Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic...

35
Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv¨ askyl¨ a, Department of Physics April 12, 2010 Mass measurements for fundamental subatomic physics Tommi Eronen

Transcript of Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic...

Page 1: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

Mass measurements for fundamental subatomicphysics

Tommi Eronen

University of Jyvaskyla, Department of Physics

April 12, 2010

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 2: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

Outline

• Method, JYFLTRAP

• Decay energies from atomic masses for. . .• superallowed β emitters (+ mirror decays for SM testing)• neutrino physics• 115In — ultralow β decay Q value

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 3: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

JYFLTRAP at IGISOL

IGISOL

• Served by JYFL K130 cyclotron; variety of beams available

• Stopping reaction products in gas

• Fast (≈ ms) and universal — all elements available

Production of ions

• Fusion• light-ion induced, 26Mg(p,n)26Al,26Alm

• fusion evaporation, 54Fe(32S,3p1n)80Y

• Fission — light-ion induced (140Te, 135Sn, 131In, 122Pd)

• Offline — Electric discharge source ( ie. 76Ge, 76Se)

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 4: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

Schematic view

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 5: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

Measurement principle

In these studies we measure cyclotron sideband frequency

ν+′ + ν−′ = νc ′ ∼=1

q

mB (1)

Decay energy Q from masses

Q = Mparent −Mdaughter =

(νc,daughter

νc,parent− 1

)mdaughter (2)

Q Precision on the order few ×10−9

• mass doublets

• invariance theorem [G. Gabrielse, Phys. Rev. Lett. 102, 172501 (2009)]

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 6: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

Prepare a clean sample – purification trap[G. Savard et al., Phys. Lett. A 158, 247 (1991)]

• Mass resolving power R = M/∆M ≈ 105

Coun

ts /

a.u. 26Alm 26Al(gs)

(Purification trap frequency - 4,135,000) / Hz

100

101

102

0 50 100 150

≈ 40 Hz

26Mg

750 800 850

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 7: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

Prepare a clean sample – purification trap??C

ount

s / a

.u.

54Com + 54Co(gs)

(Purification trap frequency - 1,992,000) / Hz

100

101

102

103

-200 -150 -100 150 200 250

54Fe

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 8: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

High-resolution cleaning

Reaching R = 106 or more

0

100

200

-15 -10 -5 0 5 10 15 20 25

# / A

rb. u

nits

Dipole frequency - 1991810 / Hz 54Fe

0

10

20

30

-15 -10 -5 0 5 10 15 20 25

# / A

rb. u

nits

Dipole frequency - 1991480 / Hz 54Co, 54Com

• Time needed: ≈ 200 ms

• Here 7 Hz separation

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 9: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

Frequency determination

• TOF-ICR• [G. Graff et al., Z. Phys. A 297, 35 (1980)]• [M. Konig et al., IJMS 95, 142 (1996)]

• Ramsey method [N.F. Ramsey, RMP 62, 541 (1990)] [S. George et al., PRL 98, 162501

(2007)]M

ean

time

of fl

ight

/ µs

νRF - 1,991,680.6 (Hz)

’co54_4_0_2d.dat’ u ($1-reso):2:3

150

180

210

240

-15 -10 -5 0 5 10 15

54Co+

T1/2 = 193.27 ms

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 10: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

Superallowed β decays

• nuclear 0+ β+

−−→ 0+ decays

• isospin T = 1

• pure Fermi transitions

• characterized with an ft value• f statistical rate function, ∝ Q5

EC

• t partial half-lifet1/2

b

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 11: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

QEC values of superallowed β emitters

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

Z

N

ISOLTRAP (CERN): 22Mg, 34Ar, 38Ca, 74RbLEBIT (MSU): 38Ca, 66AsCanadian PT (Argonne): 22Mg, 46V

JYFLTRAPto be publishedproposed

10C

14O

34Cl

38Km

22Mg

34Ar

38Ca

66As

70Br

74Rb

other trap measurements

26Si

30S

42Ti46V

50Mn

54Co

62Ga

26Alm

42Sc

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 12: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

QEC values of superallowed β emittersBefore Penning traps measurements with reactions• (p,n) threshold• (3He,t)• (p, γ) + (n, γ)• Best results ≈ 100 eV

Penning trap measurements• Still to do: 10C, 14O, 70Br• To verify old, still quite precise measurements

