Selective harmonic elimination in a solar powered multilevel inverter

76
Harmonic Elimination in a Solar Powered Multilevel Inverter Dr. Shimi S.L Assistant Professor, EE NITTTR, Chandigarh 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 1

Transcript of Selective harmonic elimination in a solar powered multilevel inverter

  • Harmonic Elimination in a Solar Powered Multilevel Inverter

    Dr. Shimi S.L

    Assistant Professor, EE

    NITTTR, Chandigarh

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 1

  • Global Solar Potential

    12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 2

  • (maximum efficiency)= P(maximum power output)/(E(S,)(incident radiation flux)*A(c)(Area of collector))

    12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 3

  • Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh12/4/2017 4

  • MAXIMUM POWER POINT TRACKING

    (MPPT)

    There are two basic approaches in maximizing the power extraction:

    (a) Using automatic sun tracker

    (b) Searching for the MPP conditions

    Perturb and Observe method

    Incremental Conductance method

    Artificial intelligence (AI) methods

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 5

  • 12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 6

  • The height of a projectile that is fired straight up is given by the motion equations

    12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 7

  • 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 8

  • 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 9

  • Partial Shading of Solar Panels

    12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 10

  • 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 11

  • 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 12

  • Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 12/4/2017 13

  • MPPT of a PV System

    12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 14

  • Switching Mode Regulator (Buck Converter)

    12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 15

  • Equivalent Circuit (a) Switch ON (b) Switch OFF

    = =(1 )

    2

    = =1

    162

    For a switching frequency of 80 KHz and inductance current ripple () of 10% the and are approximated as 1mH and 100F respectively

    =(1 )

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 16

  • Parameters of Buck Converter

    Sr. No. Parameter Value

    1 Inductor (L) 1mH

    2 Inductor series resistance (RL) 80 m

    3 Output capacitor (Co) 100 F

    4 Output capacitor ESR (Rco) 30 m

    5 Input capacitor (Ci) 100 F

    6 Input capacitor ESR (Rci) 30 m

    7 Switching frequency (fs), 80 KHz

    8 Input voltage 20 V

    9 Duty-ratio (D) Variable

    10 Load resistance 9 Ohm

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 17

  • MATLAB/SIMULINK Model of Buck Converter

    Components of PWM Block Subsystem

    12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh

    18

  • PWM with 0.5 Value of Duty-cycle

    Input and Output Voltages Waveforms of Buck Converter

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 19

  • PERFORMANCE EVALUATION OF

    VIKRAM SOLAR MODULE

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 20

  • 12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 21

  • Performance Characteristics Outdoor Efficiency 9.95%

    12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 22

  • Performance of 37W PV Module at Laboratory and Outdoor Conditions

    Co

    nd

    itio

    n

    Angle of PV

    Panel Tilt

    Irradiation

    W/m2

    Temperature

    oC

    Voc

    (V)

    Isc

    (mA)

    Vm

    (V)

    Im

    (mA)

    Pm

    (W)

    (%)

    Lab

    00 450 30 18.71 129 17.93 126 2.254 1.446

    450 450 30 18.99 255 17.96 183 3.291 2.111

    Ou

    tdo

    or 00 923 32 18.20 1071 14.33 1043 14.94 7.640

    450 923 32 19.07 1904 14.77 1777 26.26 11.25

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 23

  • 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 24

  • PCI Port

    12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 25

  • Specification of DS1104 R&D Controller BoardParameter Characteristics

    Processor MPC8240 processor with PPC603e core and on-chip

    peripherals

    64-bit floating-point processor

    250 MHz CPU

    2 x 16 KB cache; on-chip

    On-chip PCI bridge (33 MHz)

    Memory Global memory: 32 MB SDRAM

    Flash memory: 8 MB

    ADC

    1 x 16-bit ADC with mux

    4 x 12-bit ADC

    5 ADC channels (1 x 16-bit + 4 x 12-bit) can be

    sampled simultaneous

    16-bit resolution

    10 V input voltage range

    2s conversion time, 12-bit resolution

    10 V input voltage range

    800 ns conversion time

    Slave DSP subsystem Texas Instruments TMS320F240 DSP

    16-bit fixed-point processor

    20 MHz clock frequency

    64 K x 16 external program memory

    28 K x 16 external data memory

    4 K x 16 dual-port memory for communication

    16 K x 16 flash memory

    1 x 3-phase PWM output, 4 x 1-phase PWM output

    13 mA maximum output current

    Host interface 32-bit PCI host interface

    5VPCI slot

    33MHz5 %

    Power supply +5 V 5 %, 2.5 A

    +12 V 5 %, 0.3 A

    Power consumption 18.5 W

    12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 26

  • 12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 27

  • 12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 28

  • (a)

