Interface dynamics for incompressible flows in...

81
Interface dynamics for incompressible flows in 2D Diego Córdoba Interface dynamics for incompressible flows in 2D

Transcript of Interface dynamics for incompressible flows in...

Page 1: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Interface dynamics for incompressible flowsin 2D

Diego Córdoba

Interface dynamics for incompressible flows in 2D

Page 2: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Equation

ρt + u · ∇ρ = 0,∇ · u = 0,

ρ(x1, x2, t) =

ρ1, x ∈ Ω1(t)ρ2, x ∈ Ω2(t),

with ρ(x , t) an active scalar, (x , t) ∈ R2 × R+, ρ1 6= ρ2 areconstants, and Ω2(t) = R2 r Ω1(t).

1 SQG sharp front: ρ temperature,

u = (−R2ρ,R1ρ), Rj = iξj/|ξ|.

2 Muskat: ρ density, µ viscosity

µ

κu = −∇p − (0, gρ), Darcy’s law.

3 Water wave: ρ density,

ρ(ut + (u · ∇)u) = −∇p − (0, gρ), Euler.

Interface dynamics for incompressible flows in 2D

Page 3: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

The SQG equation

Equation

θt + u · ∇θ = 0,

u = ∇⊥ψ, θ = −(−∆)1/2ψ,

with θ(x , t) the temperature, (x , t) ∈ R2 × R+.

Constantin, Majda, and Tabak (1994)

Interface dynamics for incompressible flows in 2D

Page 4: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Sharp fronts

We consider weak solutions given by

θ(x1, x2, t) =

θ1, Ω(t)θ2, R2 r Ω(t).

Interface dynamics for incompressible flows in 2D

Page 5: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

The 2-D vortex patch problem

Contour equation

wt + u · ∇w = 0,

u = ∇⊥ψ, w = ∆ψ,

where the vorticity is given by

w(x1, x2, t) =

w0, Ω(t)0, R2 r Ω(t).

Chemin (1993)Bertozzi and Constantin (1993)

Interface dynamics for incompressible flows in 2D

Page 6: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

The 2-D patch problem for SQG

Rodrigo (2005), for a periodic C∞ front, i.e.

θ(x1, x2, t) =

θ1, f (x1, t) > x2θ2, f (x1, t) ≤ x2.

Interface dynamics for incompressible flows in 2D

Page 7: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

The α-patch model

Córdoba, Fontelos, Mancho and Rodrigo (2005)

Contour equation

θt + u · ∇θ = 0,

u = ∇⊥ψ, θ = −(−∆)1−α/2ψ, 0 < α ≤ 1,

where the active scalar θ(x , t) satisfies

θ(x1, x2, t) =

θ1, Ω(t)θ2, R2 r Ω(t).

Interface dynamics for incompressible flows in 2D

Page 8: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

The contour equation

∂Ω(t) = x(γ, t) = (x1(γ, t), x2(γ, t)) : γ ∈ [−π, π] = T,

where x(γ, t) is one to one. We have

∇⊥θ = (θ1 − θ2) ∂γx(γ, t) δ(x − x(γ, t)),

u = −(−∆)α/2−1∇⊥θ,

and it gives

u(x , t) = − Θα

∫T

∂γx(γ − η, t)|x − x(γ − η, t)|α

dη.

Interface dynamics for incompressible flows in 2D

Page 9: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

The normal velocity of the systems reads

u(x(γ, t), t) · ∂⊥γ x(γ, t) = − Θα

∫T

∂γx(γ − η, t) · ∂⊥γ x(γ, t)|x(γ, t)− x(γ − η, t)|α

dη.

The tangential velocity does not change the shape of theboundary, so that we fix the contour α-patch equations asfollows:

Contour equation

xt (γ, t) =Θα

∫T

∂γx(γ, t)− ∂γx(γ − η, t)|x(γ, t)− x(γ − η, t)|α

dη, 0 < α ≤ 1,

x(γ,0) = x0(γ).

Interface dynamics for incompressible flows in 2D

Page 10: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Numerical simulations

Close caption of the corner region at t=16.515 for α = 0.5 (a)and t= 4.464 for α = 1 (b). Observe that the singularity ispoint-like in both cases.

Interface dynamics for incompressible flows in 2D

Page 11: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Numerical simulations

Evidence of finite time singularity. (a) Evolution of the inverse ofthe maximum curvature with time. (b) Evolution of the minimumdistance between patches with time. (Insets) Here, werepresent the latest stage of the evolution together with itslinear interpolation.

Interface dynamics for incompressible flows in 2D

Page 12: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Numerical simulations

Rescaled profiles at 20 different times in the interval (3.46,4.46)for the case α = 1.

Interface dynamics for incompressible flows in 2D

Page 13: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Local well-posedness in Hs for 0 < α ≤ 1

We define

F (x)(γ, η, t) =|η|

|x(γ, t)− x(γ − η, t)|∀ γ, η ∈ [−π, π],

withF (x)(γ,0, t) = |∂γx(γ, t)|−1.

Gancedo (2008)

Theorem

Let x0(γ) ∈ Hk (T) for k ≥ 3 with F (x0)(γ, η) <∞. Then thereexists a time T > 0 so that there is a unique solution to theα-patch model for 0 < α ≤ 1 in C1([0,T ]; Hk (T)), withx(γ,0) = x0(γ).

Interface dynamics for incompressible flows in 2D

Page 14: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Existence for α = 1; the SQG sharp front

We modify the equation as follows:

Contour equation

xt (γ, t) =

∫T

∂γx(γ, t)− ∂γx(γ − η, t)|x(γ, t)− x(γ − η, t)|

dη + λ(γ, t)∂γx(γ, t), (1)

with

λ(γ, t) =γ+π

∫T

∂γx(γ, t)|∂γx(γ, t)|2

·∂γ(∫

T

∂γx(γ, t)−∂γx(γ−η, t)|x(γ, t)−x(γ−η, t)|

dη)dγ

−∫ γ

−π

∂γx(η, t)|∂γx(η, t)|2

·∂η(∫

T

∂γx(η, t)−∂γx(η−ξ, t)|x(η, t)−x(η−ξ, t)|

dξ)dη.

