- H bonds / ionic / S-SHb

β sheetα helix

44Dept. of BiophysicsDept. of BiophysicsUniversity of UlmUniversity of UlmΦΦBIOBIO

Protein FoldingProtein Folding

• Huge number of possible chainconformations (∼ 10150 for aprotein with 150 amino acids).

• Folding decreases number ofavailable conformationssubstantially.

• The native fold is not unique, butcontains a large number ofconformational substates.

55Dept. of BiophysicsDept. of BiophysicsUniversity of UlmUniversity of UlmΦΦBIOBIO

EnergyEnergy Landscape of Landscape of FoldedFolded Proteins Proteins

E

c c

Sequence

Folding

3D Structure

Conformational substates:same overall structure,details are different.

66Dept. of BiophysicsDept. of BiophysicsUniversity of UlmUniversity of UlmΦΦBIOBIO

Energy Landscape Governs Structure, Dynamics, FunctionEnergy Landscape Governs Structure, Dynamics, Function

••Theoretical ApproachesTheoretical Approaches••Computer SimulationsComputer Simulations••ExperimentExperiment

Structure Dynamics Function

F1 ATP SynthaseADP + Pi ATP + H2O

77Dept. of BiophysicsDept. of BiophysicsUniversity of UlmUniversity of UlmΦΦBIOBIO

RandomRandom EnergyEnergy Landscape Landscape

Thermodynamics:

For ⟨⟨⟨⟨E⟩⟩⟩⟩ →→→→ E0:entropy crisis

Arrhenius

Kinetics:

[ ] 2

)()(ln)(

exp)(1

2)(exp

21)(

2

2

00

2

2

2

EEEkSEPkES

TkEEdE

TkEEPE

ZE

EEE

EEP

BB

BB

∆−−=⋅Ω=

∆−=

−=⟩⟨

∆−−

∆=

π

)()( ⟩⟨−=

⟩⟨−=≠

ESESS

EEE

Ferry's law

002

20

00 22)(0)(

SkET

EEEkSES

BB

∆=⇒

∆−−==

∆−=

−−=

−=

≠≠≠ 2

000 2expexpexp

TkE

TkTSE

TkF

BBB

κκκκ

88Dept. of BiophysicsDept. of BiophysicsUniversity of UlmUniversity of UlmΦΦBIOBIO

DynamicalDynamical TransitionTransition at T at T ≈≈≈≈≈≈≈≈ 180 K180 K

T < 180 K: harmonic vibrationsT > 180 K: large-scale fluctuations

• Mössbauer spectroscopy Parak et al., J. Mol. Biol. 161 (1982) 177.Nienhaus et al., Nature 338 (1989) 665.

• Neutron scattering Doster et al., Nature 337 (1989) 754.

• X-ray crystallography Hartmann et al., PNAS 79 (1982) 4967. Parak et al., Eur. Biophys. J. 15 (1987) 237.

Rasmussen et al., Nature 357 (1992) 423.

• Spin transition in Hb Perutz, Nature 358 (1992) 548.

T [K]

< x2

>Fe [Å

]

Mössbauer spectroscopyon myoglobin

99Dept. of BiophysicsDept. of BiophysicsUniversity of UlmUniversity of UlmΦΦBIOBIO

System Process logAA

[s-1] EA

[kJ/mol] logAF [s-1]

EF [kJ/mol]

T range [K]

MbCO L29W

AI ↔ AII 20 74 12.5 9.0 210-300

MbCO native1

A0 ↔ A1 + A3 A1 ↔ A3

22.730.7

94114

11.716.2

9.39.8

180-300

RC2 CS0 CS1

2521

11078

11.710.6

9.97.8

180-300

BPTI

Tyr 35 ring flip3 W 122 res. time4

24.319.4

13890

12.611.7

13.310.7

277-350

1Johnson et al., Biophys. J. 71, 1563 (1996). 2McMahon et al., Biophys. J. 74, 2567 (1998). 3Otting et al., Biochemistry 32, 3571 (1993). 4Denisov et al., Nature Struct. Biol. 3, 505 (1996).

Conformational Changes - Temperature DependenceConformational Changes - Temperature Dependence

01234567

10 12 14 16 18 20 22 24(1000/T)2 [K-2]

log

( κκ κκ /

s-1)

EF = 9.0 kJ/mol

L29W MbCOAI ? AII

−=

TkEAB

AA expκ

−=

2

expTk

EAB

FFκ

Arrhenius

Ferry

1010Dept. of BiophysicsDept. of BiophysicsUniversity of UlmUniversity of UlmΦΦBIOBIO

ComputationalComputational ApproachesApproaches

Conformational analysis of isobuturyl-Ala3-NH-CH3 (IAN, flexible tetrapeptide)

Czerminski & Elber, PNAS 86 (1989) 6963.Becker & Karplus, JCP 106 (1997) 1506.

