1 Transverse Spin Measurements at PHENIX John Koster for the PHENIX collaboration University of...

Post on 31-Dec-2015

217 views 2 download

Transcript of 1 Transverse Spin Measurements at PHENIX John Koster for the PHENIX collaboration University of...

1

Transverse Spin Measurements at PHENIX

John Kosterfor the PHENIX collaboration

University of Illinois at Urbana-Champaign DIS2009

2009/04/27

2

Xpp

π+

π-

π0

RL

RL

N PA

1

GeV 20s

Experiment:(E704, Fermi National Laboratory, 1991)

Single Transverse Spin Asymmetries in pp Collisions

E704: Left-right asymmetries AN for pions:

AN difference in cross-section between particles produced to the left and right

Theory Expectation: Small asymmetries at high energies (Kane, Pumplin, Repko, PRL 41, 1689–1692 (1978) )

s

mA q

N

Right

Left

AN O(10-1) Measured

AN O(10-4) Theory

s

px L

F

2

AN

xF

3

),(

)(ˆ)(),( ,

21

3

2,121

3

. Thqlkji

Tqi pzFFdxdx

qqqqdxGkxq

dzdxdx

Xppdlk

fragmentationfunction

pQCD Proton Structure

small spindependence

Can initial and/or final state effects generate large transverse spin asymmetries? (AN ~10-1)

Possible Origin of Large Single Spin Asymmetries

h

X’

q

fb

fa

σ

FFq

4

Transverse Spin Effects in p↑p Collisions

(I) Transversity quark distributionsand Collins fragmentation functionCorrelation between proton & quark spin + spin dependant fragmentation function

),()( 221

kzHxqCollins FFQuark transverse

spin distribution

(II) Sivers quark-distribution

Correlation between proton-spin and transverse quark momentum

)(),( 21 zDkxf h

qq

T

Sivers distribution

π+

π-

π0

AN

xF

E704: Left-right asymmetries AN for pions:

D. Sivers, Phys. Rev. D 41, 83 (1990)

J. C. Collins, Nucl. Phys. B396, 161 (1993)

5

RHIC Polarized Proton Collider

AGSLINACBOOSTER

Polarized Source

Spin Rotators

200 MeV Polarimeter

AGS Internal Polarimeter

Rf Dipole

RHIC pC Polarimeters Absolute Polarimeter (H jet)

PHENIX

PHOBOS BRAHMS & PP2PP

STAR

AGS pC Polarimeter

Partial Snake

Siberian Snakes

Siberian Snakes

Helical Partial SnakeStrong Snake

Spin Flipper

2009 Run:

Excellent performance during first 500 GeV run at RHIC ~10pb-1

200 GeV run ongoing

6

RHIC ∫L* and Polarization

Run Energy Polarization Longitudinal Transverse

[GeV] [%] L [pb-1] LP4 [pb-1] L [pb-1] LP2 [pb-1]

2002 200 15 - - 0.15 3.4 x 10-3

2003 200 27 0.35 1.9 x 10-3 - -

2004 200 40 0.12 9 x 10-3 - -

2005 200 49 (47) 3.4 2 x 10-1 0.16 3.5 x 10-2

2006 200 57 (51) 7.5 7.9 x 10-1 2.7 7.0 x 10-1

2006 62 48 0.08 4.2 x 10-3 0.02 4.6 x 10-3

2008 200 46 - - 5.2 1.1 x 100

2009 500 ~35 ~10

2009 200 In progress

Steadily increasing polarization and luminosity

* integrated luminosity for PHENIX central arm

7

0 Cross-Sections at y = 0Experiment vs Theory √s=200 GeV (RHIC) Agreement √s=19.4 GeV (FNAL/E704) Different

Process Contribution to 0, η=0, s=200 GeV

Neutral Pion Cross-Sections Experiment vs pQCD

Guzey et al, PLB 603,173 (2004)

Bourrely et al, Eur.Phys.J.C36:371-374,2004

de Florian et al, PRD:76,0940210 Cross-Sections at y = 0Experiment vs Theory √s=200 GeV (RHIC) Agreement √s=19.4 GeV (FNAL/E704) Different √s=62.4 GeV (RHIC) AgreementMore work needed to understand lower energies