(2)

Interface dynamics for incompressible flows in 2D

Page 15: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

We get|∂γx(γ, t)|2 = A(t).

Hou, Lowengrub and Shelley (1997)

Extra cancellations:

∂γx(γ, t) · ∂2γx(γ, t) = 0,

and∂γx(γ, t) · ∂3

γx(γ, t) = −|∂2γx(γ, t)|2.

Interface dynamics for incompressible flows in 2D

Page 16: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Darcy’s law

Lawµ

κv = −∇p − (0,0, g ρ),

v velocity, p pressure, µ viscosity, κ permeability, ρ density, andg acceleration due to gravity.

Muskat (1937)Saffman and Taylor (1958)

Equation (Hele–Shaw)

12µb2 v = −∇p − (0, g ρ),

b distance between the plates.

Interface dynamics for incompressible flows in 2D

Page 17: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Smooth initial data with µ = const .

Equation

ρt + v · ∇ρ = 0v = −∇p − (0, ρ)div v = 0

Two-dimensional mass balanceequation in porous media (2DPM)

v(x) =1

2πPV

∫R2

(−2y1y2

|y |4,y2

1 − y22

|y |4) ρ(x − y)dy − 1

2(0, ρ(x)) ,

(∂t + v · ∇)∇⊥ρ = (∇v)∇⊥ρ.

Interface dynamics for incompressible flows in 2D

Page 18: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Local existence.Singularities with infinite energy, with a stream functiongiven by

ψ(x1, x2, t) = x2f (x1, t) + g(x1, t).

Blow-up ⇔∫ T

0‖∇ρ‖BMO(t) dt =∞.

Geometric constraints: η =∇⊥ρ|∇⊥ρ|

.

Numerical simulations: ‖∇ρ‖L∞(t) ∼ et .

Interface dynamics for incompressible flows in 2D

Page 19: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Cordoba-Gancedo (2007)

We consider the case where the fluid has different densities,that is ρ is represented by

ρ(x1, x2, t) =

ρ1, x2 > f (x1, t)ρ2, x2 < f (x1, t)

being f the interface. Then we have

Equation

dfdt

(x , t) =ρ2 − ρ1

2πPV

∫R

(∂x f (x , t)− ∂x f (x − α, t))α

α2 + (f (x , t)− f (x − α, t))2 dα

f (x ,0) = f0(x); x ∈ R.

ρt + v · ∇ρ = 0v = −∇p − (0, ρ)div v = 0

⇔ 2DPM contour equation

Interface dynamics for incompressible flows in 2D

Page 20: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

The linearized equation

If we neglect the terms of order greater than one

ft =ρ1 − ρ2

2(H∂x f ) =

ρ1 − ρ2

2Λf ,

f (x ,0) = f0(x).

Applying the Fourier transform we get

f (ξ) = f0(ξ)eρ1−ρ2

2 |ξ|t .

Problemρ1 < ρ2 stable case,ρ1 > ρ2 unstable case.

Interface dynamics for incompressible flows in 2D

Page 21: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Local well-posedness for the stable case (ρ2 > ρ1)

The following theorem follows

Theorem

Let f0(x) ∈ Hk for k ≥ 3 and ρ2 > ρ1. Then there exists a timeT > 0 so that there is a unique solution to 2DPM contourequation in C1([0,T ]; Hk ) with f (x ,0) = f0(x).

Interface dynamics for incompressible flows in 2D

Page 22: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Global existence?

L∞ decays.∫f (x , t) dx =

∫f0(x) dx .

Global existence for small initial data:∑|ξ||f (ξ)| << 1.

Interface dynamics for incompressible flows in 2D

Page 23: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Ill-posedness for the unstable case (ρ1 > ρ2)

We define‖g‖b =

∑|g(ξ)|eb|ξ| b ≥ 0.

If ‖g‖b <∞, g is analytic in |=z| < b.

We get global solutions for the 2-D stable case f (x , t), x ∈ R,with

‖∂x f‖a(t) ≤ C(ε) exp((2σa− |ρ2 − ρ1|t)/4),

‖Λ1+γ f0‖0 < C,

and‖Λ1+γ+ζ f0‖0 =∞,

for γ, ζ > 0.

Interface dynamics for incompressible flows in 2D

Page 24: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

We takefλ(x1, t) = λ−1f (λx1,−λt + λ1/2),

fλλ>0 a family of solutions to the unstable case. Then

‖fλ‖Hs (0) = |λ|s−32 ‖f‖Hs (λ

12 ) ≤ C|λ|s−

32 ‖f‖1(λ

12 ) ≤ C|λ|s−

32 e−λ

1/2,

and

‖fλ‖Hs (λ−1/2) = |λ|s−32 ‖f‖Hs (0) ≥ |λ|s−

32 C‖Λ1+γ+ζ f0‖0 =∞,

for s > 3/2 and γ, ζ small enough.

TheoremLet s > 3/2, then for any ε > 0 there exists a solution f of2DPM contour equation with ρ1 > ρ2 and 0 < δ < ε such that‖f‖Hs (0) ≤ ε and ‖f‖Hs (δ) =∞.