Hierarchical tree ofconformations from a 5.1 nsMD simulation of crambin

Garcia et al., Physica D 107(1997) 225.

Configuration space projections fromSVD analysis of 1 ns myoglobin MDtrajectory

Andrews et al., Structure 6 (1998) 587.

GoBerendsenDi Nola

1111Dept. of BiophysicsDept. of BiophysicsUniversity of UlmUniversity of UlmΦΦBIOBIO

Hans Frauenfelder, UIUC (1985)

Hierarchical energy landscape

Taxonomic substates(IR, Raman)

Statistical substates(nonexponential ligand binding)

(Hole burning, specific heat)

Experimental Experimental StudiesStudies

1212Dept. of BiophysicsDept. of BiophysicsUniversity of UlmUniversity of UlmΦΦBIOBIO

ConformationalConformational DynamicsDynamics at at PhysiologicalPhysiological TemperatureTemperature

collectivedynamics

µs-ms

ps-ns

ns-µs

G

conformational coordinate

partial unfolding, majorstructural rearrangements

localizedmotions

substates

1313Dept. of BiophysicsDept. of BiophysicsUniversity of UlmUniversity of UlmΦΦBIOBIO

MyoglobinMyoglobin

• Function: storage and transport of oxygen• Molecular weight: 17.8 kD• Size: ∼ 45 × 35 × 25 Å3

• Structure: 153 aa, 8 α helices, 1 heme group

1414Dept. of BiophysicsDept. of BiophysicsUniversity of UlmUniversity of UlmΦΦBIOBIO

Mutant Mutant MyoglobinsMyoglobins

L29 W29

L29W myoglobin binds ligandsextremely slowly at room temperature

wild type myoglobin mutant myoglobin L29W

1515Dept. of BiophysicsDept. of BiophysicsUniversity of UlmUniversity of UlmΦΦBIOBIO

Flash Flash PhotolysisPhotolysis

AB

SC

D

S

D

CB A

Photodissociation Rebinding

Protein and ligandmovements

1616Dept. of BiophysicsDept. of BiophysicsUniversity of UlmUniversity of UlmΦΦBIOBIO

CO Infrared Bands – Taxonomic CO Infrared Bands – Taxonomic SubstatesSubstates

1900 1920 1940 1960 2120 2140 2160-100

-50

0

50

100

150

200

photodiss. COhem e-bound CO

B 2 B 1

B 0

A 3 A 0

A 1

x 10Abs

orba

nce

[mO

D]

W avenum ber [cm -1]

swMbCO, 3 K

0.00

0.02

0.04

0.06

0.08

0.10

1920 1930 1940 1950 1960 1970 1980Wavenumber [cm-1]

Abs

orba

nce

[OD

] 12 K 200 - 300 K

1920 1940 1960 1980 2100 2120 2140

-50

0

50

100

x 10

photodiss. COAII

AI

heme-bound CO

Abs

orba

nce

[mO

D]

Wavenumber [cm-1]

L29W, 12 K

E-field interactions (Stark effect) between the COdipole and its environment

• Multiple ‘A’ bands (CO bound) - multiple conformations (T, p, pH dep.)• Multiple ‘B’ bands (CO dissociated) - multiple ligand docking sites• Heterogeneity within each band - statistical substates

1717Dept. of BiophysicsDept. of BiophysicsUniversity of UlmUniversity of UlmΦΦBIOBIO

X-Ray X-Ray CryoCryo-Crystallography-Crystallography

Fourier Transform

Ostermann, A., Waschipky, R., Parak, F. G. &Nienhaus, G. U., Nature 404 (2000) 205-208.

1818Dept. of BiophysicsDept. of BiophysicsUniversity of UlmUniversity of UlmΦΦBIOBIO

Structures of A Structures of A SubstatesSubstates

Yang & Phillips, J. Mol. Biol. 256 (1996) 762 – 774.Johnson et al., Biophys. J. 71 (1996) 1563-1573.Müller et al., Biophys. J. 77 (1999) 1036 – 1051.

CO

H 64L 29

Fe

Heme

H 93

A1

A0

pH 4 / 6

Ostermann et al., Nature 404 (2000) 205-208.

AII AI

200 / 300 K

wild type MbCO mutant MbCO L29W

1919Dept. of BiophysicsDept. of BiophysicsUniversity of UlmUniversity of UlmΦΦBIOBIO

CO Primary Docking Site (T < 40 K)CO Primary Docking Site (T < 40 K)

Photoproduct x-ray structures:Schlichting et al., Nature 317 (1994) 808.Teng et al., Nature Struct. Biol. 1 (1994) 701.Hartmann et al., PNAS 93 (1996) 7013.MD simulations:Vitkup et al., Nature Struct. Biol. 4 (1997) 202.Ma et al., JACS 119 (1997) 2541.Meller & Elber, Biophys. J. 75 (1998) 789.