    (b)

    (c)

    Parameter Settings for (a) ADC, (b) ADC Multiplexed and (c) PWM Blocks

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 29

  • 12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 30

  • 12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 31

  • Efficiency of MPPT Algorithm

    (a) Short-circuit Current Isc

    (b) Open-circuit Voltage Voc

    (c ) Fill Factor FF

    MPPT =0tPMPPT t dt

    0tPmax t dt

    (2)

    Maximum Power (Pmax ) Prediction Model

    Isc = IscoG

    G0

    (3)

    =0

    1+0

    0

    (4)

    = 0 1

    (5)

    0 =ln(+0.72)

    1+(6)

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 32

  • (d) Maximum Power Output (Pmax)

    voc =Voc

    nKT q(7)

    Pmax = FF Voc Isc (8)

    Pmax =ln(+0.72)

    1+ 1

    0

    1+0

    0

    0

    (9)

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 33

  • MATLABTM / SIMULINKTM Model of Maximum Power Output (Pmax)

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 34

  • Sub-System for Fill Factor

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 35

  • Sub-system for Short Circuit Current

    Sub-system for Open Circuit Voltage

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 36

  • Response of Pmax, Voc , Isc , FF & Irradiance

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 37

  • Fig. Experimental Result of PO with Delta D=0.01

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 38

  • MPPT ALGORITHM COMPARISION

    Maximum Power Point

    Techniques Method

    ( %)

    Peak

    Overshoot

    ( %)

    Settling

    time

    ( sec)

    Dynamic

    Response

    Delay

    ( sec)

    Steady

    State Error

    ( %)

    Sensors

    Voltage -V

    Current -I

    Perturb & Observe (D=0.1)77.60 - 79.39 No 0.48 0.06 15.14 V, I

    Perturb & Observe (D=0.01) 81.00 - 81.60 No 0.41 0.039 12.77 V, I

    Perturb & Observe (D=0.001) 81.23 - 84.37 No 0.40 0.04 12.03 V, I

    Incremental Conductance 86.32 - 87.25 3.35 1.78 0.001 7.35 V, I

    Neural Network 87.35 - 90.10 2.185 0.6439 0.038 3.88 V, I

    Adaptive Neuro Fuzzy Inference

    System (ANFIS)87.15 - 93.31 6.56 5.35 0 3.55 V, I

    ANFIS &

    CVT

    12V NA 7.28 0.18 0.1 9 V

    12V 87.15 - 93.31 6.56 5.35 0 3.55 V, I

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh

    39

  • Selective Harmonic Elimination in a Solar Powered Multilevel

    Inverter

    Dr. Shimi S.L

    Assistant Professor, EE

    NITTTR, Chandigarh

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 40

  • Weight, Cost, Power Loss and Harmonics

    Comparison for Different Inverter Topologies Ty

    pe

    of

    inve

    rte

    r

    No

    . of

    swit

    che

    s

    No

    . of

    cap

    acit

    ors

    No

    . of

    dio

    de

    s

    We

    igh

    t

    Co

    st

    Po

    we

    r Lo

    ss

    (W)

    Har

    mo

    nic

    s

    2-level12 0 0

    Light

    Weight

    Cheap Very low THD > 40%

    5-level diode

    Clamped24 12 36

    Medium Weight Costly Low 5th harmonics Eliminated

    THD >15%

    5-level capacitor

    clamped24 30 0

    Heavy Very Costly Low 5th harmonics Eliminated

    THD >15%

    5-level cascaded24 0 0

    Light

    Weight

    Cheap Low 5th harmonics Eliminated

    THD >15%

    9-level diode clamped48 24 42

    Medium Weight Costly medium 5th , 7th & 11th harmonics Eliminated

    THD >7%

    9-level capacitor

    clamped48 60 0

    Heavy Very Costly medium 5th , 7th & 11th harmonics Eliminated

    THD >7%

    9-level cascaded48 0 0

    Light

    Weight

    Cheap medium 5th , 7th & 11th harmonics Eliminated

    THD >7%

    11-level diode

    clamped 60 30 90

    Medium Weight Costly High 5th , 7th , 11th &13th harmonics

    Eliminated

    THD

  • Cascaded H-bridge Inverter

    Va

    (b)

