Chapter 16 - The citric acid cycle - Biochemistry

45
16| The Citric Acid Cycle © 2013 W. H. Freeman and Company

Transcript of Chapter 16 - The citric acid cycle - Biochemistry

Page 1: Chapter 16 - The citric acid cycle - Biochemistry

16|  The  Citric  Acid  Cycle  

© 2013 W. H. Freeman and Company

Page 2: Chapter 16 - The citric acid cycle - Biochemistry

Only  a  small  amount  of  energy  available  in  glucose  is  captured  in  glycolysis  

2ΔG′° = –146 kJ/mol

Glycolysis

Full oxidation (+ 6 O2)

ΔG′° = –2,840 kJ/mol 6 CO2 + 6 H2O

Glucose

Only the 1st stage of Glucose oxidation

Page 3: Chapter 16 - The citric acid cycle - Biochemistry

Cellular  Respira>on  

•   Process  in  which  cells  consume  O2  and  produce  CO2  •   Provides  more  energy  (ATP)  from  glucose  than  glycolysis  •   Also  captures  energy  stored  in  lipids  and  amino  acids  •   Used  by  animals,  plants,  and  many  microorganisms      •   Occurs  in  three  major  stages:    

-­‐   acetyl  CoA  producEon  (from  organic  fuel  molecules)  -­‐   acetyl  CoA  oxidaEon  (in  the  CAC  to  produce  CO2)  -­‐   electron  transfer  and  oxidaEve  phosphorylaEon  (reduced  coenzymes  from  CAC  give  their  e–’s  to  O2  forming  ATP  in  the  process)  

Page 4: Chapter 16 - The citric acid cycle - Biochemistry

Respira>on:  Stage  1  Acetyl-­‐CoA  Produc>on  

•  AcEvated  form  of  acetate  

•  C-­‐skeleton  of  sugars  and  faKy  acids  are  converted  to  acetyl-­‐CoA  before  entering  the  CAC  

some  a.a.  enter  CAC  via  other  intermediates  

•  Pyruvate  dehydrogenase  complex  (PDH)  

•  MulEple  copies  of  3  enzymes  

•  5  reacEons  by  3  enzymes,  whereby  the  intermediates  remain  bound  to  the  enzyme  molecule  unEl  forming  the  final  product  

•  5  cofactors  (4  derived  from  vitamins)    

Page 5: Chapter 16 - The citric acid cycle - Biochemistry

Respira>on:  Stage  2  Acetyl-­‐CoA  oxida>on  

Generates  NADH,  FADH2,  and  one  GTP  

Page 6: Chapter 16 - The citric acid cycle - Biochemistry

Respira>on:  Stage  3  Oxida>ve  Phosphoryla>on  

Generates  a  lot  of  ATP  

 

Page 7: Chapter 16 - The citric acid cycle - Biochemistry

In  eukaryotes,  citric  acid  cycle  occurs  in  mitochondria  

•  Glycolysis  occurs  in  the  cytoplasm  

•  Citric  acid  cycle  occurs  in  the  mitochondrial  matrix†  

•  OxidaEve  phosphorylaEon  occurs  on  and  in  the  inner  membrane  

†Except  succinate  dehydrogenase,  which  is  located  in  the  mitochondrial  inner  membrane  

Page 8: Chapter 16 - The citric acid cycle - Biochemistry

Conversion  of  Pyruvate  to  Acetyl-­‐CoA  •  Net  ReacEon:  

–  Oxida*ve  decarboxyla*on  of  pyruvate  –  First  carbons  of  glucose  to  be  fully  oxidized    (remember:  2  pyr/glc)  

•  Catalyzed  by  PDH  –  Requires  5  coenzymes  –  TPP,  lipoate,  and  FAD  are  prostheEc  groups  –  NAD+  and  CoA-­‐SH    are  co-­‐substrates  

TPP  –  thiamine  (B1)  

FAD  –    riboflavin  (B2)  

NAD  –  niacin  (B3)  

CoA  –  panthothenic  acid  (B5)  

 

Derived  from:  

Page 9: Chapter 16 - The citric acid cycle - Biochemistry

Structure  of  Coenzyme  A  •  Coenzymes  are  not  a  permanent  part  of  the  enzymes’  structure.  