Interface dynamics for incompressible flows in 2D

Page 25: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

The Muskat problem

Equation

ρt + u · ∇ρ = 0,∇ · u = 0,µ

κu = −∇p − (0, gρ),

(µ, ρ)(x , t) =

(µ1, ρ1), x ∈ Ω1(t)(µ2, ρ2), x ∈ Ω2(t),

Siegel, Caflish & Howison (2004)Ambrose (2004)

Interface dynamics for incompressible flows in 2D

Page 26: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

We shall consider z(α + 2πk , t) = z(α, t) + (2πk ,0).Darcy’s law yields

ω(x , t) = $(α, t)δ(x − z(α, t)),

Biot-Savart

u(x , t) =1

2πPV

∫(x − z(β, t)⊥

|x − z(β, t)|2$(β, t)dβ,

and taking limits

uj(z(α, t), t) = BR(z, $)(α, t)∓ $(α, t)2|∂αz(α, t)|2

∂αz(α, t) j = 1,2,

where

BR(z, $)(α, t) =1

2πPV

∫(z(α, t)− z(β, t)⊥

|z(α, t)− z(β, t)|2$(β, t)dβ.

Interface dynamics for incompressible flows in 2D

Page 27: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Closing the equation: In search of a relationship between z and$ Beginning with Darcy’s law:

µj

κuj = −∇pj − (0, g ρj)

First we substitute uj by its formula involving Birkhoff-Rott.Next, for each j, we write its scalar product with ∂αz(α), andfinally we subtract both expressions to get

µ2 + µ1

2κ$(α, t) +

µ2 − µ1

κBR(z, $)(α, t) · ∂αz(α, t)

= −(∇p2(z(α, t), t)−∇p1(z1(α, t), t))·∂αz(α, t)−g(ρ2−ρ1) ∂αz2(α, t)

= −∂α(p2(z(α, t), t)− p1(z(α, t), t))− g(ρ2 − ρ1) ∂αz2(α, t)

Since

∂α(p2(z(α, t), t)− p1(z(α, t), t)) = 0

Interface dynamics for incompressible flows in 2D

Page 28: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Darcy’s law implies

∆p(x , t) = −div (µ(x , t)κ

u(x , t))− g ∂x2ρ(x , t),

therefore∆p(x , t) = Π(α, t)δ(x − z(α, t)),

where Π(α, t) is given by

Π(α, t) = (µ2 − µ1

κu(z(α, t), t) ·∂⊥α z(α, t) + g(ρ2−ρ1)∂αz1(α, t)).

It follows that:

p(x , t) = − 12π

∫T

ln(

cosh(x2−z2(α, t))−cos(x1−z1(α, t)))Π(α, t)dα,

for x 6= z(α, t), implying the important identity

p2(z(α, t), t) = p1(z(α, t), t), (3)

which is just a mathematical consequence of Darcy’s law,making unnecessary to impose it as a physical assumption.

Interface dynamics for incompressible flows in 2D

Page 29: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Then

$(α, t) + AµT ($)(α, t) = −2gκC(ρ, µ)∂αz2(α, t)

where

T ($) = 2BR(z, $) · ∂αz, Aµ =µ2 − µ1

µ2 + µ1 , C(ρ, µ) =ρ2 − ρ1

µ2 + µ1 .

Baker, Meiron & Orszag (1982) |λ| < 1 for (I + AµT ).

Contour equation

zt (α, t) = BR(z, $)(α, t) + c(α, t)∂αz(α, t),$(α, t) = (I + AµT )−1(−2gκC(ρ, µ)∂αz2)(α, t).

Interface dynamics for incompressible flows in 2D

Page 30: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Cordoba, Cordoba & Gancedo (2008).

Theorem

Let z0(γ) ∈ Hk (T) for k ≥ 3, F (z0)(α, β) <∞ and

σ0(α) = −(∇p2(z0(α),0)−∇p1(z0(α),0)) · ∂⊥α z0(α) > 0.

Then there exists a time T > 0 so that there is a solution to thecontour equation in C1([0,T ]; Hk (T)) with z(α,0) = z0(α).

where

σ(α) = −(∇p2(z(α))−∇p1(z(α))) · ∂⊥α z(α)

= µ2−µ1

κ BR(z, $)(α) · ∂⊥α z(α) + g(ρ2 − ρ1)∂αz1(α).

Interface dynamics for incompressible flows in 2D

Page 31: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Energy estimates:

|||z|||2 = ‖z‖2H3 + ‖F (z)‖2L∞ , ‖(I + AµT )−1‖H

12→H

12≤ eC|||z|||2 ,

We can estimate as follows:

‖$‖H2 ≤ eC|||z|||2 .

Interface dynamics for incompressible flows in 2D

Page 32: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

By energy estimates we obtain

ddt|||z|||2(t) ≤ −K

∫Tσ(α, t)∂3

αz(α, t) · Λ(∂3αz)(α, t)dα + eC(|||z|||2).

Pointwise inequality:

f Λ(f ) ≥ 12

Λ(f 2).

−∫

Tσ∂3

αz·Λ(∂3αz)dα ≤ −1

2

∫TσΛ(|∂3

αz|2)dα = −12

∫T

Λ(σ)|∂3αz|2dα

as long asσ(α, t) > 0.

Interface dynamics for incompressible flows in 2D

Page 33: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Sketch of the proof

Estimates on the arc-chord condition

Lemmad

dt‖F(z)‖2

L∞(t) ≤ expC(‖F(z)‖2L∞(t) + ‖z‖2

H3(t))

17

Page 34: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Sketch of the proof

Estimate for the evolution of the minimum of the difference of the gradientsof the pressure in the normal direction. This quantity is given by

σ(α) =µ2 − µ1

kBR(z,$)(α) · ∂⊥α z(α) + g(ρ2 − ρ1)∂αz1(α).

Lemma Let z(α) be a solution of the system with z(α, t) ∈ C1([0, T ];H3),and

m(t) = mınα∈T

σ(α, t).

Then

m(t) ≥ m(0)−∫ t

0

expC(‖F(z)‖2L∞(s) + ‖z‖2

H3(s))ds.