    Va[(m-1)/2]

    (a)

    (a) Single Phase Cascaded H-bridge Inverter Topology with m Levels (b) Output Phase Voltage with Non Equal dc Source

    n

    Vdc1 S1S2

    S3 S4

    VaVdcm S1

    S2

    S3 S4

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 42

  • Block Diagram of the Harmonic Elimination System

    GRID

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 43

  • 12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 44

  • Selective Harmonic Elimination Technique

    (10)

    (11)

    (12)

    (13)

    (14)

    (16)

    (17)

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 45

    f 1 = cos 1 +cos 2 +cos 3 +cos 4 +cos 5 = mi

    f 2 = cos 51 +cos 52 +cos 53 +cos 54 +cos 55 = 0

    f 3 = cos 71 +cos 72 +cos 73 +cos 74 +cos 75 = 0

    f 4 = cos 111 +cos 112 +cos 113 +cos 114 +cos 115 = 0

    f 5 = cos 131 +cos 132 +cos 133 +cos 134 +cos 135 = 0

  • f 1 = [Vdc1cos 1 +Vdc2cos 2 +Vdc3cos 3 +Vdc4cos 4 +Vdc5cos 5 ]=mi

    f 2 = [Vdc1cos 51 +Vdc2cos 52 +Vdc3cos 53 +Vdc4cos 54 +

    Vdc5cos 55 ] = 0

    f 3 = [Vdc1cos 71 +Vdc2cos 72 +Vdc3cos 73 +Vdc4cos 74 +

    Vdc5cos 75 ] = 0

    f 4 = [Vdc1cos 111 +Vdc2cos 112 +Vdc3cos 113 +Vdc4cos 114 +

    Vdc5cos 115 ]=0

    f 5 = [Vdc1cos 131 +Vdc2cos 132 +Vdc3cos 133 +Vdc4cos 134 +

    Vdc5cos 135 ] = 0

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 46

    The cost function for SHE problem is given by,

    = 100 ( 2 + 3 + 4 + 5 )

    1

  • Newton Raphson - SHE The algorithm for the Newton-Raphson method is as follows:

    Step 1 Assume any random initial guess for switching angles (say 0 ) The switching angle matrix is :

    = [1 + 2

    + 3 + 4

    + 5 ]

    Step 2 Set modulation index to zero.

    Step 3 Evaluate the non-linear system matrix , the Jacobian matrix

    and

    the harmonics amplitude matrix represented below: The non-linear system matrix,

    = cos 1 + cos 2

    + cos 3 + cos 4

    + cos 5

    cos 51 + cos 52

    + cos 53 + cos 54

    + cos 55

    cos 71 + cos 72

    + cos 73 + cos 74

    + cos 75

    cos 91 + cos 92

    + cos 93 + cos 94

    + cos 95

    cos 111 + cos 112

    + cos 113 + cos 114

    + cos 115

    (18)

    (19)

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 47

  • the Jacobian matrix,

    =

    sin 1 sin 2

    sin 3 sin 4

    sin 5

    5sin 51 5sin 52

    5 sin 53 5sin 54

    5 sin 55

    7sin 71 7sin 72

    7 sin 73 7sin 74

    7 sin 75

    9sin 91 9sin 92

    9sin 93 9sin 94

    9sin 95

    11sin 111 11sin 112

    11 sin 113 11sin 114

    11 sin 115

    and the corresponding harmonic amplitude matrix,

    = [3

    40 0 0 0]

    The solutions must satisfy the following condition:

    0 1 2 3 4 5

    2

    Step 4 Compute correction during the iteration using relation,

    =

    (-

    )

    Step 5 Update the new switching angles as,

    + 1 = + ()

    Step 6 To obtain a feasible solution of switching angles by executing the following

    transformation: + 1 = cos1(abs(cos( + 1 )))

    (20)

    (21)

    (22)

    (23)

    (24)

    (25)12/4/2017

    Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh

    48

  • Step 7 Repeat steps (3) to (6) for sufficient number of iterations to attain error

    goal.