8

p+p0+X at s=200 GeV/c2

PRL 95, 202001 (2005)

PHENIX Data at Mid-Rapidity Helps Constrain gluon Sivers Function

Experimental Measurement at y~=0 Comparison of Exp. To Theory

Anselmino et al, Phys. Rev. D 74, 094011

•Cyan: Gluon Sivers Function at positivity bound, no sea quark Sivers•Thick Red: Gluon Sivers parameterized to be 1 sigma from PHENIX 0 AN

•Blue: Asymmetry from Sea quark Sivers at positivity bound•Green: Asymmetry from Gluon Sivers for case of sea quark at positivity bound

High statistics 2006+2008 data coming. Smaller statistical errors (factor 23 improvement for 0’s)

Higher pT Possible

AN AN

pT (GeV/c) pT (GeV/c)

9

PHENIX Detector at RHIC

Muon Arms 1.2 < | η | < 2.4• J/Psi• Unidentified charged hadrons• Heavy Flavor

Central Arms | η | < 0.35• Identified charged hadrons• Neutral Pions• Direct Photon• J/Psi• Heavy Flavor

MPC 3.1 < | η | < 3.9• Neutral Pion’s• Eta’s

PHENIX strategy:

Measure several observables each sensitive to different transverse spin effects

(i) Forward SSA Sivers & CollinsNeutral Pions

(ii) Transversity-type AsymmetriesInterference Frag. Func. Analysis

(iii) Sivers-type AsymmetriesHeavy FlavorBack to Back HadronsPion AN for y~0

10

(i) Forward SSA AN 0 in MPC

Forward asymmetries contain mixture of contributions from

Sivers Transversity x Collins Twist-3PHENIX 0 results available for

√s=62 GeVComing soon from 2008 √s=200 GeV

dataset – 0 and 5.2 pb-1, 46% Polarization

Asymmetries could enter a global analysis on transverse spin asymmetries

Guzey et al, PLB 603,173 (2004)

Process contribution to

0, =3.3, s=200 GeV

• 3.1 < η < 3.7• η > 3.5

• η < 3.5

11

(ii) Constraints on Transversity: Dihadron IFF Analysis

Interference Fragmentation Function Analysis

Measure di-hadron asymmetry with hadron pairs in central arm (0,h+) (0,h-), (h+,h-)

Measures δq(x) x H1

Transversity extraction will become possible with Interference Fragmentation Function (H1 ) measurement in progress at BELLE

+

+_

_q

IFF

IFF

21 ,

,

hh

UTA

12

Models for Interference Fragmentation Function

Use partial wave analysis of phase shift data to model IFF

Sign change around mass Jaffe, Jin and Tang, PRL 80 (1998) 1166

( , )q

Breit-Wigner shape for p wave No sign change around mass Trend consistent with HERMES results Bacchetta and Radici, Phys. Rev. D 74, 114007

(2006)

Analysis done in mass bins above and below the ρ mass

13

vs mass of the pair)sin(

UTA

Added statistics from 2008 running NEWNo significant asymmetries seen at mid-rapidity.

14

vs invariant mass of the pairsin

UTA

Added statistics from 2008 running NEWNo significant asymmetries seen at mid-rapidity.

15

(iii) Constraints on Sivers Function: Heavy Flavor

D meson AN

• Production dominated by gluon-gluon fusion at RHIC energy

• Gluon transversity zero Asymmetry cannot originate from Transversity x Collins

• Sensitive to gluon Sivers effect

Anselmino et al, Phys. Rev. D 70, 074025 (2004)

p↑pDX

Gluon Sivers=MaxQuark Sivers=0Gluon Sivers=0Quark Sivers=Max

Theoretical prediction:

