Active optical gyroscope with controllable...

18
Active optical gyroscope with controllable dispersion. Eugeniy E. Mikhailov, Owen Wolfe, Irina Novikova 1 , Simon Rochester, Dmitry Budker 2 , 1 2 LPHYS, 14 July 2016 Eugeniy E. Mikhailov (W&M) Towards fast gyroscope LPHYS, 2016 1 / 17

Transcript of Active optical gyroscope with controllable...

  • Active optical gyroscope with controllabledispersion.

    Eugeniy E. Mikhailov, Owen Wolfe, Irina Novikova1,Simon Rochester, Dmitry Budker2,

    1

    2

    LPHYS, 14 July 2016

    Eugeniy E. Mikhailov (W&M) Towards fast gyroscope LPHYS, 2016 1 / 17

  • Sagnac effect and cavity response

    beamsplitter

    input

    detector

    output

    E cw

    E ccw

    ∆p = ±ΩRt = ±2AΩc

    ∆f = f0∆pp

    1ng

    = ∆fempty1ng

    Group index

    ng(f ) = n + f0∂n∂f

    vg = c/ng

    Cavity response enhanced if ng < 1 i.e. under the fast light conditionShahriar et al., PRA 75, 053807 (2007)

    Eugeniy E. Mikhailov (W&M) Towards fast gyroscope LPHYS, 2016 2 / 17

  • Sagnac effect and cavity response

    beamsplitter

    input

    detector

    output

    E cw

    E ccw

    ∆p = ±ΩRt = ±2AΩc

    ∆f = f0∆pp

    1ng

    = ∆fempty1ng

    Group index

    ng(f ) = n + f0∂n∂f

    vg = c/ng

    Cavity response enhanced if ng < 1 i.e. under the fast light conditionShahriar et al., PRA 75, 053807 (2007)

    Eugeniy E. Mikhailov (W&M) Towards fast gyroscope LPHYS, 2016 2 / 17

  • EIT - slow light

    | 2 〉

    | 1 〉

    | 3 〉

    δ

    ∆ HFS

    | 4 〉

    Ω 1Ω 2

    ∆ 1

    Eugeniy E. Mikhailov (W&M) Towards fast gyroscope LPHYS, 2016 3 / 17

  • N-bar with four-wave mixing - fast and with gain

    | 2 〉

    | 1 〉

    | 3 〉

    δ

    ∆ HFS

    | 4 〉

    Ω 1Ω 2

    ∆ 1Ω 3

    ∆ 3

    γ 42

    γ 41

    Eugeniy E. Mikhailov (W&M) Towards fast gyroscope LPHYS, 2016 5 / 17

  • N-bar with Doppler averaging

    Refractive index Absorption

    Stationary atoms

    Room temperatureDoppler averaged

    Eugeniy E. Mikhailov (W&M) Towards fast gyroscope LPHYS, 2016 6 / 17

  • N-bar levels and fields diagram

    Artificial atom 87Rb atom

    F=2

    F=1

    F’=2

    F’=1

    m=1m=0m=-1m=-2 m=2

    F’=2

    F’=1

    F’=3

    F’=0

    5P

    5P

    5S

    3/2

    1/2

    1/2

    Eugeniy E. Mikhailov (W&M) Towards fast gyroscope LPHYS, 2016 7 / 17

  • The first gyro setup and its performance

    Finesse = 20

    → Pulling 1/200

    D1 tuned around Fg = 1→ Fe = 1,2

    E. Mikhailov, et al. Optical Engineering, Issue 10, 53, 102709, (2014)

    Eugeniy E. Mikhailov (W&M) Towards fast gyroscope LPHYS, 2016 8 / 17

  • The first gyro setup and its performance

    P.F . =∆fdispersive

    ∆fempty=

    1ng

    ∆fempty = f0∆pp

    Finesse = 20 → Pulling 1/200

    E. Mikhailov, et al. Optical Engineering, Issue 10, 53, 102709, (2014)Eugeniy E. Mikhailov (W&M) Towards fast gyroscope LPHYS, 2016 8 / 17