    Step 8 Increment modulation index by a fixed step.

    Step 9 Repeat steps (2) to (8) for whole range of modulation index .

    This algorithm can be implemented using MATLABTM programming. Aftersuccessfully executing and running the program the optimal firing angles1, 2, 3 , 4 and 5 can be obtained.

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 49

  • {

    initialize population;

    evaluate population;

    while Termination Criteria Not Satisfied

    {

    select parents for reproduction;

    perform crossover and mutation;

    evaluate population;

    }

    }

    Genetic Algorithm (GA)

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 50

  • The GA Cycle of Reproduction

    reproduction

    population evaluation

    modification

    discard

    deleted

    members

    parents

    children

    modified

    children

    evaluated children

  • Consider the problem of maximizing the

    function,

    f(x) = x2

    Where x is permitted to vary between 0 to 31.

    (i) 0(00000) and 31(11111) code x into finite

    length string

    (ii) Select initial population at random (size 4)

    (iii) Calculate fitness value for all strings

    (iv) probability of selection by:

    =()

    =1 ()

    ,

  • Table 1. Selection

    String

    No.

    Initial

    population

    X

    Value

    Fitness

    value

    Prob. %age

    Prob.

    Expected

    Count

    Actual

    Count

    1. 01100 12 144 0.1247 12.47% 0.4987 1

    2. 11001 25 625 0.5411 54.11% 2.1645 2

    3. 00101 5 25 0.0216 2.16% 0.0866 0

    4. 10011 19 361 0.3126 31.26% 1.2502 1

    Sum

    Avg.

    Max.

    1155

    288.75

    625

    1.0000

    0.2500

    0.5411

    100%

    25%

    54.11%

    4.0000

    1.0000

    2.1645

  • Table 2. Crossover

    String

    No.

    Mating

    Pool

    Crossover

    point

    Offspring

    after

    crossover

    X value Fitness

    value

    1. 01100 4 01101 13 169

    2. 11001 4 11000 24 576

    3. 11001 3 11011 27 729

    4. 10011 3 10001 17 289

    Sum

    Avg.

    Max.

    1763

    440.75

    729

  • Table 3. Mutation

    String

    No.

    Offspring

    After

    crossover

    Mutation

    chromosomes

    Offspring

    after

    mutation

    X value Fitness

    value

    1. 01101 10000 11101 29 841

    2. 11000 00000 11000 24 576

    3. 11011 00000 11011 27 729

    4. 10001 00100 10101 20 400

    Sum

    Avg.

    Max.

    2546

    636.5

    841

  • Minimize the following fitness

    function including 2 variables:

    = (

    )+ ( )

    Subject to the following linear

    constraints and bounds:

    12 + 1 2 + 1.5 010 12 00 1 1 and 0 2 13

  • The function has one output y and two input variables x1 and x2.

    We use the vector x to include both x1 and x2.

  • =

    2 8 40 22

    4

    2 + + + 3 + + 3 + 2

    2

    1

    24 + 12 = 360

    2 + = 30

    THD Equation

    Constraint

    Multilevel inverter with reduced ie. 15

    number of switches and 4 sources

  • 12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh

    60

    Step 1 Initialize the system parameters for MATLABTM / GA toolbox such as

    CrossoverFcn as @crossoverscattered, CrossoverFraction as 0.8, SelectionFcn as

    @selectionstochunif , 'CreationFcn' as @gacreationlinearfeasible and 'MutationFcn'

    as @mutationadaptfeasible. Assign the values of Generations as 100, Population

    Size as 40 and PopInitRange as [0;1].

    Step 2 Now evaluate the particles using the Fitness Function

    = 100 ( 2 + 3 + 4 + 5 )

    1for harmonic elimination.

    Here the switching angles 1, 2, 3, 4and 5 are chosen in such a way that the

    selective 5th, 7th, 11th and 13th harmonics can be eliminated.

    Step 3 Check the constraints 0 1 2 3 4 5 /2.

    Step 4 Select the parent chromosomes.

    Step 5 Create the new offspring using crossover and mutation.

    Step 6 Check if termination criteria ( the maximum number of iterations) is reached. If

    not goto Step 2.

    Step 7 If optimized switching angles are obtained, terminate the problem.