18

Page 35: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Sketch of the proof

Regularizing the system

Let zε(α, t) be a solution of the following system:

zε,δt (α, t) = BRδ(zε,δ, $ε,δ)(α, t) + cε,δ(α, t)∂αzε,δ(α, t),

zε,δ(α, 0) = z0(α),

where

BRδ(z,$)(α, t) =(− 1

∫T$(β, t)

tanh(z2(α,t)−z2(β,t)2 )(1 + tan2(z1(α,t)−z1(β,t)2 ))

tan2(z1(α,t)−z1(β,t)2 ) + tanh2(z2(α,t)−z2(β,t)2 ) + δdβ,

1

∫T$(β, t)

tan(z1(α,t)−z1(β,t)2 )(1− tanh2(z2(α,t)−z2(β,t)2 ))

tan2(z1(α,t)−z1(β,t)2 ) + tanh2(z2(α,t)−z2(β,t)2 ) + δdβ

),

19

Page 36: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

$ε,δ(α, t) = −µ2 − µ1

µ2 + µ1φε ∗ φε ∗ (2BR(zε,δ, $ε,δ) · ∂αzε,δ)(α)

−2kgρ2 − ρ1

µ2 + µ1φε ∗ φε ∗ (∂αz

ε,δ2 )(α),

cε,δ(α, t) =α + π

∫T

∂αzε,δ(α, t)

|∂αzε,δ(α, t)|2· ∂αBRδ(zε,δ, $ε,δ)(α, t)dα

−∫ α

−π

∂αzε,δ(β, t)

|∂αzε,δ(α, t)|2· ∂βBRδ(zε,δ, $ε,δ)(β, t)dβ,

φ ∈ C∞c (R), φ(α) ≥ 0, φ(−α) = φ(α),

∫Rφ(α)dα = 1, φε(α) = φ(α/ε)/ε,

for ε > 0 and δ > 0.

20

Page 37: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Sketch of the proof

The next step is to integrate the system during a time T with T independentof ε. If z0(α) ∈ Hn, we have the solution zε ∈ C1([0, T ε];Hn) and that

mε(t) ≥ m(0)−∫ t

0

expC(‖F(zε)‖2L∞(s) + ‖zε‖2

H3(s))ds,

formε(t) = mın

α∈Tσε(α, t),

and t ≤ T ε.If initially σ(α, 0) > 0, there is a time depending on ε, denoted by T ε again,

in which σε(α, t) > 0.

21

Page 38: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Sketch of the proof

For t ≤ T ε

d

dt‖zε‖2

Hn(t) ≤ I + expC(‖F(zε)‖2L∞(t) + ‖zε‖2

Hn(t)),

for

I = − k

2π(µ1+µ2)

∫T

σε(α, t)

|∂αzε(α, t)|2φε ∗ (∂nαz

ε)(α, t) · Λ(φε ∗ (∂nαzε))(α, t)dα

≤ − k

2π(µ1+µ2)Aε(t)

∫Tσε(α, t)

1

2Λ(|φε ∗ (∂nαz

ε)|2)(α, t)dα.

= − k

2π(µ1+µ2)Aε(t)

∫T

Λ(σε)(α, t)1

2|φε ∗ (∂nαz

ε)|2(α, t)dα,

we obtain

I ≤ C‖F(zε)‖L∞‖Λ(σε)‖L∞‖∂nαzε‖2L2 ≤ expC(‖F(zε)‖2

L∞ + ‖zε‖2H3).

22

Page 39: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Sketch of the proof

Finally, for t ≤ T ε we have

d

dt‖zε‖2

Hn(t) ≤ C expC(‖F(zε)‖2L∞(t) + ‖zε‖2

Hn(t)).

and

d

dt‖F(zε)‖2

L∞(t) ≤ C expC(‖F(zε)‖2L∞(t) + ‖zε‖2

H3(t)),

Therefore

d

dt(‖zε‖2

Hn(t) + ‖F(zε)‖2L∞(t)) ≤ C expC(‖zε‖2

Hn(t) + ‖F(zε)‖2L∞(t))

for t ≤ T ε.Integrating together with

mε(t) ≥ m(0)−∫ t

0

expC(‖F(zε)‖2L∞(s) + ‖zε‖2

H3(s))ds,

q.e.d.

23

Page 40: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

The fluid interface problem

Equation

ρt + u · ∇ρ = 0,∇ · u = 0,ρ(ut + (u · ∇)u) = −∇p − (0, gρ),

ρ(x , t) =

ρ1, x ∈ Ω1(t)ρ2, x ∈ Ω2(t),

Interface dynamics for incompressible flows in 2D

Page 41: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Previous works

Rayleigh (1879)Taylor (1950)Craig (1985)Ebin (1987)Beale, Hou & Lowengrub (1993)Wu (1997)Christodoulou & Lindblad (2000)Lindblad (2005)Ambrose & Masmoudi (2005)Coutand & Shkoller (2007)Shatah & Zeng (2008)Zhang & Zhang (2008)

Interface dynamics for incompressible flows in 2D

Page 42: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Contour equation

We consider ∂Ωj(t) = z(α, t) = (z1(α, t), z2(α, t)) : α ∈ R:z(α + 2πk , t) = z(α, t) + (2πk ,0),

z(α + 2πk , t) = z(α, t).

We study the irrotational case

ω(x , t) = $(α, t)δ(x − z(α, t)).

Biot-Savart yields

u(x , t) =1

2πPV

∫(x − z(β, t))⊥

|x − z(β, t)|2$(β, t)dβ,

for x 6= z(α, t).

Interface dynamics for incompressible flows in 2D

Page 43: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Contour equation

We consider ∂Ωj(t) = z(α, t) = (z1(α, t), z2(α, t)) : α ∈ R:z(α + 2πk , t) = z(α, t) + (2πk ,0),

z(α + 2πk , t) = z(α, t).