  • Gyro lasing: theory vs. experiment

    |2〉

    |1〉

    |3〉

    δ

    ∆HFS

    |4〉

    Ω 1Ω 2

    δ1Ω 3

    δ 3Ω 4

    δ 2 P

    δ 4

    Eugeniy E. Mikhailov (W&M) Towards fast gyroscope LPHYS, 2016 9 / 17

  • Gyro pulling and amplitude vs. gyro cavity detuning

    Cavity detuning span 150 MHz. Pulling ×100

    Eugeniy E. Mikhailov (W&M) Towards fast gyroscope LPHYS, 2016 10 / 17

  • Pulling factor with increased cavity finesse (20→ 70)

    |2〉

    |1〉

    |3〉

    δ

    ∆HFS

    |4〉

    Ω 1Ω 2

    δ1Ω 3

    δ 3Ω 4

    δ 2 P

    δ 4

    λ/2

    FIBER

    LENS

    PBSLENS

    D1 LASER

    Rb Cell

    MAGNETIC

    SHIELDING

    Rb87

    PBS

    D2 LASER

    CAMERA

    FIBERBEAMSPLITTER

    SCOPE

    PD

    SpectrumAnalyzer

    FASTPD

    P.F . =∆fdispersive

    ∆fempty

    =1ng

    ∆fempty = f0∆pp

    −600 −400 −200 0 200−0.05

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    20150803: Pulling factor vs. D2 laser detuning

    D2 laser detuning from F

    g=2 −> F

    e=3, MHz

    Pu

    llin

    g f

    acto

    r

    −600 −400 −200 0 2000

    0.05

    0.1

    0.15

    0.2

    20150803: Pulling factor averaged vs. D2 laser detuning

    D2 laser detuning from F

    g=2 −> F

    e=3, MHz

    Pu

    llin

    g f

    acto

    r

    −600 −400 −200 0 200−100

    −90

    −80

    −70

    −60

    −50

    20150803: Beat−note span vs. D2 laser detuning

    D2 laser detuning from F

    g=2 −> F

    e=3, MHz

    Fre

    qu

    en

    cy ,

    MH

    z

    −600 −400 −200 0 200−90

    −85

    −80

    −75

    −70

    20150803: Beat−note amplitude vs. D2 laser detuning

    D2 laser detuning from F

    g=2 −> F

    e=3, MHz

    Be

    at−

    no

    te a

    mp

    litu

    de

    , d

    Bm

    0 1 2 3 4−0.1

    0

    0.1

    0.2

    0.3

    0.4

    20150804: Pulling factor vs. D2 power

    D2 power, mW

    Pu

    llin

    g f

    acto

    r

    0 1 2 3 4−0.1

    0

    0.1

    0.2

    0.3

    0.4

    20150804: Pulling factor averaged vs. D2 power

    D2 power, mW

    Pu

    llin

    g f

    acto

    r

    0 1 2 3 4−86

    −84

    −82

    −80

    −78

    −76

    −74

    20150804: Beat−note span vs. D2 power

    D2 power, mW

    Fre

    qu

    en

    cy ,

    MH

    z

    0 1 2 3 4−90

    −85

    −80

    −75

    −70

    20150804: Beat−note amplitude vs. D2 power

    D2 power, mW

    Be

    at−

    no

    te a

    mp

    litu

    de

    , d

    Bm

    Eugeniy E. Mikhailov (W&M) Towards fast gyroscope LPHYS, 2016 11 / 17

  • Dependence on total pumps power

    Eugeniy E. Mikhailov (W&M) Towards fast gyroscope LPHYS, 2016 12 / 17

  • Dependence on 87Rb vapor density

    Low pumps power

    1.5 2 2.5 3 3.5

    x 1012

    0.06

    0.08

    0.1

    0.12

    0.14

    0.16

    Vapor Density, (Nparticles

    cm−3

    )

    Pu

    llin

    g f

    acto

    r

    20151002: Pulling factor vs. Vapor Density

    1.5 2 2.5 3 3.5

    x 1012

    0.06

    0.08

    0.1

    0.12

    0.14

    0.16

    Density, 1/cm3

    Pu

    llin

    g f

    acto

    r

    20151002: Pulling factor averaged vs. Vapor Density

    1.5 2 2.5 3 3.5

    x 1012

    −440

    −420

    −400

    −380

    −360

    −340

    Vapor Density, (Nparticles

    cm−3

    )

