Case study in continuation: Depinning transitions in ... U... · Case study in continuation:...

43
Case study in continuation: Depinning transitions in selected driven interface-dominated soft-matter systems Uwe Thiele Leiden, November 2011 ITN MULTIFLOW Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 1

Transcript of Case study in continuation: Depinning transitions in ... U... · Case study in continuation:...

Case study in continuation:Depinning transitions in selected driveninterface-dominated soft-matter systems

Uwe Thiele

Leiden, November 2011

ITN MULTIFLOW

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 1

Outline

Depinning drops

g

Drop on rotating cylinder

ω

Interacting driven particlesin a nano-pore

Conclusions and Outlook

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 2

Experiment: Drops resting on a tilted plane

Quéré et al. (1998)1

Geometry Depinning threshold

Determine the shape of the pinned drop, and the depinningthreshold?

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 3

Contact line pinning, contact angle hysteresis andstick-slip motion

Dussan (1979)2

Contact angle hysteresisSchäffer and Wong (1998)3

Stick-slip motion

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 4

Dewetting evaporating suspensions – line patterns

Zhiqun Lin et al. 2006-20084–7

(CdSe/ZnS core/shell, 4.4nm (right) and 5.5nm (left) in diameter, in toluene)

Concentrations: 0.25mg/ml, 0.15mg/ml, 0.05mg/ml,

0.05mg/ml

Concentration: 0.25mg/ml

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 5

with E Knobloch (2d/3d), P Beltrame (3d), P Hänggi (3d)

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 6

Driven drops/film on heterogeneous substrate

Dimensional evolution equation in long-wave approximation

∂t h = −∇ ·

h3

3η∇ [γ∆h + Π(h, r)] + µex

heterogeneous substrate (or field)

driving

z

x

pinning

liquid

Non-dimensional parameters

h . . . mean film thicknessLx × Ly . . . system size / periodµ . . . driving force

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 7

Periodic array of local wettability defect

Wettability via disjoining pressure

Π(h, r) = κ

(bh3 − [1 + εξ(x)] e−h

)ξ(x) = 2 cn[2K (k)x/L, k ]2 −∆

K (k) . . . complete elliptic integral of the first kind∆ . . . shift to have

∫ξ(x)dx = 0

Further parameters

ε . . . wettability contrastε < 0 hydrophilic defectε > 0 hydrophobic defect

s ≡ − log(1− k) . . . steepness of defect

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 8

Numerical approach

Methods used in 2d (1d equation)• Path-following (steady solutions, saddle-node bifurcations)[AUTO2000/AUTO07]• Time-integration [finite difference, adaptive time-step for stiffequations - NAG]

Methods used in 3d (2d equation)• Path-following (steady solutions)• Time-integration [exponential propagation, adaptive time-step](Both algorithms employ a Cayley-Arnoldi method)Philippe Beltrame and UT, SIADS 9, 484 (2010)

Wish list

−→ Path following for time-periodic solutions (2d and 3d)−→ Adaptive grid for 2d [AUTO2014 for 4th (and 6th) order PDEs]

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 9

Profiles of pinned driven 2d drops (3d transversallyinvariant ridges

Hydrophilic defect Hydrophobic defect

0

1

2

3

h(x)

0.01780.010.0050.0

10 20 30x

-2

-1

0

ε ξ(

x)

µa

0

1

2

3

h(x)

0.040.020.0050.0

10 20 30x

0

1

2

ε ξ(

x)

µb

UT and E. Knobloch: PRL 97, 204501 (2006); NJP 8, 313 (2006)

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 10

Dynamics of depinning of a 2d drop pinned by ahydrophilic defect

Depinning via sniper bifurcation – Stick-slip infinitely slow attransition.

0 0.02 0.04

µ0.2

0.4

0.6

0.8

1

1.2

||δh|

| 0.02 0.04µ0

0.01

T-1

a

0

25 0

100.7

0

4

t

x

h

0

25 0

740.7

0

4

t

x

h

b

c

UT and E. Knobloch: PRL 97, 204501 (2006); NJP 8, 313 (2006)

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 11

Pinning/depinning phase diagram

-0.8 -0.4 0 0.4 0.8

ε0

0.01

0.02

0.03

µ

depinneddrops

pinneddrops

pinneddrops

hydrophilicdefect

hydrophobicdefect

a

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 12

Depinning via Hopf bifurcation (hydrophobic case, 2d)

Stick-slip with finite velocity at transition

0 0.02 0.04 0.06 0.08

µ

0.4

0.6

0.8

1

||δh|

|

0.04 0.06 0.08µ

0

0.01

0.02

T-1

a

0

25 0

47.4

0

4

t

x

h

0

25 0

206.4

0

4

t

x

h

b

c

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 13

3d drop - hydrophilic line defect (sniper)

Bifurcation diagram

0 0.005 0.01 0.0150.45

0.5

0.55

0.6

0.65

0.7

0.75

µ

||! h

||

0 2 4−2

−1.5

−1

−0.5

0

log(µ−µc)−const

log(

T)−c

onst

Steady drops

Time evolution

P. Beltrame, P. Hänggi, UT; EPL 86, 24006 (2009)

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 14

Multistability in 3d?