We study the irrotational case

ω(x , t) = $(α, t)δ(x − z(α, t)).

Biot-Savart yields

u(x , t) =1

2πPV

∫(x − z(β, t))⊥

|x − z(β, t)|2$(β, t)dβ,

for x 6= z(α, t).

Interface dynamics for incompressible flows in 2D

Page 44: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Contour equation

We consider ∂Ωj(t) = z(α, t) = (z1(α, t), z2(α, t)) : α ∈ R:z(α + 2πk , t) = z(α, t) + (2πk ,0),

z(α + 2πk , t) = z(α, t).

We study the irrotational case

ω(x , t) = $(α, t)δ(x − z(α, t)).

Biot-Savart yields

u(x , t) =1

2πPV

∫(x − z(β, t))⊥

|x − z(β, t)|2$(β, t)dβ,

for x 6= z(α, t).

Interface dynamics for incompressible flows in 2D

Page 45: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Then ( Bernoulli’s law)

Contour equation

$t = −2Aρ∂tBR(z, $) · ∂αz − Aρ∂α(|$|2

4|∂αz|2) + ∂α(c$)

+ 2Aρc ∂αBR(z, $) · ∂αz(α, t)− 2Aρg∂αz2,

(4)

for Aρ = (ρ2 − ρ1)/(ρ2 + ρ1) and c parametrization freedom.

Contour equation

zt = BR(z, $) + c ∂αz. (5)

Equations (4) and (5) give weak solutions of Euler.

We can choose c to get |∂αz(α, t)|2 = A(t).

Interface dynamics for incompressible flows in 2D

Page 46: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Then ( Bernoulli’s law)

Contour equation

$t = −2Aρ∂tBR(z, $) · ∂αz − Aρ∂α(|$|2

4|∂αz|2) + ∂α(c$)

+ 2Aρc ∂αBR(z, $) · ∂αz(α, t)− 2Aρg∂αz2,

(4)

for Aρ = (ρ2 − ρ1)/(ρ2 + ρ1) and c parametrization freedom.

Contour equation

zt = BR(z, $) + c ∂αz. (5)

Equations (4) and (5) give weak solutions of Euler.

We can choose c to get |∂αz(α, t)|2 = A(t).

Interface dynamics for incompressible flows in 2D

Page 47: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Then ( Bernoulli’s law)

Contour equation

$t = −2Aρ∂tBR(z, $) · ∂αz − Aρ∂α(|$|2

4|∂αz|2) + ∂α(c$)

+ 2Aρc ∂αBR(z, $) · ∂αz(α, t)− 2Aρg∂αz2,

(4)

for Aρ = (ρ2 − ρ1)/(ρ2 + ρ1) and c parametrization freedom.

Contour equation

zt = BR(z, $) + c ∂αz. (5)

Equations (4) and (5) give weak solutions of Euler.

We can choose c to get |∂αz(α, t)|2 = A(t).

Interface dynamics for incompressible flows in 2D

Page 48: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Then ( Bernoulli’s law)

Contour equation

$t = −2Aρ∂tBR(z, $) · ∂αz − Aρ∂α(|$|2

4|∂αz|2) + ∂α(c$)

+ 2Aρc ∂αBR(z, $) · ∂αz(α, t)− 2Aρg∂αz2,

(4)

for Aρ = (ρ2 − ρ1)/(ρ2 + ρ1) and c parametrization freedom.

Contour equation

zt = BR(z, $) + c ∂αz. (5)

Equations (4) and (5) give weak solutions of Euler.

We can choose c to get |∂αz(α, t)|2 = A(t).

Interface dynamics for incompressible flows in 2D

Page 49: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Conditions

Arc-chord:

F(z)(α, β, t) =|β|

|z(α, t)− z(α− β, t)|∀α, β ∈ (−π, π),

andF(z)(α,0, t) =

1|∂αz(α, t)|

.

Rayleigh-Taylor:

σ(α, t) = −(∇p2(z(α, t), t)−∇p1(z(α, t), t)) ·∂⊥α z(α, t) > 0.

Interface dynamics for incompressible flows in 2D

Page 50: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Conditions

Arc-chord:

F(z)(α, β, t) =|β|

|z(α, t)− z(α− β, t)|∀α, β ∈ (−π, π),

andF(z)(α,0, t) =

1|∂αz(α, t)|

.

Rayleigh-Taylor:

σ(α, t) = −(∇p2(z(α, t), t)−∇p1(z(α, t), t)) ·∂⊥α z(α, t) > 0.

Interface dynamics for incompressible flows in 2D

Page 51: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Local-existence

Cordoba, Cordoba & Gancedo (2008)

Theorem

Let z0(α) ∈ Hk and $0(α) ∈ Hk−1 for k ≥ 4,

F(z0)(α, β) <∞, and σ(α,0) > 0.

Then there exists a time T > 0 so that we have a solution to (4)and (5) in the case ρ1 = 0, where z(α, t) ∈ C1([0,T]; Hk ) and$(α, t) ∈ C1([0,T]; Hk−1) with z(α,0) = z0(α) and$(α,0) = $0(α).

Interface dynamics for incompressible flows in 2D

Page 52: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

The linearized equation

ftt (α, t) = −σΛ(f )(α, t),

σ < 0⇒ e|σξ|

12 t , e−|σξ|

12 t

σ > 0⇒ cos(|σξ|12 t), sin(|σξ|

12 t)

It can be written as follows:

ft (α, t) = H(g)(α, t),gt (α, t) = −σ∂αf (α, t),

and therefore

EL(t) =

∫(σ|∂αf |2 + |Λ

12 g|2)dα.