–  They  associate,  fulfill  a  funcEon,  and  dissociate  •  The  funcEon  of  CoA  is  to  accept  and  carry  acetyl  groups      

•  Thioesters  have  a  high  acyl  group  transfer  potenEal  (donate  their  acyl  groups  to  different  groups)  

Page 10: Chapter 16 - The citric acid cycle - Biochemistry

Structure  of  Lipoyllysine  •  ProstheEc  groups  are  strongly  bound  to  the  protein  

–  The  lipoic  acid  is  covalently  linked  to  the  enzyme  via  a  lysine  residue  (lipoyllysine)    

–  Undergo  reversible  redox  reacEons  between  thiols  and  disulfides;  hence  can  serve  as  an  electron  (Hydrogen)  carrier  and  an  acyl  carrier  

Page 11: Chapter 16 - The citric acid cycle - Biochemistry

Pyruvate  Dehydrogenase  Complex  (PDH)  

•   Large  (up  to  10  MDa)  mulEenzyme  complex    -­‐   large  enough  to  be  seen  with  cryoEM  -­‐   pyruvate  dehydrogenase  (E1)  -­‐   dihydrolipoyl  transacetylase  (E2)  -­‐   dihydrolipoyl  dehydrogenase  (E3)  -­‐   each  present  in  mul3ple  copies    

• Advantages  of  mulEenzyme  complexes:    ‒ short  distance  between  catalyEc  sites    allows  channeling  of    substrates  from  one    catalyEc  site  to  another  ‒ channeling  minimizes  side  reacEons  ‒   regulaEon  of  acEvity  of  one  subunit  affects  the  enEre  complex  

Page 12: Chapter 16 - The citric acid cycle - Biochemistry

3D  Reconstruc>on  from  Cryo-­‐EM  data  The  bovine  enzyme  

Core:  60  idenEcal    copies  of  E2)  

E1  acEve  site  has    bound  TPP  

E3  acEve  site  has    bound  FAD  

Protein  kinase  and  phosphoprotein  phosphatase  are  part  of  the  complex  

Page 13: Chapter 16 - The citric acid cycle - Biochemistry

Overall  Reac>on  of  PDH  E1    

• Step  1:  DecarboxylaEon  of  pyruvate  to  an  aldehyde    • Step  2:  OxidaEon  of  aldehyde  to  a  carboxylic  acid  

‒  Electrons  reduce  lipoamide  and  form  a  thioester  

E2  •   Step  3:    FormaEon    of  acetyl-­‐CoA    (product  1)  

E3    • Step  4:    ReoxidaEon  of  the  lipoamide  cofactor  

• Step  5:    RegeneraEon  of  the  oxidized  FAD  cofactor  ‒  Forming  NADH  (product  2)  

 

Page 14: Chapter 16 - The citric acid cycle - Biochemistry
Page 15: Chapter 16 - The citric acid cycle - Biochemistry

The  Citric  Acid  Cycle  (CAC)  C-­‐C  bond  formaEon  to    make  citrate    

IsomerizaEon  via    dehyd./rehydraEon

OxidaEve  decarboxy-­‐  laEons  to  give  2  NADH  

Substrate-­‐level  phosphorylaEon  to  give  GTP

DehydrogenaEon    to  give    reduced  FADH2  

HydraEon  

DehydrogenaEon    to  give  NADH

Page 16: Chapter 16 - The citric acid cycle - Biochemistry

The  Citric  Acid  Cycle        

• Per  each  turn  of  the  cycle:  ‒  One  acetyl  group  enters  (2  C)  and  2  CO2  leave  

‒  One  molecule  of  oxaloacetate  is  used  to  make  citrate  and  one  molecule  is  regenerated  (no  net  change  in  OA  concentraEon;  which  is  very  low)  

‒  4  of  the  8  steps  are  oxidaEons  (the  energy  of  oxidaEon  is  conserved  in  NADH  and  FADH2)  

• Not  limited  to  energy  produc>on    ‒  4-­‐  and  5-­‐C  intermediates  serve  as  precursors  for  different  products  