Full picture has to relate

Depinning of 3d drops and transversally invariant ridges(2d drops)Plateau-Rayleigh instability of a ridge (zero/finite drivingwith/without heterogeneityRivulet solutions and their stability w.r.t. surface waveswith/without heterogeneity

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 15

Bifurcation scenario – medium lateral system size

0 0.002 0.004 0.006 0.008 0.01 0.012

0.6

0.65

0.7

0.75

0.8

0.85

0.9

µ

||δh||

µ3dsn2 µ3d

c1µ3dc2 µ3d

g

SR1

+

+++

++

+++

SD1−

+

SD2

+

SD3++

SSD

SSR

SR2++

3d drops annihilate in saddle-node (no sniper bifurcation)

Depinning spanwise invariant ridges are unstable from onset

Stick-slipping drops result from (subcritical) homoclinicbifurcation

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 16

Stability diagram for steady and stick-slipping states

20 22 24 26 28 30 32

L

0

0.005

0.01

µ

rivulet

SSD

SSD

SR

SD

SSD

SR

SD

SR

SSR

0.05

0.1

Ph. Beltrame, E. Knobloch, P. Hänggiand UT, PRE 83, 016305 (2011)

Black solid (dashed):transversal (sniper)instability of steadyridges

Thick dotted blue(dashed red):saddle-node (sniper)bifurcations of thedrop states

Thin dotted blue:hypothetical border ofthe region of stablestick-slipping drops

Dot-dashed green:Hopf bifurcation wherethe steady 3d rivuletsbecome stable

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 17

g

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 18

Partially wetting drop on rotating horizontal cylinder

Dimensional evolution equation in long-wave approximation

∂t h = −∂θ

h3 ∂θ [∂θθh + h − Bo cos(θ) + Π(h)] + Ωh,

θ

ω

g

h

R

Non-dimensional parameters

h = 1 . . . mean film thicknessL = 2π . . . system size / periodΩ = ηωR

ε3σ. . . Rotation number

Bo = R3ρghσ . . . Bond number

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 19

Drop families on resting horizontal cylinder (Ω = 0)

L2-norm Profiles

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Bo0

0.2

0.4

0.6

0.8

1

||δh|

|

1.02.0

β0

(i)

(ii)

(iii)

0

1

2

3

h(θ)

0 3.14 6.28

θ

-1

0

1

cos

θ

(i)

(ii)

(iii)

a

b

-10 0 10x

-10

0

10

y

c

UT, JFM 671, 121-136 (2011)

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 20

Drop families on rotating horizontal cylinder (Ω > 0)

L2-norm Profiles

0 1 2 3 4 5

Ω0

0.2

0.4

0.6

0.8

1

1.2

||δh|

|

0.50.751.02.55.010.0

Bo

0

1

2

3

h(θ)

0.00.51.01.68

0 3.14 6.28

θ

-1

0

1

cos

θ

Ω a

b

-10 0 10x

-10

0

10

y

c

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 21

Rotating cylinder – depinning transition via sniper

L2-norm / period Space-time plots

1 1.5 2 2.5

Ω

0.94

0.96

0.98

1

1.02

||δh|

|

10-6

10-5

10-4

10-3

10-2

10-1

100

Ω−Ωsn

10-3

10-2

10-1

1/T

2π 0

5

10

14.8

0123

t

θ

h

2π 0

1

2

2.69

0123

t

θ

h

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 22

Thin film equation as gradient dynamics

Evolution equation for conserved order parameter field

∂t h = ∂x

Q(h) ∂x

δF [h]

δh

with

F [h] =

∫V

[12

(∂xh)2 + f (h, x) + µxh]

dx

f (h, x) = −∫

Πdh . . . local free energy (heterogeneous system)µxh . . . potential energy for gravitational drivingQ(h) . . . mobility

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 23

ω

with A. Pototsky, A. J. Archer, S.E. Savel’ev, and F. MarchesoniA. Pototsky et al., PRE 83, 061401 (2011)

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 24

DDFT evolution equation as gradient dynamics

Evolution equation for conserved order parameter field ρ(x , t)

∂t ρ = ∂x

ρ(x , t) ∂x

δF [ρ(x , t)]