Interface dynamics for incompressible flows in 2D

Page 53: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

The linearized equation

ftt (α, t) = −σΛ(f )(α, t),

σ < 0⇒ e|σξ|

12 t , e−|σξ|

12 t

σ > 0⇒ cos(|σξ|12 t), sin(|σξ|

12 t)

It can be written as follows:

ft (α, t) = H(g)(α, t),gt (α, t) = −σ∂αf (α, t),

and therefore

EL(t) =

∫(σ|∂αf |2 + |Λ

12 g|2)dα.

Interface dynamics for incompressible flows in 2D

Page 54: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

The linearized equation

ftt (α, t) = −σΛ(f )(α, t),

σ < 0⇒ e|σξ|

12 t , e−|σξ|

12 t

σ > 0⇒ cos(|σξ|12 t), sin(|σξ|

12 t)

It can be written as follows:

ft (α, t) = H(g)(α, t),gt (α, t) = −σ∂αf (α, t),

and therefore

EL(t) =

∫(σ|∂αf |2 + |Λ

12 g|2)dα.

Interface dynamics for incompressible flows in 2D

Page 55: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Energy of the system

Case z ∈ H4:

E(t) = ‖z‖2H3(t) +

∫ π

−π

σ(α, t)ρ2|∂αz(α, t)|2

|∂4αz(α, t)|2dα

+ ‖F(z)‖2L∞(t) + ‖$‖2H2(t) + ‖ϕ‖2H4− 1

2(t),

for σ(α, t) > 0 and ϕ(α, t) given by

ϕ(α, t) =$(α, t)

2|∂αz(α, t)|− c(α, t)|∂αz(α, t)|.

Beale, Hou & Lowengrub (1993)Ambrose & Masmoudi (2005)

Interface dynamics for incompressible flows in 2D

Page 56: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Equation in terms of ϕ(α, t)

Case Aρ = 0 (vortex sheet problem):

$t (α, t) = ∂α(c$)(α, t).

Kelvin-Helmholtz instability arises.

The linear formulation is given by

ftt (α, t) = −∂2αf (α, t) ⇒ e|ξ|t , e−|ξ|t

Case Aρ = 1 (water wave):

ϕt = −∂α(ϕ2)

2|∂αz|− B(t)ϕ− ∂tBR(z, $) · ∂αz

|∂αz|

− g∂αz2

|∂αz|− ∂t (c|∂αz|).

Interface dynamics for incompressible flows in 2D

Page 57: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Equation in terms of ϕ(α, t)

Case Aρ = 0 (vortex sheet problem):

$t (α, t) = ∂α(c$)(α, t).

Kelvin-Helmholtz instability arises.

The linear formulation is given by

ftt (α, t) = −∂2αf (α, t) ⇒ e|ξ|t , e−|ξ|t

Case Aρ = 1 (water wave):

ϕt = −∂α(ϕ2)

2|∂αz|− B(t)ϕ− ∂tBR(z, $) · ∂αz

|∂αz|

− g∂αz2

|∂αz|− ∂t (c|∂αz|).

Interface dynamics for incompressible flows in 2D

Page 58: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Equation in terms of ϕ(α, t)

Case Aρ = 0 (vortex sheet problem):

$t (α, t) = ∂α(c$)(α, t).

Kelvin-Helmholtz instability arises.

The linear formulation is given by

ftt (α, t) = −∂2αf (α, t) ⇒ e|ξ|t , e−|ξ|t

Case Aρ = 1 (water wave):

ϕt = −∂α(ϕ2)

2|∂αz|− B(t)ϕ− ∂tBR(z, $) · ∂αz

|∂αz|

− g∂αz2

|∂αz|− ∂t (c|∂αz|).

Interface dynamics for incompressible flows in 2D

Page 59: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Estimates on the inverse operator (I + T )−1

Let T be defined by T (u)(α, t) = 2BR(z,u)(α) · ∂αz(α),

then T : L2 → H1 and ‖T‖L2→H1 ≤ ‖F(z)‖4L∞‖z‖4C2,δ .

$t (α, t) = (I + T )−1(R(z, $))(α, t).

Baker, Meiron & Orszag (1982).Córdoba, Córdoba & Gancedo (2008):

‖(I + T )−1‖L2→L2 ≤ eC(‖z‖2H3 +‖F (z)‖2

L∞ ),

(conformal mappings, Hopf lemma andDahlberg-Harnack).

Interface dynamics for incompressible flows in 2D

Page 60: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Estimates on the inverse operator (I + T )−1

Let T be defined by T (u)(α, t) = 2BR(z,u)(α) · ∂αz(α),

then T : L2 → H1 and ‖T‖L2→H1 ≤ ‖F(z)‖4L∞‖z‖4C2,δ .

$t (α, t) = (I + T )−1(R(z, $))(α, t).

Baker, Meiron & Orszag (1982).Córdoba, Córdoba & Gancedo (2008):

‖(I + T )−1‖L2→L2 ≤ eC(‖z‖2H3 +‖F (z)‖2

L∞ ),

(conformal mappings, Hopf lemma andDahlberg-Harnack).

Interface dynamics for incompressible flows in 2D

Page 61: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Estimates on the inverse operator (I + T )−1

Let T be defined by T (u)(α, t) = 2BR(z,u)(α) · ∂αz(α),

then T : L2 → H1 and ‖T‖L2→H1 ≤ ‖F(z)‖4L∞‖z‖4C2,δ .

$t (α, t) = (I + T )−1(R(z, $))(α, t).

Baker, Meiron & Orszag (1982).Córdoba, Córdoba & Gancedo (2008):

‖(I + T )−1‖L2→L2 ≤ eC(‖z‖2H3 +‖F (z)‖2

L∞ ),

(conformal mappings, Hopf lemma andDahlberg-Harnack).