‒  To  replace  these  intermediates,  cells  use  anaplero*c  (replenishing)  reacEons    

Page 17: Chapter 16 - The citric acid cycle - Biochemistry

C-­‐C  Bond  Forma>on  by  Condensa>on  of  Acetyl-­‐CoA  and  Oxaloacetate  (step  1)  

•  CondensaEon  of  acetyl-­‐CoA    and  oxaloacetate  

•  The  only  reacEon  with    C-­‐C  bond  formaEon  

•  Uses  Acid/Base  Catalysis  –  Carbonyl of oxaloacetate

is a good electrophile (stabilization of carbanions) –  Methyl group has been converted to methylene

•  Rate-­‐limi*ng  step  of  CAC  •  AcEvity  largely  depends  on  [oxaloacetate]  •  Highly  thermodynamically  favorable/irreversible  

–  Regulated  by  substrate  availability  and  product  inhibiEon  

Page 18: Chapter 16 - The citric acid cycle - Biochemistry

Induced  Fit  in  the  Citrate  Synthase  

•  oxaloacetate  binds  first  à  creaEng  a  binding  site  for  acetyl-­‐CoA  

•  Avoids  unnecessary  hydrolysis  of  thioester  in  acetyl-­‐CoA  

 

 b)    Closed  conforma>on:  

Binding  of  OAA  creates  binding  for  acetyl-­‐CoA  ReacEve  carbanion  is  protected    

a)  Open  conforma>on:  Free  enzyme  does  not  have  a  binding  site  for  acetyl-­‐CoA  

Page 19: Chapter 16 - The citric acid cycle - Biochemistry

Isomeriza>on  by  Dehydra>on/Rehydra>on  (step  2)  

Page 20: Chapter 16 - The citric acid cycle - Biochemistry

Aconitase  

•  EliminaEon  of  H2O  from  citrate  gives  a  cis  C=C  bond    – Lyase  

•  Citrate,  a  terEary  alcohol,  is  a  poor  substrate  for  oxidaEon  •  Isocitrate,  a  secondary  alcohol,  is  a  good  substrate  for  oxidaEon  

•  AddiEon  of  H2O  to  cis-­‐aconitate  is  stereospecific  (either  to  form  isocitrate  or  citrate)  

•  Cytosolic  isozyme  uses  NADP+  as  a  cofactor  

•  Thermodynamically  unfavorable/reversible  – Product  is  consumed  rapidly  by  the  next  step  (concentraEon  kept  low)  to  pull  reacEon  forward  

Page 21: Chapter 16 - The citric acid cycle - Biochemistry

Iron-­‐Sulfur  Center  in  Aconitase  •  Water  removal  from  citrate  and  subsequent  addiEon  to  cis-­‐

aconitate  are  catalyzed  by  the  iron-­‐sulfur  center:  sensiEve  to  oxidaEve  stress.  

•  The  iron-­‐sulfur  center  acts  in  both  substrate  binding  and  catalysis.      

Page 22: Chapter 16 - The citric acid cycle - Biochemistry

Aconitase  is  a  “moonligh>ng”  enzyme  •  When  Fe  is  deficient,  aconitase  loses  its  Fe-­‐S  center  and  acquires  

a  new  role  in  Fe  homeostasis  •  Cytosolic  Aconitase  is  an  enzyme  (with  Fe-­‐S)  and  a  regulator  of  

protein  synthesis  (  –  Fe)  

•  In  humans  Fe  levels  must  be  regulated:  too  liKle  à  anemia;  too  much  à  liver  damage  

•  Transferrin:  carries  Fe  in  the  blood  •  Transferrin  receptor:  receives  and  endocytoses  Fe  •  Ferri*n:  stores  excess  Fe  inside  the  cells  

•  Apoaconitase  (  –  Fe)  regulates  protein  levels  by  stabilizing  or  destabilizing  the  mRNA  of  transferrin  receptor  or  ferriEn      

•  Apoaconitase  à  êferriEn  and  é  TfR  synthesis  (the  results  would  be  an  increase  in  cellular  [Fe])  

Page 23: Chapter 16 - The citric acid cycle - Biochemistry

Oxida>ve  Decarboxyla>on  #2  (step  3)  

