Download - Theory of Ordinary Differential Equations - Virginia …€¦ · Earl A. Coddington and Norman Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, 1955. (see pages 314

Transcript

MATH 4245 - FALL 2012

Theory of Ordinary Differential Equations

Stability and Bifurcation II

John A. Burns

Center for Optimal Design And Control

Interdisciplinary Center for Applied Mathematics

Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061-0531

0( ) nt R 0x x(IC)

( ) ( ),t f tx x q(Σ) {(IVP)

( , ) : n m nf D R R Rx q

1 1 1 2 1 2

2 2 1 2 1 2

1 2 1 2

( ) ( ( ), ( ),... ( ), , ,... )

( ) ( ( ), ( ),... ( ), , ,... )

( ) ( ( ), ( ),... ( ), , ,... )

n m

n m n

n n n m

x t f x t x t x t q q q

x t f x t x t x t q q qdR

dt

x t f x t x t x t q q q

Initial Value Problem

0( ) nt R 0x x(IC)

( ) ( ),t f tx x q(Σ) {(IVP)

( , ) : n m nf D R R R x q

( , ) ( ( ), ) 0 f fe ex q x q q

Let xe= xe (q) be an equilibrium for some parameter q, i.e.

We will assume xe= xe (q) is an isolated equilibrium

Autonomous Systems

nR( )2

x q

Isolated Equilibrium

( , ) ( ( ), ) 0, 1,2,3,... f f jj jx q x q q

( )1

x q

( )3

x q

( )4

x q

there exists a 0 such that ( ) if j jB i ji jx x ,

NON-ISOLATED EQUILIBRIUM CAN NOT BE

ASYMPTOTICALLY STABLE

( ) ( )x t qx t0( ) qtx t e x

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

( ) ( ) ( ( ), ) x t qx t f x t q

q = 0

q = 1.0

q = -.5

q = .5

q = -1.0

First Order Linear

( , ) 0 qx f x q 0ex

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0ex

q < 0

Equilibrium xe = 0, q < 0: Stable

( , ) 0 qx f x q 0ex q > 0

0 0.5 1 1.5 2 2.5-15

-10

-5

0

5

10

15

0ex

Equilibrium xe = 0, q > 0: Unstable

Equilibrium xe = 0, q = 0: Stable

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0ex

( , ) 0 qx f x q ex xq = 0

.25ex

.25ex

.1ex

.1ex

ANY

0 is NOT isolatedex

1 2( ) ( )x t x t3

2 1 2 1( ) ( ) ( ) [ ( )] x t qx t x t x t

1 2

3

2 1 2 1

0

[ ] 0

x xf

x qx x x

2 0x 2

1 1( [ ] ) 0 x q x

2

1 10 or ( [ ] ) 0 x q x

Example 4.2

2

2

1 1

0

( [ ] ) 0

x

x q x

1

2

0

0

x

x

q 0

1

2 0

x q

xq > 0

Example 4.2

1 ( , ) : ( , ) 0x y f x y y

3

2

3

( , ) : ( , ) 0

( , ) :

x y f x y ax y x

x y y ax x

1

3

2

( , ) 0 ( , ) :

( , ) 0

f x y yx y

f x y ax y x

0

0

Example 4.2

q = 1

Epidemic Models

Susceptible Infected

Removed

Epidemic Models

SIR Models (Kermak – McKendrick, 1927)

Susceptible – Infected – Recovered/Removed

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) constant

dS t S t I t

dt

dI t S t I t I t

dt

dR t I t

dt

S t I t R t N

SIR Models

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

dS t S t I t

dt

dI t S t I t I t I t S t

dt

( ) ( ) and ( ) ( ) ( ) constant d

R t I t S t I t R t Ndt

1 1 1 2

2 1 1 2 2 2

( ) ( ) ( )

( ) ( ) ( ) ( )

x t q x t x td

x t q x t x t q x tdt

1 2( ) ( ), ( ) ( ) and T

x t S t x t I t q

SIR Model: Equilibrium

1 1 1 2

2 1 1 2 2 2

( ) ( ) ( )

( ) ( ) ( ) ( )

x t q x t x td

x t q x t x t q x tdt

1 1 2 1 1 2

1 1 2 2 2 1 1 2 2

0

( ) 0

q x x q x x

q x x q x q x q x

1 1 2 0 q x x 1 20 or 0 x x

2 1 20 hence 0 q x x1 0x

1 can be any valuex2 0x

SIR Model: Equilibrium

NONE ARE ISOLATED

2R

1x

2x

EQUILIBRIUM

1

2

2

: 0

xx x

xex

SIR Model

x2(t)

x1(t)

x1(t) + x2(t) N = 1

( ) ( )x t f x t 0ef x

x0

2

t

0

xe

(t)= xe

x(t)

( ) et x

? HOW DO WE KNOW IF xe IS ASYMPTOTICALLY STABLE ?