  • PSO

    vt

    gbestt

    pbestt

    xt

    xt+1

    Ruben E. Perez

    0 < C1 + C2 < 4

    C1+C2

    2< C0 < 1

    + 1 = 0 + 11 + 22

    + 1 = () + + 1

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 61

  • Step 1: Initialize the system parameters such as Position Vector Xi, Velocity Vector Vi, Personal Best Particle Vector Pi, Global Best Vector Pg and Particle Inertia Weight C0 . Assign the values of Generations as 100, Population Size as 40, Cognitive Parameter C1 as 0.5 and Social Parameter C2 as 1.25.

    Step 2: Check for the conditions 0

  • NR Algorithms

    GA Algorithms

    PSO Algorithms

    Optimized Switching Angles using NR, GA and PSO Algorithms for 11 Level Inverter

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 63

  • THD Versus Modulation Index of 7, 9 and 11 Level Cascaded H-bridge Inverters for NR, GA and PSO Algorithms

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 64

  • 11 Level Cascaded H-bridge Inverter Applied with NR-SHE Algorithm for 0.8 Value of MI

    Line Voltage Waveform

    Phase Voltage Waveform

    Current Waveform12/4/2017

    Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh

    65

  • Harmonic Spectrum at 0.8 MI for NR-SHE Algorithm for a 11 level Cascaded H-bridge Inverter

    Phase Voltage Spectrum

    Line Voltage Spectrum

    Current Spectrum 12/4/2017

    Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh

    66

  • Tech

    niq

    ue

    Use

    d

    11 Level Cascaded H-bridge Inverter

    Magnitude of Harmonic Contents (%) up to 19th Order

    Line Voltage

    (THD 5.55%)

    105.8 peak (74.83 rms)

    Phase Voltage

    (THD 7.93%)

    61.14 peak (43.23 rms)

    Current (THD 5%)

    0.6063 peak (0.4287 rms)

    Har

    mo

    nic

    Ord

    erEv

    en

    Har

    mo

    nic

    Har

    mo

    nic

    Ord

    erO

    dd

    Har

    mo

    nic

    Har

    mo

    nic

    Ord

    erEv

    en

    Har

    mo

    nic

    Har

    mo

    nic

    Ord

    erO

    dd

    Har

    mo

    nic

    Har

    mo

    nic

    Ord

    erEv

    en

    Har

    mo

    nic

    Har

    mo

    nic

    Ord

    erO

    dd

    Har

    mo

    nic

    NR

    0th 0.00 1th 100 0th 0.00 1th 100 0th 0.01 1th 100

    2nd 0.00 3rd 0.02 2nd 0.00 3rd 0.60 2nd 0.00 3rd 0.02

    4th 0.00 5th 0.09 4th 0.00 5th 0.04 4th 0.00 5th 0.07

    6th 0.00 7th 0.08 6th 0.00 7th 0.06 6th 0.00 7th 0.09

    8th 0.00 9th 0.06 8th 0.00 9th 3.26 8th 0.00 9th 0.06

    10th 0.00 11th 0.10 10th 0.00 11th 0.10 10th 0.00 11th 0.11

    12th 0.00 13th 0.02 12th 0.00 13th 0.02 12th 0.00 13th 0.03

    14th 0.00 15th 0.09 14th 0.00 15th 1.04 14th 0.00 15th 0.08

    16th 0.00 17th 2.65 16th 0.00 17th 2.58 16th 0.00 17th 2.62

    18th 0.00 19th 1.89 18th 0.00 19th 1.88 18th 0.00 19th 1.86

    Magnitude of Harmonic Contents (%) up to 19th Order for 11 Level Cascaded H-bridge Inverter Applied with NR-SHE Technique

    12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 67

  • 1. Intelligent Power Module (Power Circuit)

    2. Firing Pulse for H-bridge Inverter

    (a) Optocoupler (b) Gate Driver

    (c ) AND Gate (d) Schmitt Trigger

    (e) FPGA Based Spartan 3A DSP Board

    3. Protection Circuit

    4. Regulated Power Supply

    5. Signal Conditioning Circuit

    6. Constant and Isolated dc Supply for MLI

    7. 3 Induction Motor Load

    8. Power Quality Analyzer

    9. PC with MATLAB/SIMULINK and Xilinx Software Packages

    Block Diagram of the Hardware

    Implementation of 3 MLI

    12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 68

  • Complete Laboratory setup of 3 11

    Level Cascaded H-bridge Inverter

    3 Induction Motor

    Power Quality Analyzer

    CHMLISpartan-3A

    DSP FPGA CHMLI

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 69

  • Experimental Results for 11 Level

    Inverter (a) Output Line Voltage (b)