•  Carbon  is  lost  as  CO2  and  NADH  is  generated  •  Carbon  lost  as  CO2  did  NOT  come  from  acetyl-­‐CoA  

•  OxidaEon  of  the  alcohol  to  a  ketone  •  Transfers  a  hydride  to  NAD+  

•  Cytosolic  isozyme  uses  NADP+  as  a  cofactor  •  Highly  thermodynamically  favorable/irreversible  

•  Regulated  by  product  inhibiEon  and  ATP  

Page 24: Chapter 16 - The citric acid cycle - Biochemistry

Final  Oxida>ve  Decarboxyla>on  (step  4)  

•  Last  oxidaEve    decarboxylaEon  – Net  full  oxidaEon  of  all    carbons  of  glucose  

•  Succinyl-­‐CoA  is  another  higher-­‐energy  thioester  bond  

•  Highly  thermodynamically  favorable/irreversible  – Regulated  by  product  inhibiEon  

Page 25: Chapter 16 - The citric acid cycle - Biochemistry

Origin  of  C-­‐atoms  in  CO2  

Both  CO2  carbon  atoms  are  derived  from  oxaloacetate  

We have lost 2 CO2 already, so we have a net complete oxidation of glucose after two pyruvates go through the CAC. But its not the actual carbons from pyruvate (in red) in each cycle.

H2C

C

H2C

HO

COOH

COOH

COOH

Citrate Isocitrate

H2C

HC

CH

COOH

COOH

COOH

HO

α-ketoglutarate

H2C

CH2C

COOH

COOHO

Succinyl-CoA

H2C

CH2C

COOH

SCoAO

Page 26: Chapter 16 - The citric acid cycle - Biochemistry

α-­‐Ketoglutarate  Dehydrogenase  

•  Complex  similar  to  pyruvate  dehydrogenase  –  Same  coenzymes,  idenEcal  mechanisms  –  AcEve  sites  different  to  accommodate  different-­‐sized  substrates  –  E1  aa  sequences  differ  (and  specificity)  E2  are  very  similar  E3  are  idenEcal    

Page 27: Chapter 16 - The citric acid cycle - Biochemistry

Genera>on  of  GTP  through  Thioester  (step  5)  

•  Substrate  level    phosphorylaEon  

•  Energy  of  thioester  allows    for  incorporaEon  of  inorganic  phosphate  into  ADP  or  GDP  to  make  ATP  or  GTP  

•  Goes  through  a  phospho-­‐enzyme  intermediate  •  Produces  GTP,  which  can  be  converted  to  ATP,  or  ATP  directly  (2  isozymes  in  animal  cells,  specific  for  GDP  or  ADP)  

•  Slightly  thermodynamically  favorable/reversible  –  Product  concentraEon  kept  low  to  pull  forward  

Page 28: Chapter 16 - The citric acid cycle - Biochemistry

Oxida>on  of  an  Alkane  to  Alkene  (step  6)  •  Bound  to  mitochondrial    inner  membrane    – Complex  II  in  the  ETC  

•  OxidaEon  of  the  alkane  to  alkene  requires  FAD  •  FAD  is  covalently  bound  •  3  Fe-­‐S  clusters  •  Near  equilibrium/reversible  

–  Product  concentraEon  kept  low  to  pull  forward  

Page 29: Chapter 16 - The citric acid cycle - Biochemistry

Hydra>on  Across  a  Double  Bond  (step  7)  •  Highly  stereospecific  

–  AddiEon  of  water  is  always  trans  and    forms  L-­‐malate  

–  Cannot  work  on  maleate  (cis  isomer  of  fumarate)  –  OH-­‐  adds  to  fumarate…  then  H+  adds  to  the  carbanion  –  Cannot  disEnguish  between  inner  carbons,  so  either  can  gain  –OH  

•  Slightly  thermodynamically  favorable/reversible  –  Product  concentraEon  kept  low  to  pull  reacEon  forward  

Page 30: Chapter 16 - The citric acid cycle - Biochemistry

Oxida>on  of  Alcohol  to  a  Ketone  (step  8)  •  Final  step  of  the  cycle  •  Regenerates  oxaloacetate    for  citrate  synthase  