Interface dynamics for incompressible flows in 2D

Page 62: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Estimates on the inverse operator (I + T )−1

Let T be defined by T (u)(α, t) = 2BR(z,u)(α) · ∂αz(α),

then T : L2 → H1 and ‖T‖L2→H1 ≤ ‖F(z)‖4L∞‖z‖4C2,δ .

$t (α, t) = (I + T )−1(R(z, $))(α, t).

Baker, Meiron & Orszag (1982).Córdoba, Córdoba & Gancedo (2008):

‖(I + T )−1‖L2→L2 ≤ eC(‖z‖2H3 +‖F (z)‖2

L∞ ),

(conformal mappings, Hopf lemma andDahlberg-Harnack).

Interface dynamics for incompressible flows in 2D

Page 63: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Estimates on the inverse operator (I + T )−1

Let T be defined by T (u)(α, t) = 2BR(z,u)(α) · ∂αz(α),

then T : L2 → H1 and ‖T‖L2→H1 ≤ ‖F(z)‖4L∞‖z‖4C2,δ .

$t (α, t) = (I + T )−1(R(z, $))(α, t).

Baker, Meiron & Orszag (1982).Córdoba, Córdoba & Gancedo (2008):

‖(I + T )−1‖L2→L2 ≤ eC(‖z‖2H3 +‖F (z)‖2

L∞ ),

(conformal mappings, Hopf lemma andDahlberg-Harnack).

Interface dynamics for incompressible flows in 2D

Page 64: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

A priori energy estimates

E(t) = ‖z‖2H3(t) +

∫ π

−π

σ(α, t)ρ2|∂αz(α, t)|2

|∂4αz(α, t)|2dα

+ ‖F(z)‖2L∞(t) + ‖$‖2H2(t) + ‖ϕ‖2H4− 1

2(t).

LemmaLet z(α, t) and $(α, t) be a solution of (4) and (5). Then, thefollowing a priori estimate holds:

ddt

E(t) ≤ Cmq(t)

exp(CE(t)),

for m(t) = minα∈[−π,π]

σ(α, t) = σ(αt , t) > 0 and C and q some

universal constants.

Interface dynamics for incompressible flows in 2D

Page 65: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

The Rayleigh-Taylor condition

The true energy: ERT (t) = E(t) +1

mε(t).

One gets σε(α, t) ∈ C1([0,T ε]× [−π, π]),

and therefore mε(t) is Lipschitz.

ddt

(mε)(t) = σεt (αt , t),ddt

(1

mε)(t) =

−σεt (αt , t)(mε(t))2 ,

for almost every t .It yields

ddt

ERT (t) ≤ C exp(CERT (t)),

almost everywhere and therefore

ERT (t) ≤ − 1C

ln(exp(−CERT (0))− C2t).

Interface dynamics for incompressible flows in 2D

Page 66: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

The Rayleigh-Taylor condition

The true energy: ERT (t) = E(t) +1

mε(t).

One gets σε(α, t) ∈ C1([0,T ε]× [−π, π]),

and therefore mε(t) is Lipschitz.

ddt

(mε)(t) = σεt (αt , t),ddt

(1

mε)(t) =

−σεt (αt , t)(mε(t))2 ,

for almost every t .It yields

ddt

ERT (t) ≤ C exp(CERT (t)),

almost everywhere and therefore

ERT (t) ≤ − 1C

ln(exp(−CERT (0))− C2t).

Interface dynamics for incompressible flows in 2D

Page 67: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

The Rayleigh-Taylor condition

The true energy: ERT (t) = E(t) +1

mε(t).

One gets σε(α, t) ∈ C1([0,T ε]× [−π, π]),

and therefore mε(t) is Lipschitz.

ddt

(mε)(t) = σεt (αt , t),ddt

(1

mε)(t) =

−σεt (αt , t)(mε(t))2 ,

for almost every t .It yields

ddt

ERT (t) ≤ C exp(CERT (t)),

almost everywhere and therefore

ERT (t) ≤ − 1C

ln(exp(−CERT (0))− C2t).

Interface dynamics for incompressible flows in 2D

Page 68: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

The Rayleigh-Taylor condition

The true energy: ERT (t) = E(t) +1

mε(t).

One gets σε(α, t) ∈ C1([0,T ε]× [−π, π]),

and therefore mε(t) is Lipschitz.

ddt

(mε)(t) = σεt (αt , t),ddt

(1

mε)(t) =

−σεt (αt , t)(mε(t))2 ,

for almost every t .It yields

ddt

ERT (t) ≤ C exp(CERT (t)),

almost everywhere and therefore

ERT (t) ≤ − 1C

ln(exp(−CERT (0))− C2t).

Interface dynamics for incompressible flows in 2D

Page 69: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Vortex Sheets

Equation

ut + (u · ∇)u = −∇p,

∇ · u = 0,

ω(x , t) = $(α, t)δ(x − z(α, t)).

Contour equation

zt = BR(z, $) + c∂αz,$t = ∂α(c$)

(6)

Interface dynamics for incompressible flows in 2D

Page 70: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Vortex Sheets

Equation

ut + (u · ∇)u = −∇p,

∇ · u = 0,

ω(x , t) = $(α, t)δ(x − z(α, t)).

Contour equation

zt = BR(z, $) + c∂αz,$t = ∂α(c$)

(6)

Interface dynamics for incompressible flows in 2D

Page 71: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

The Parametrization

Linearizing$(α, t) = 1⇒ e|ξ|t , e−|ξ|t .

We study the case:∫$(α,0)dα = 0.

We take a parametrization given by c = 12H($).Let us point out

that for z(α, t) = (α,0) it follows:

BR(z, $)(α, t) =12

H($)(α, t)(0,1).

For the amplitude one finds

$t −12∂α($H$) = 0.