QEC (keV)

34Clabcde

5489 5490 5491 5492 5493 5494

QEC (keV)

38mKa

b

c

d

6043 6044 6045 6046

JYFLTRAP

JYFLTRAP

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 13: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

Comparison to old

-3.00

-2.00

-1.00

0.00

1.00

14O 54Co50Mn46V42Sc34Cl26 mAlIS

OLTR

AP

Canadian PT

Münich3He,t

RED: JYFLTRAP

Dif

fere

nce

from

ave

rage

(ke

V)

Parent nucleus

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 14: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

corrected ft → Ft

Conserved vector current (CVC) hypothesis:

Ft = ft(1 + δ′R

)(1 + δNS − δC ) =

K

2G 2V

(1 + ∆R

V

)• ft — experimental, precision 0.1%

Corrections — 1%: (10% precision needed)

• δC — isospin-symmetry-breaking

• δ′R — NS independent radiative

• δNS — NS dependent radiative

• ∆RV — transition-independent radiative

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 15: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

Ft values[J.C. Hardy and I.S. Towner, Phys. Rev. C 79, 055502 (2009)]

Blue: QEC from JYFLTRAP + 26Al ISOLTRAP, 46V Canadian PT

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 16: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

Vud of the CKM matrix

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

|d〉|s〉|b〉

=

|d ′〉|s ′〉|b′〉

• quark-mass eigenstates |x〉 to weak eigenstates |x ′〉

Vector coupling constant GV

GV = GFVud,

where GF = 1.16637(1)× 10−5 GeV−2.

Vud =K

2G 2F

(1 + ∆V

R

)Ft

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 17: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

Vud from different sources

Vud (0.97xx)

superallowed 2005superallowed 2008

neutronpion

mirror

0 10 20 30 40 50 60

• from superallowed — most precise

• newcomer: mirror decays [Naviliat-Cuncic and Severijns, PRL 102, 142302 (2009)]

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 18: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

CKM matrix unitarity

• top-row unitarity requirement: |Vud|2 + |Vus|2 + |Vub|2 = 1

• |Vud|2 from superallowed β decays

• |Vus|2 from Kaon decay

• |Vub|2 negligible

Vud2 ( 0.9XX )

Hardy1990

Hardy2005

Hardy2008

47 48 49 50 51

Vus2 ( 0.0XX )

48 49 50 51 52

SUM - 1 ( 10-3 )

-5 -4 -3 -2 -1 0 1

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 19: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

Superallowed β decay summary

• Penning trap QEC value measurements cover all but 10C, 14O

• ft precision limited in most cases by branching ratio

• Curiosity: in 62Ga ft limited by Q value

Deviation from Hardy2005 (keV)

14OButler (1961)

Barden (1962)Roush (1970)

Vonach (1977)White (1977)Tolich (2003)

-3.0 -2.0 -1.0 0.0 1.0 2.0

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 20: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

Q value measurements for neutrino studies

Neutrinos usually associated with normal β decay:

(A,Z )→ (A,Z + 1) + e− + νe (3)

(A,Z )→ (A,Z − 1) + e+ + νe (4)

But also from double beta decay:

• 2νββ

• extremely weak process, T1/2 > 1020 y

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 21: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

Q value measurements for neutrino studies

Double β decay is a 2nd order process

Some cases (β−β−):

• 48Ca → 48Ti

• 76Ge → 76Se

• 100Mo → 100Ru

• 124Sn → 124Te

• 136Xe → 136Ba

• 150Nd → 150Sm

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 22: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

Two varieties of double β decay

• Two-neutrino mode (2νββ)

• Zero-neutrino mode (0νββ)• Only if mν 6= 0• and ν = ν→ neutrino is a Majorana particle→ conservation of lepton number breaks

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 23: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

Two varieties of double β decay

Detection of 0νββ

• 2νββ makes huge background

• decay branch to 0νββ is very small

• One claim: Heidelberg-Moscow 76Ge →76Se

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 24: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

Motivation for accurate Q value

• Need the Q value to be wellbelow detector resolution

• For phase space calculation

• Example: 100Mo

[S. Rahaman et al., PLB 662, 111 (2008)]

3035(6) keV – AME20033034.40(17) keV – New

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 25: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

Recent Penning trap measurements

Multiple “hits”:

76Ge

• SMILETRAP (Douysset2001) 2039.006(50) keV

• JYFLTRAP (Rahaman2008) 2039.04(16) keV

• FSU (Mount2010) 2039.061(7) keV130Te

• FSU (Redshaw2009) 2527.518(13) keV

• Canadian PT (Scielzo2009) 2527.01(32) keV

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 26: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

Double electron capture

Not yet experimentally observed

• A(Z ,N) + 2e− → A(Z − 2,N) + 2ν

• A(Z ,N) + 2e− → A(Z − 2,N)

• Half lives very long

Accurate Q value is important

• for searching resonant decay

• if found, can reduce half-life by 10n, n > 6

• feasibility of huge-scale experiments

Decay rate1

τ1/2=

(∆M)2

(Q − E )2 + 14 Γ2

Γ (5)

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 27: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

74Se

From [B.J. Mount et al., Phys. Rev. C 81, 032501(R) (2010)];

• here gs-to-gs Q value form AME2003

• Atomic electon binding energies (KK, LL, KL)

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 28: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

74Se

New precise Q values published recently

• JYFLTRAP by V. S. Kolhinen et al., Phys. Lett. B 684, 17(2010)

• at FSU by B. J. Mount et al., Phys. Rev. C 81, 032501(R)(2010)

Deviation from JYFLTRAP (keV)

74Se

E*

Kolhinen2010Mount2010

AME2003

1205.0 1206.0 1207.0 1208.0

Half life estimate T1/2 ≈ 5×1043

〈mν〉2 years (mν in eV)

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 29: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

112Sn → 112Cd

at JYFLTRAP by S. Rahaman et al., Phys. Rev. Lett. 103,042501 (2009)

• Similar to the 74Se case

• Resonance ∼ inside AME2003 errorbars

• AME2003 Q = 1919(4) keV, now 1919.82(16) keV

Now confirmed to be off by -4.5(3) keV (KK capture)

Half life estimate T1/2 >5.9×1029

〈mν〉2 years (mν in eV)

→ Scale for decay detection experiment would be huge

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 30: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

Recent Penning trap measurements (2νECEC )

Multiple “hits”:

74Se

• JYFLTRAP (Kolhinen2010) 1209.169(49) keV

• FSU (Mount2010) 1209.240(7) keV

Others:

• 136Xe FSU (Redshaw2007) 2457.83(37) keV

• 120Te Canadian PT (Scielzo2009) 1714.8(13) keV

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 31: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

Summary 2ECEC

• This decay mode has not been observed yet (T1/2 > 1023 y)

• Resonant decays• reduces T1/2 by several orders of magnitude• high precision Q values needed• Feasibility for huge-scale experiments

• Lots of Q values still to be improved

• Overlapping trap experiments (example 74Se)

• Also need for spectroscopy — end state Jπ

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 32: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

Ultralow β− decay Q value of 115InUltra-high precision Q value• Mount et al., PRL 103, 122502 (2009): 155(24) eV

High precision Q value + branching ratio + NME• Wieslander et al., PRL 103, 122501 (2009)

• Q value 350(170) eV• Partial T1/2 = 4.1(6)× 1020 y

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 33: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

Ultralow β− decay Q value of 115In

Mount 2009 FSU Q-value

Theoretical

Wieslander 2009 JYFLTRAP+HADES

• 4th forbidden unique decay

• Estimate electron screening?

• Experiments set strict boundaries for theory

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 34: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

JYFLTRAP Collaboration

JYFLTRAP JYFL theory CollaboratorsT. Eronen J. Suhonen J.C. HardyV.S. Kolhinen M.T. MustonenJ. HakalaA. JokinenA. KankainenJ. Rissanen

J. Aysto+ IGISOL

past trappersS. RahamanC. WeberV.-V. ElomaaU. Hager

Mass measurements for fundamental subatomic physics Tommi Eronen

Page 35: Mass measurements for fundamental subatomic physics · Mass measurements for fundamental subatomic physics Tommi Eronen University of Jyv askyl a, Department of Physics April 12,

Thank you for your attention!See also posters:

• V.S. Kolhinen: Poster #17:

Accurate Q value for the 74Se double-electron-capture decay

• B. Mount: Poster #7:

High-Precision Atomic Mass Spectrometry with Applicationsto Fundamental Constants, Neutrino Physics, and PhysicalChemistry

Mass measurements for fundamental subatomic physics Tommi Eronen