•  Highly  thermodynamically  UNfavorable/reversible  –  Oxaloacetate  concentraEon  kept  VERY  low  by  citrate  synthase  (  <  10–6  M)    • Pulls  the  reacEon  forward  

Page 31: Chapter 16 - The citric acid cycle - Biochemistry

One  Turn  of  the  Citric  Acid  Cycle  

Page 32: Chapter 16 - The citric acid cycle - Biochemistry

Net  Result  of  the  Citric  Acid  Cycle  

•  Net  oxidaEon  of  two  carbons  to  CO2  – Equivalent  to  two  carbons  of  acetyl-­‐CoA    – but  NOT  the  exact  same  carbons  

•  Energy  captured  by  electron  transfer  to    NADH  and  FADH2  

•  Generates  1  GTP,  which  can  be  converted  to  ATP  

Acetyl-­‐CoA  +  3NAD+  +  FAD  +  GDP  +  Pi  +  2  H2O  à  

     2CO2  +  3NADH  +  FADH2  +  GTP  +  CoA  +  3H+  

Page 33: Chapter 16 - The citric acid cycle - Biochemistry

Direct  and  Indirect  ATP  Yield  

Page 34: Chapter 16 - The citric acid cycle - Biochemistry
Page 35: Chapter 16 - The citric acid cycle - Biochemistry

CAC  is  an  amphibolic  pathway  •  Amphibolic-­‐  

serves  in  both  catabolism  and  anabolism  

•  Precursors  for  many  molecules  

•  Needs  to  be  replenished  (by  anapleroEc  reacEons)  

           Red  arrows    

Page 36: Chapter 16 - The citric acid cycle - Biochemistry

Anaplero>c  Reac>ons  •  Must  replenish  the  intermediates  in  order  for  the  cycle  and  central  metabolic  pathway  to  conEnue  

•  4-­‐carbon  intermediates  are  formed  by  carboxylaEon  of  3-­‐carbon  precursors  

•  The  replenishing  and  consuming  reacEons  are  in  dynamic  balance  ([CAC  intermediates]  is  ~  constant)  

Page 37: Chapter 16 - The citric acid cycle - Biochemistry

Anaplero>c  Reac>ons  •  Must  replenish  the  intermediates  in  order  for  the  cycle  and  central  metabolic  pathway  to  conEnue  

•  4-­‐carbon  intermediates  are  formed  by  carboxylaEon  of  3-­‐carbon  precursors  

•  The  replenishing  and  consuming  reacEons  are  in  dynamic  balance  ([CAC  intermediates]  is  ~  constant)  

•  Regulatory  enzyme  –  inac*ve  in  the  absence  of  acetyl-­‐CoA  

•  More  acetyl-­‐CoA,  more  acEvity  è  more  OAA  to  react  with  acetyl-­‐CoA  to  start  the  cycle  

Page 38: Chapter 16 - The citric acid cycle - Biochemistry

Bio>n  is  a  CO2  carrier  •  Vitamin  B7  (bioEn)  is  required  in  our  food  •  It  is  a  cofactor  (prostheEc  group)  in  carboxylases    •  BioEn  is  a  specialized  carrier  of  1-­‐C  groups  in  their  most  OXIDIZED  state  (CO2)  

•  Pyruvate  carboxylase  has  4  idenEcal  subunits  each  carrying  a  molecule  of  bioEn  

•  It  is  present  in  many  foods  and  intesEnal    bacteria  are  able  to  synthesize  it,  hence    bioEn  deficiency  is  rare  

•  ConsumpEon  of  raw  eggs  in  large  quanEEes  leads  to  bioEn  deficiency  since  egg  white  have  the  protein  avidin  which  binds  bioEn  very  Eghtly  and  prevents  its  absorpEon  in  the  intesEne  

Page 39: Chapter 16 - The citric acid cycle - Biochemistry

Biological  tethers  allow  flexibility  •  All  enter  the  cells  on  

the  same  transporter  

•  All  are  covalently  aKached  to  proteins  

•  All  provide  flexible  arms  on  the  enzymes  to  which  they  are  covalently  bound  

•  All  act  as  tethers  that  move  intermediates  from  one  acEve  site  to  the  next  

Page 40: Chapter 16 - The citric acid cycle - Biochemistry

Regula>on  of  the  Citric  Acid  Cycle  

Cell  has  high  energy  demands!  