16

(iii) Constraints on Sivers Function: Heavy Flavor

PHENIX: no reconstruction of D meson

Exploratory measurements of AN for single muons

Dominated by charm production in current kinematic range

Predicted asymmetry smeared by decay kinematics

17

(iii) Constraints on Sivers Function: J/Psi

Exploratory measurement of AN J/Psi

J/Psi production mechanism not well understood

Single spin asymmetries may shed light on production mechanism

Constraints on gluon Sivers functionYuan, PRD78:014024,2008

18

(iii) Constraints on Sivers Function: DiJet Production

Azimuthal distribution of Di-Jet production in ppSuggested in: Boer, Vogelsang, Phys. Rev. D 69, 094025

δφ

Counts

Beam is in and out of pageLook at back-to-back jet opening angles

δφ

Proton SpinkT

Sensitive to Sivers function only!

No Collins-type effects

19

(iii) Constraints on Sivers Function: DiHadron Production

PHENIX Result from 2006 data:

Done with di-hadrons at y1=y2~=0

Asymmetry consistent with zero

Large 2008 data set available!

ηmin

ηmax

-3.7-3.1

-2.0-1.4

-0.35+0.35

1.42.0

3.13.9

Similar analysis possible in different combinations of rapidity

Works in progress…

pi0

h+/-

20

Near Term Outlook -- Large 2008 Dataset

Initial constraints on gluon Sivers function Dedicated transversity channels:

– IFF Analysis– Future analysis with Collins asymmetry (See next slide)

Sivers function constraints possible with more data– Connection to orbital angular momentum?

Summary

(i) Forward SSA AN

0 at √s=200 GeV soon. Exploring η, K0short, Direct γ

(ii) Transversity-type measurements IFF results already preliminary Exploration Forward IFF

(iii) Sivers-type measurementsAN for y~0 smaller errors and higher pT

AN Heavy Flavor -- Forward open heavy flavor, J/Psi -- Mid-rapidity open heavy flavor

Di-Jet analyses will expand to rapidity-separated hadron pairs

21

Long Term Outlook -- Upgrades

Vertex Detectors (2011-2012)

Large acceptance precision tracking– Heavy flavor tagging– Jets– Drell-Yan– Electrons from charm decays and

beauty decays separately– c,b-Jet Correlations

Forward Calorimetery (2012-2013)

Proposed PHENIX Upgrade ( 1 < eta < 3 )

– AN 0, Direct γ, γ-Jet

– Collins-type analyses

22

Backup

23

IFF: Definition of Vectors and Angles

1 2

1 2

1 2

, : momenta of protons

, : momenta of hadrons

( ) / 2

: proton spin orientation

A B

h h

C h h

C h h

B

P P

P P

P P P

R P P

S

����������������������������

����������������������������

������������������������������������������

������������������������������������������

��������������

1hP��������������

2hP��������������

AP��������������

BP��������������

CP��������������

BS��������������

pp hhX

1 2hadron plane: ,

scattering plane: ,

h h

C B

P P

P P

����������������������������

���������������������������� : from scattering plane

to hadron planeR : from polarization vector

to scattering plane S

Bacchetta and Radici, PRD70, 094032 (2004)

2 CR��������������

24

IFF: Transversity from di-hadron SSA

UTUT

UU

A

Physics asymmetry

IFF + Di-hadron FFto be measured in e+e-

Transversityto be extracted

Hard scatteringcross sectionfrom pQCD

Unpolarized quark distribution Known from DIS

25

Ongoing IFF measurement at BELLE (RBRC/Illinois)

2

1

1hP

2hP

2h1h PP

e+

e-

thrust

axis

1 2

1 1 1 1 2 2 1 2

( ) ( )

( , ) ( , ) cos( )

jet jete e X

A H z m H z m

Artru and Collins, Z. Phys. C69, 277 (1996)

Boer, Jakob, and Radici, PRD67, 094003 (2003)

IFF sensitivity projection from data

26

Use partial wave analysis of phase shift data to model IFF

Sign change around mass Jaffe, Jin and Tang, PRL 80 (1998) 1166

Models for IFF

( , )q

Breit-Wigner shape for p wave No sign change around mass Trend consistent with HERMES results Bacchetta and Radici, Phys. Rev. D 74, 114007

(2006)