δρ(x , t)

with

F [ρ] = T∫ S

2

−S2

dx ρ[ln ρ− 1] +

∫ S2

−S2

dx Ueff(x)ρ

+ Fhc[ρ] + Fat[ρ]

Ueff(x) . . . external potentialFhc[ρ] . . . hard-core interactionFat[ρ] . . . attractive interaction

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 25

Contributions to energy

External potential

Ueff(x) = U(x)− Ax U(x) = sin (2πx) + 0.25 sin (4πx)

Attractive interaction

Fat[ρ] =12

∫ S2

− S2

dx∫ x+ S

2

x− S2

dx ′ wat(| x−x ′ |)ρ(x)ρ(x ′) with wat(x) = −αe−λx

Hard-core repulsion

Fhc[ρ] =12

∫ S2

− S2

dx φ[ρ(x)]

ρ

(x +

h2

)+ ρ

(x − h

2

)

where φ[ρ] = −T ln [1− η] and η(x , t) =∫ x+h/2

x−h/2 dx ′ ρ(x ′, t)

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 26

Numerical approach

Methods used for coupled 1d local ddft equation(s) [NOT HERE]• Path-following (steady solutions, saddle-node bifurcations)[AUTO07]• Time-integration [finite difference]

Methods used for nonlocal 1d ddft ratchet (integro-differentialequation)• Path-following of steady and time-periodic solutions[combining AUTO07 with FFT routine – Andrey Pototsky]

Wish list

−→ Path following in the 2d case for integro-differential equation−→ Adaptive grid

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 27

Depinning transition for 3L domain (with driving A = 1)

Bifurcation diagram

1 1.5 2 2.5 3

α

-0.4

-0.2

0

J

10-6.0

10-4.0

10-2.0

αhm

0

50

100

150

τ

HB

LP

hm

τ=const ln(x)

α . . . interaction strength (∼ increasing contact angle)

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 28

Influence of size of particle core (h 6= 0)

0 2 4 6 8 10α

-0.9

-0.6

-0.3

0

J

4 6 8α

-3.5

-3

-2.5

-2

<F

/S>

-2 -1 0 1 2x

0

5

10

ρ(x

)3 3.2 3.4 3.6 3.8

α

-0.5

-0.25

J

3 3.2 3.4 3.6 3.8

α

-2

-1.8

<F

/S>

10-4.0

10-2.0

100.0

αhm

0

100

200

300

τ

00.1 0.2

4L 4L 2L

4L

4L

4L

(e)

L

HB

BP

BP(a)

(b)

(c)

(d)

t-periodic

HBBP

BP

L

4L

HBBP

L

2L

4L

t-periodic

t-periodic

hm

hm

t-perio

dic

HB

(f)

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 29

Conclusions for depinning drops / probabilitydistributions

Depinning drops/ridges in 2d/3d

• Drops/ridges may depin via sniper/Hopf/homoclinic bifurcation• Stick-slip motion beyond depinning (sniper/homoclinic),related to translation mode• Intricate 3d behaviour (coupling to Plateau-Rayleighinstability)

DDFT for interacting particles in modulated nano-pore

• Interplay of steady-state (pitchfork) and depinning transitions(Hopf/homoclinic) [picture not yet complete]• Depinning dynamics via volume transfer or translation mode

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 30

Deposition patterns

with L. Frastia, A.J. ArcherUT et al., J Phys-Cond Mat 21, 264016 (2009);L. Frastia, A.J. Archer, UT, PRL 106, 077801 (2011);

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 31

Hydrodynamic equations in long-wave approximation I

φ(x)

h (x) h(x)

v(t)

z xp

Film thickness evolution equation (isothermal, without solute cf.Pismen 20028,9)

∂th = ∇ · [Q(h, φ)∇p(h)]−βρ

(p(h)− µρ)

Q(h, φ) =h3

3η(φ)mobility

p(h) = −γ∆h −Π(h) pressure

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 32

Hydrodynamic equations in long-wave approximation II

Evolution equation for effective ’layer thickness’ ψ = hφ

∂t(φh) = ∇ · [φQ(h, φ)∇p(h)] +∇ · [D(φ)h∇φ]

Viscosity/diffusivity of dense suspension [Quemada (1977)10,Krieger-Doherty law, Einstein relation)

η(φ) = η0

(1− φ

φc

)−ν

D(φ) = kBT/6πr0η(φ)

ν . . . Literature gives various exponents below ≈ 2

Evolution equations account for solvent capillarity, wettability,evaporation, solute diffusion, nonlinear rheology

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 33

Pattern types – Examples

Dried-in deposition patterns close to “first ring”

L. Frastia, A.J. Archer, UT, PRL 106, 077801 (2011)

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 34

Pattern types – morphological phase diagram

Depending on evaporation rate Ω and initial mean concentration φ0

(d)(b)(c)