Femtosecond IR spectroscopyLim et al., Nature Struct. Biol. 4 (1997) 209 – 214.

fs IR

CO photodissociatedH 64

L 29

Fe

Heme

CO bound

2020Dept. of BiophysicsDept. of BiophysicsUniversity of UlmUniversity of UlmΦΦBIOBIO

Low Temperature CO RebindingLow Temperature CO Rebindinglo

g N

A

B

log t/s

H

rcA

B

kBA

HBA

thermal activationtunneling (T< 50 K)

g(HBA) Enthalpy barrierdistribution

HBA (kJ/mol)

BABABA dHtkHgtN ]exp[)()( −=∫

functional heterogeneity structural heterogeneity

with kBA= ABA exp [- HBA/(RT)](Arrhenius)

10-7 103

Austin et al., Biochemistry 14 (1975) 5355-5373.

2121Dept. of BiophysicsDept. of BiophysicsUniversity of UlmUniversity of UlmΦΦBIOBIO

LigandLigand Migration to Alternative Docking Sites in L29W Migration to Alternative Docking Sites in L29W

AIB2

C'

D

T < 180 K:Ligand movements inthe frozen protein.

T > 180 K:Ligand migration andconcomitant structuralchanges in the protein.

2222Dept. of BiophysicsDept. of BiophysicsUniversity of UlmUniversity of UlmΦΦBIOBIO

Secondary Docking Sites – Xenon CavitiesSecondary Docking Sites – Xenon Cavities

Exit ?

Xenon cavities:Tilton et al., Biochemistry23 (1984) 2849

MD simulations:Elber and Karplus, J. Am. Chem. Soc.112 (1990) 9161

2323Dept. of BiophysicsDept. of BiophysicsUniversity of UlmUniversity of UlmΦΦBIOBIO

LigandLigand Migration Studies Migration Studies

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

20 K 30 K 40 K 50 K 60 K 70 K 80 K

log

N(t)

-7 -6 -5 -4 -3 -2 -1 0 1 2-1.6-1.4-1.2

-1.0-0.8-0.6-0.4-0.2

0.0

100 K 120 K 140 K 160 K

log

N(t)

log (t/s)

L29W MbCO, 1944 cm-1 MbCO YQR, 1 s photolysis @ 3K

population exchangeB2 →→→→ B1

B1 →→→→ C'1/2

B1/2 →→→→A3 C'1/2 →→→→A3rebinding

Infrared Kinetics Temperature Derivative Spectroscopy

Lamb et al., J. Biol. Chem. 277 (2002) 11636-11644.

2424Dept. of BiophysicsDept. of BiophysicsUniversity of UlmUniversity of UlmΦΦBIOBIO

Characterization of Reaction IntermediatesCharacterization of Reaction Intermediates

D

B2

C’/ C’’

G

A

B2

C’ C’’S

AI reaction surface

reaction coordinateD

0

0.02

0.04

0.06

0.08

2110 2115 2120 2125 2130 2135 2140 2145 2150Wavenumber (cm-1)

Abso

rban

ce

B2C’C’’D

AI

0

0.02

0.04

0.06

2110 2115 2120 2125 2130 2135 2140 2145 2150

Wavenumber (cm-1)

Abso

rban

ce

BCDAII

• Structure

• IR Spectra (E-fields, CO dynamics)

• Energetics of ligand binding

• Role of A substate interconversions

2525Dept. of BiophysicsDept. of BiophysicsUniversity of UlmUniversity of UlmΦΦBIOBIO

SummarySummary

•• Proteins Proteins possesspossess a a ruggedrugged energyenergy landscapelandscape•• HugeHuge numbernumber of ~ of ~isoenergeticisoenergetic conformationalconformational substatessubstates•• EnergyEnergy barriersbarriers distributeddistributed in in heightheight

•• DynamicsDynamics on on essentiallyessentially all time all time scalesscales•• DynamicsDynamics overover widewide temperaturetemperature rangerange•• Non-ArrheniusNon-Arrhenius temperaturetemperature dependenciesdependencies

•• HierarchyHierarchy of of SubstatesSubstates•• TaxonomicTaxonomic substatessubstates•• StatisticalStatistical substatessubstates

•• Model Model proteinprotein myoglobinmyoglobin•• EnergyEnergy landscapelandscape explorationexploration byby

•• CryocrystallographyCryocrystallography•• IR IR spectroscopyspectroscopy•• KineticsKinetics

2626Dept. of BiophysicsDept. of BiophysicsUniversity of UlmUniversity of UlmΦΦBIOBIO

AcknowledgmentsAcknowledgments

Andreas OstermannFritz Parak

Alessandro ArcovitoMaurizio Brunori

Aninda BhattacharyyaPengchi DengJan KrieglDon C. LambKarin NienhausCarlheinz RöckerUwe TheilenRobert Waschipky