Cell  is  supplied  with  enough  energy  [NADH]/[NAD+]  and  [ATP]/[ADP]  are  high  

Page 41: Chapter 16 - The citric acid cycle - Biochemistry

Regula>on  of  the  Citric  Acid  Cycle  

•  Regulated  at  highly  thermodynamically  favorable  and  irreversible  steps  – PDH,  citrate  synthase,  IDH,  and  αKDH  

•  General  regulatory  mechanism  – AcEvated  by  substrate  availability  –  Inhibited  by  product  accumulaEon  – Overall  products  of  the  pathway  are  NADH  and  ATP  

• Affect  all  regulated  enzymes  in  the  cycle  •  Inhibitors:  NADH  and  ATP  • AcEvators:  NAD+  and  AMP  • Ca2+  in  muscles  acEvates  the  cycle  (Ca2+  signals  muscle  contracEon  è  need  for  energy)  

Page 42: Chapter 16 - The citric acid cycle - Biochemistry

Regula>on  of  Pyruvate  Dehydrogenase  

•  Also  regulated  by  reversible  phosphorylaEon  of  E1  –  PhosphorylaEon:  inacEve  –  DephosphorylaEon:  acEve  

•  PDH  kinase  and  PDH  phosphatase  are  part  of  mammalian  PDH  complex  –  Kinase  is  acEvated  by  ATP    

• High  ATP  à  phosphorylated  PDH  à  less  acetyl-­‐CoA  • Low  ATP  à  kinase  is  less  acEve  and  phosphatase  removes  phosphate  from  PDH  à  more  acetyl-­‐CoA  

–  Phosphatase  is  acEvated  by  insulin,  PEP,  and  AMP,  and  inhibited  by  ATP,  NADH,  and  Acetyl-­‐CoA  

Page 43: Chapter 16 - The citric acid cycle - Biochemistry

Addi>onal  Regulatory  Mechanisms  •  Citrate  synthase  is  also  inhibited  by  succinyl-­‐CoA  

–  α-­‐ketoglutarate  is  an  important  branch  point  for  amino  acid  metabolism  

–  Succinyl-­‐CoA  communicates  flow  at  this  branch  point  to  the  start  of  the  cycle  

•  RegulaEon  of  isocitrate  dehydrogenase  controls  citrate  levels  –  Aconitase  is  reversible  –  InhibiEon  of  IDH  leads  to  accumulaEon  of  isocitrate  and  reverses  aconitase  

–  Accumulated  citrate  leaves  mitochondria  and  inhibits  PFK-­‐1  in  glycolysis  

Page 44: Chapter 16 - The citric acid cycle - Biochemistry

CAC  muta>ons  lead  to  cancer  

• MutaEons  in  CAC  enzymes  are  very  rare  in  man  

•  GeneEc  defects  in  fumarase  à  smooth  muscle  and  kidney  cancer  

• MutaEons  in  succinate  DH  à  tumors  of  the  adrenal  glands  

•  Both  enzymes  are  defined  as  tumor  suppressor  genes  

•  IDH  mutaEon  leads  to  a  new  funcEon  of  the  enzyme  the  net  result  of  which  is  the  development  of  glial  cell  tumors  in  the  brain    

Page 45: Chapter 16 - The citric acid cycle - Biochemistry

Ques>on  5  (Take  home  exam)    Due:  NEXT  WEEK  (js>[email protected])  

•  Please  solve  ques>ons:  1.   5  (NAD  redox  carriers)  2.   10  (OAA  in  mito)  3.   18  (14C-­‐glucose)  4.   19  (Beriberi)  For  wri9en  answers,  I  prefer  to  have  them  typed  in  Word.  I  can  accept  the  assignment  in  one  file  sent  to  my  email.  For  answers  that  require  solving  mathema3cally,  you  can  either  type  them  or  write  them  down  and  scan  them.