    Phase Voltage and (c) Current at

    M=0.8 (NR-SHE)

    (a)

    (b)

    (c) 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 70

  • (a)

    (b)

    Experimental Results for 11 Level

    Inverter (a) Line Voltage FFT

    Analysis (b) Phase Voltage FFT

    Analysis and (c) Current FFT

    Analysis at M=0.8 (NR-SHE)

    (b)

    (c)

    12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 71

  • Optimum Switching Angles and Minimum THD using NR-SHE, GA-SHE

    and PSO-SHE

    Technique Method Mi Alpha 1 Alpha 2 Alpha 3 Alpha 4 Alpha 5

    Line

    Voltage

    THD

    (%)

    Phase

    Voltage

    THD

    (%)

    Current

    THD

    (%)

    NRSimulation

    0.8 0.1147 0.3306 0.4744 0.7878 1.0864 5.55 7.93 5

    Hardware 0.8 0.1147 0.3306 0.4744 0.7878 1.0864 4.8 6.7 3.3

    PSO

    Simulation0.9 0.0709 0.1466 0.3481 0.4505 0.7265 4.79 16.02 4.00

    Hardware 0.9 0.0709 0.1466 0.3481 0.4505 0.7265 3.7 15 3

    GA

    Simulation0.91 0.0676 0.1637 0.3509 0.4871 0.7473 4.3 14.77 3.73

    Hardware 0.91 0.0676 0.1637 0.3509 0.4871 0.7473 3.4 13.4 2.7

    12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 72

  • Comparison of Harmonic (%) for 11 Level Inverter with NR, GA and PSO

    Technique Harmonics

    Line Voltage (%) Phase Voltage (%) Current (%)

    Practical Simulation Practical Simulation Practical Simulation

    NR

    THD 4.8 5.55 6.7 7.93 3.3 5.00

    3rd 1.7 0.02 1.8 0.60 0.8 0.02

    5th 0.6 0.09 0.5 0.04 0.3 0.07

    7th 0.9 0.08 0.6 0.06 0.2 0.09

    9th 0.2 0.06 3.0 3.26 0.2 0.06

    11th 0.4 0.10 0.3 0.10 0.1 0.11

    13th 0.3 0.02 0.3 0.02 0.1 0.03

    15th 0.1 0.09 1.4 1.04 0.1 0.08

    PSO

    THD 3.7 4.79 15 16.02 3.0 4.00

    3rd 0.7 0.03 14.1 14.81 0. 6 0.01

    5th 0.8 0.05 1.2 0.02 0.2 0.06

    7th 0.3 0.01 0.5 0.06 0.1 0.01

    9th 0.0 0.09 1.1 0.93 0.0 0.11

    11th 0.2 0.09 0.3 0.05 0.1 0.02

    13th 0.2 0.05 0.2 0.04 0.0 0.05

    15th 0.1 0.05 1.8 1. 68 0.1 0.05

    GA

    THD 3.4 4.30 13.4 14.77 2.7 3.73

    3rd 1.0 0.06 13.1 13.6 1.0 0.06

    5th 0.7 0.67 1.7 0.66 0.4 0.68

    7th 0.4 0.17 0.3 0.12 0.2 0.18

    9th 0.1 0.02 1.3 1.20 0.2 0.00

    11th 0.4 0.02 0.4 0.02 0.1 0.01

    13th 0.2 0.09 0.2 0.09 0.1 0.10

    15th 0.1 0.06 1.5 1.38 0.1 0.0712/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 73

  • Comparison of Harmonics Content (%) up to 15th Order of Line Voltage for 11 Level Cascaded H-bridge Inverter Applied with Different Techniques

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 74

  • Comparison of Magnitude of Line Voltage THD and Harmonics Content for CHMLI Applied with NR-SHE, PSO-SHE and GA-SHE Algorithms

    THD

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 75

  • Questions, Comments?

    [email protected]/shimireji

    9417588987

    Thanks

    12/4/2017Dr. Shimi S.L, Assistant Professor, NITTTR,

    Chandigarh 76

    mailto:[email protected]