(a)

(e)

(b)

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 35

Line patterns – dependence on concentration

Deposit profiles and characteristics for Ω0 = 4.64×10−7

x

low

medium

high

Transition to line deposition as depinning transition in comovingframe→ depinning via Hopf and infinite period bifurcation

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 36

LANGMUIR-BLODGETT TRANSFER

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 37

Patterning by Langmuir-Blodgett transfer

Chi, Fuchs et al (2004) – Transfer of DPPC onto silicon oxide

SFM images, bar 2µm

see also Riegler et al 1992/94

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 38

Thin film model by Köpf, Gurevich, Friedrich, and Chi(2010)

Geometry

Evolution equations

∂t Γ = −∇ ·[

Γh2

2∇p + Γh∇Σ− V Γ

]∂th = −∇ ·

[h3

3∇p +

h2

2∇Σ− Vh

]− Ωµ(h, Γ)

Resulting line patterns

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 39

Efficient description with Cahn-Hilliard-type model

Depinning bifurcation diagram

Homoclinic (low V) and Hopf (high V) bifurcationSnaking of localised (front) states

Köpf, Gurevich, Friedrich, UT (submitted 2011)

Steadyprofiles

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 40

Numerical approach

Methods used for 1d Langmuir Blodgett transfer• Path-following (steady solutions) [AUTO07]• Time-integration [finite difference]

Problem• Did not obtain agreement in sufficient detail to establishwhere the time-dependent branch emerges from

Solution• Coding of path-continuation and time-integration employingexactly the same spatial discretization (Michael Köpf)

Wish list

−→ Path-following and time-integration in one package

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 41

General conclusions

Depinning in many driven heterogeneous soft-matter systems

• Drops/ridges on heterogeneous substrates• Clusters of interacting particles in heterogeneous nanopores• Deposition of solutes from contact lines• Langmuir-Blodget transfer of surfactant-layers

Depinning occurs via Hopf, sniper or homoclinic bifurcations

• Typical scaling of period close to transition• Involves translational and/or volume mode

Heterogeneity might be

• Due to imposed modulations throughout the domain• Due to boundary effects• Self-organised (not discussed, e.g., PFC)

Relation to snaking ?Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 42

References I

[1] D. Quéré, M. J. Azzopardi, and L. Delattre. Drops at rest on a tilted plane. Langmuir, 14:2213–2216, 1998.

[2] E. B. Dussan. On the spreading of liquids on solid surfaces: Static and dynamic contact lines. Ann. Rev. FluidMech., 11:371–400, 1979. doi: 10.1146/annurev.fl.11.010179.002103.

[3] E. Schäffer and P. Z. Wong. Dynamics of contact line pinning in capillary rise and fall. Phys. Rev. Lett., 80:3069–3072, 1998. doi: 10.1103/PhysRevLett.80.3069.

[4] J. Xu, J. F. Xia, S. W. Hong, Z. Q. Lin, F. Qiu, and Y. L. Yang. Self-assembly of gradient concentric rings viasolvent evaporation from a capillary bridge. Phys. Rev. Lett., 96:066104, 2006. doi:10.1103/PhysRevLett.96.066104.

[5] S. W. Hong, J. F. Xia, and Z. Q. Lin. Spontaneous formation of mesoscale polymer patterns in an evaporatingbound solution. Adv. Mater., 19:1413–1417, 2007. doi: 10.1002/adma.200601882.

[6] J. Xu, J. F. Xia, and Z. Q. Lin. Evaporation-induced self-assembly of nanoparticles from a sphere-on-flatgeometry. Angew. Chem.-Int. Edit., 46:1860–1863, 2007. doi: 10.1002/anie.200604540.

[7] S. W. Hong, W. Jeong, H. Ko, M. R. Kessler, V. V. Tsukruk, and Z. Q. Lin. Directed self-assembly of gradientconcentric carbon nanotube rings. Adv. Funct. Mater., 18:2114–2122, 2008. doi: 10.1002/adfm.200800135.

[8] A. V. Lyushnin, A. A. Golovin, and L. M. Pismen. Fingering instability of thin evaporating liquid films. Phys.Rev. E, 65:021602, 2002. doi: 10.1103/PhysRevE.65.021602.

[9] L. M. Pismen. Mesoscopic hydrodynamics of contact line motion. Colloid Surf. A-Physicochem. Eng. Asp.,206:11–30, 2002.

[10] D. Quemada. Rheology of concentrated disperse systems and minimum energy-dissipation principle I.Viscosity-concentration relationship. Rheol. Acta, 16:82–94, 1977.

Uwe Thiele, Loughborough University – www.uwethiele.de Leiden, November 2011 43