Castro, Córdoba & Gancedo (2009)

Interface dynamics for incompressible flows in 2D

Page 72: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

The Parametrization

Linearizing$(α, t) = 1⇒ e|ξ|t , e−|ξ|t .

We study the case:∫$(α,0)dα = 0.

We take a parametrization given by c = 12H($).Let us point out

that for z(α, t) = (α,0) it follows:

BR(z, $)(α, t) =12

H($)(α, t)(0,1).

For the amplitude one finds

$t −12∂α($H$) = 0.

Castro, Córdoba & Gancedo (2009)

Interface dynamics for incompressible flows in 2D

Page 73: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

The Parametrization

Linearizing$(α, t) = 1⇒ e|ξ|t , e−|ξ|t .

We study the case:∫$(α,0)dα = 0.

We take a parametrization given by c = 12H($).Let us point out

that for z(α, t) = (α,0) it follows:

BR(z, $)(α, t) =12

H($)(α, t)(0,1).

For the amplitude one finds

$t −12∂α($H$) = 0.

Castro, Córdoba & Gancedo (2009)

Interface dynamics for incompressible flows in 2D

Page 74: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

The Parametrization

Linearizing$(α, t) = 1⇒ e|ξ|t , e−|ξ|t .

We study the case:∫$(α,0)dα = 0.

We take a parametrization given by c = 12H($).Let us point out

that for z(α, t) = (α,0) it follows:

BR(z, $)(α, t) =12

H($)(α, t)(0,1).

For the amplitude one finds

$t −12∂α($H$) = 0.

Castro, Córdoba & Gancedo (2009)

Interface dynamics for incompressible flows in 2D

Page 75: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

The Parametrization

Linearizing$(α, t) = 1⇒ e|ξ|t , e−|ξ|t .

We study the case:∫$(α,0)dα = 0.

We take a parametrization given by c = 12H($).Let us point out

that for z(α, t) = (α,0) it follows:

BR(z, $)(α, t) =12

H($)(α, t)(0,1).

For the amplitude one finds

$t −12∂α($H$) = 0.

Castro, Córdoba & Gancedo (2009)

Interface dynamics for incompressible flows in 2D

Page 76: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Ill-posedness for the amplitude equation

If we takeΩ(α, t) = H$(α, t)− i$(α, t),

by using the Green’s function, Ω can be extended analyticallyon the unit ball and satisfies

Ωt (u, t)−12

iuΩ(u, t)Ωu(u, t) = 0, with u = reiα.

Complex trajectories:

Xt (u, t) = −12

iX (u, t)Ω(X (u, t), t), with X (u,0) = u.

Therefore Ω(X (u, t), t) = Ω(u,0) and X (u, t) = ue−12 iΩ(u,0)t .

Interface dynamics for incompressible flows in 2D

Page 77: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Ill-posedness for the amplitude equation

If we takeΩ(α, t) = H$(α, t)− i$(α, t),

by using the Green’s function, Ω can be extended analyticallyon the unit ball and satisfies

Ωt (u, t)−12

iuΩ(u, t)Ωu(u, t) = 0, with u = reiα.

Complex trajectories:

Xt (u, t) = −12

iX (u, t)Ω(X (u, t), t), with X (u,0) = u.

Therefore Ω(X (u, t), t) = Ω(u,0) and X (u, t) = ue−12 iΩ(u,0)t .

Interface dynamics for incompressible flows in 2D

Page 78: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Ill-posedness for the amplitude equation

If we takeΩ(α, t) = H$(α, t)− i$(α, t),

by using the Green’s function, Ω can be extended analyticallyon the unit ball and satisfies

Ωt (u, t)−12

iuΩ(u, t)Ωu(u, t) = 0, with u = reiα.

Complex trajectories:

Xt (u, t) = −12

iX (u, t)Ω(X (u, t), t), with X (u,0) = u.

Therefore Ω(X (u, t), t) = Ω(u,0) and X (u, t) = ue−12 iΩ(u,0)t .

Interface dynamics for incompressible flows in 2D

Page 79: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

Ill-posedness for the amplitude equation

If we takeΩ(α, t) = H$(α, t)− i$(α, t),

by using the Green’s function, Ω can be extended analyticallyon the unit ball and satisfies

Ωt (u, t)−12

iuΩ(u, t)Ωu(u, t) = 0, with u = reiα.

Complex trajectories:

Xt (u, t) = −12

iX (u, t)Ω(X (u, t), t), with X (u,0) = u.

Therefore Ω(X (u, t), t) = Ω(u,0) and X (u, t) = ue−12 iΩ(u,0)t .

Interface dynamics for incompressible flows in 2D

Page 80: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

The formula X (u, t) = ue−12 iΩ(u,0)t yields

|X (eiα0 , t)| < 1 for $(α0,0) > 0 and t > 0.

If we denote X (eiα0 , t) = R(α0, t)eiΘ(α0,t), Ω satisfies

dnΩ

dΘn (X (eiα0 , t), t) =dnΩdαn (eiα0 ,0)

(1− 12Ωα(eiα0 ,0)t)n+1

+ “l.o.t.”.

Interface dynamics for incompressible flows in 2D

Page 81: Interface dynamics for incompressible flows in 2Dweb.math.princeton.edu/conference/fefferman09/pdfs/D... · 2009. 5. 6. · Interface dynamics for incompressible flows in 2D. The

The formula X (u, t) = ue−12 iΩ(u,0)t yields

|X (eiα0 , t)| < 1 for $(α0,0) > 0 and t > 0.

If we denote X (eiα0 , t) = R(α0, t)eiΘ(α0,t), Ω satisfies

dnΩ

dΘn (X (eiα0 , t), t) =dnΩdαn (eiα0 ,0)

(1− 12Ωα(eiα0 ,0)t)n+1

+ “l.o.t.”.

Interface dynamics for incompressible flows in 2D