    Fre

    qu

    en

    cy ,

    MH

    z

    20151002: Beat−note span vs. Vapor Density

    1.5 2 2.5 3 3.5

    x 1012

    −86

    −84

    −82

    −80

    −78

    −76

    Vapor Density, (Nparticles

    cm−3

    )B

    ea

    t−n

    ote

    am

    plit

    ud

    e,

    dB

    m

    20151002: Beat−note amplitude vs. Vapor DensityHigh pumps power

    2 4 6 8 10 120.2

    0.4

    0.6

    0.8

    1

    1.220160708: Pulling factor vs. Density

    Density, 1012

    /cm3

    Pu

    llin

    g f

    acto

    r

    2 4 6 8 10 12

    0.7

    0.8

    0.9

    1

    1.120160708: Pulling factor averaged vs. Density

    Density, 1012

    /cm3

    Pu

    llin

    g f

    acto

    r

    2 4 6 8 10 12660

    680

    700

    720

    740

    760

    78020160708: Beat−note span vs. Density

    Density, 1012

    /cm3

    Fre

    qu

    en

    cy ,

    MH

    z

    2 4 6 8 10 12−68

    −66

    −64

    −62

    −6020160708: Beat−note amplitude vs. Density

    Density, 1012

    /cm3

    Be

    at−

    no

    te a

    mp

    litu

    de

    , d

    Bm

    Eugeniy E. Mikhailov (W&M) Towards fast gyroscope LPHYS, 2016 13 / 17

  • Gyroscope laser multi-mode structure

    Gyro beatnote spectrum vs. empty cavity offset

    Empty cavity detuning, MHz

    Beatn

    ote

    fre

    quency, M

    Hz

    0 20 40 60 80 100 120 140 160

    −400

    −300

    −200

    −100

    0

    −100 −80 −60

    −400

    −350

    −300

    −250

    −200

    −150

    −100

    −50

    0

    50

    dBm

    Fre

    quency, M

    Hz

    Cell temperature 110◦C, total power 350 mW.Modes pulling factors are 0.54, 0.45, 0.04.

    Eugeniy E. Mikhailov (W&M) Towards fast gyroscope LPHYS, 2016 14 / 17

  • High power regime: dependence on D2 detuning

    Pumps power ≈ 6 mW Pumps power ≈ 180 mW

    Eugeniy E. Mikhailov (W&M) Towards fast gyroscope LPHYS, 2016 15 / 17

  • People

    Irina Novikova, ShuangLi Du, Owen Wolfe, Demetrious Kutzke (WM),Dmitry Budker, Simon Rochester (Rochester Scientific).

    Eugeniy E. Mikhailov (W&M) Towards fast gyroscope LPHYS, 2016 16 / 17

  • Summary

    0 20 40 600

    10

    20

    30

    40

    50

    60

    Empty cavity shift, MHz

    Dis

    pe

    rsiv

    e c

    avity s

    hift,

    MH

    z

    −600 −400 −200 0 200−0.05

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    20150803: Pulling factor vs. D2 laser detuning

    D2 laser detuning from F

    g=2 −> F

    e=3, MHz

    Pulli

    ng facto

    r

    −600 −400 −200 0 2000

    0.05

    0.1

    0.15

    0.2

    20150803: Pulling factor averaged vs. D2 laser detuning

    D2 laser detuning from F

    g=2 −> F

    e=3, MHz

    Pulli

    ng facto

    r

    −600 −400 −200 0 200−100

    −90

    −80

    −70

    −60

    −50

    20150803: Beat−note span vs. D2 laser detuning

    D2 laser detuning from F

    g=2 −> F

    e=3, MHz

    Fre

    quency , M

    Hz

    −600 −400 −200 0 200−90

    −85

    −80

    −75

    −70

    20150803: Beat−note amplitude vs. D2 laser detuning

    D2 laser detuning from F

    g=2 −> F

    e=3, MHz

    Beat−

    note

    am

    plit

    ude, dB

    m

    Improved puling factor: 0.005→ 0.3 withincreased finesse (20→ 70)Increased pump lasers power (6 mW→200 mW) pushed the pulling factor to 1Setup has widely tunable responseinfluenced by

    pump lasers power and detuningdensity of 87Rb atomscavity finesse

    This allows us to tune the response of thesystem on demand

    We are grateful for financial support to

    Eugeniy E. Mikhailov (W&M) Towards fast gyroscope LPHYS, 2016 17 / 17

    Sagnac effectCavity responseModification of dispersionExperimental realizationGyro lasing simulationsGyro lasingPulling dependence on detunings, power, Rb densityPulling sensitivity at high power

    People