Stability of Equilibrium

det( ( )) 0k xI f J ex

Let 1 , 2 , 3 , … n be the eigenvalues of Jxf(xe), i.e

(Re( ) , Im( ) )k k k k k k ki

Theorem S1: If Re(k) < 0 for all k=1,2, …. n, then xe is

an asymptotically stable equilibrium for the non-linear

system

In particular, there exist > 0 such that if

then

( ) ( ) .x t f x t

(0) , ex x lim ( ) 0.t

t

ex x

Fundamental Stability Theorem

Theorem S2: If there is one eigenvalue p such that

Re(p) > 0, then xe is an unstable equilibrium for the

non-linear system

( ) ( ) .x t f x t

Non-Stability Theorem

The two theorems above may be found in:

Richard K. Miller and Anthony N. Michel, Ordinary Differential

Equations, Academic Press, 1982. (see pages 258 – 253)

and

Earl A. Coddington and Norman Levinson, Theory of Ordinary

Differential Equations, McGraw-Hill, 1955. (see pages 314 – 321)

Critical Case

If there is one eigenvalue p of such that

Re(p) = 0, then xe the linearization theorems do not

apply and other methods must be used to determine the

stability properties of the equilibrium for the nonlinear

system

( ) ( ),x t f x t q

[ ( , )]x f qJ ex

31 1 1 2

32 2 1 2

( ) ( ) [ ( )] ( )

( ) ( ) ( ) [ ( )]

x t x t x t x tdf

x t x tdt x t x t

31 1 2

32 1 2

0[ ]

0[ ]

x x xf

x x x

1

2

0

0

x

x

e

x

?? IS STABLE ?? e

x 0

3

1 2

3

1 2

[ ]

and

[ ]

x x

x x

9 3

1 2 1

8

1

[ ] [ ]

or

[ ] 1

x x x

x

Example 5.1

1 2

2

1

2

2 0, 0

0 13[ ] 1( )

1 01 3[ ]

x

x x

xf

xJ 0

Try the linearization theorems

20 0 1 1

det ( ) det( ) det 10 1 3 1

I

J 0

2 1 0

1 i Re( ) 0 for 1,2i i

Theorem S1 and Theorem S2 do not apply

Example 5.1

“LOOKS”

ASYMPTOTICALLY STABLE

Example 5.1

1 1 2

3

2 2 1 2

( ) ( ) ( )

( ) ( ) [ ( )] 3 ( )

x t x t x tdf

x t x t q x t x tdt

1 2

3

2 1 2

0

[ ] 3 0

x xf

x q x x

1

2

0

0

x

x

e

x

1 2

2

1 0, 0

0 1 0 1( )

3 [ ] 3 0 3

x

x x

fq x

J 0

Try the linearization Theorem

?? IS ASYMPTOTICALLY STABLE ?? e

x 0

Example 5.2

0 0 1 1

det ( ) det( ) det ( 3)0 0 3 0 3

I

J 0

( 3) 0

1 20 and 3 1Re( ) 0

Linearization Theorems do not apply

BUT

Example 5.2

ZOOM IN

Example 5.2

“LOOKS”

ASYMPTOTICALLY STABLE

Example 5.2

nR

x3

x1

e

x 0

ex

ˆe

x

( ) : nV H R R x

0 and , for 0n

e eH R x H x

0

an open set

nH R

Isolated Equilibrium

e

x 0

0

an open set

nH R ex

( ) : nV H R R x

x

1 2( ) ( , ,... )nV V x x xx

If and ( ) 0V 0 ( ) 0, V , when thenx x 0

( ) V is said to be positive definitex

Lyapunov Functions

1

2

( )

( )( )

( )

n

n

f

fdt R

dt

f

x

xx

x

We define the function by ( ) : nV H R R x.

1 2

1 2

( ) ( ) ( )( ) ( ) ( ) ... ( )

n

n

V V V

x x xV f f f

x x xx x x x

.

1 2

T n

nx x x R x

( ) : nV H R R x 1 2( ) ( , ,... )nV V x x xx

Lyapunov Functions

( ) : nV H R R x is called a Lyapunov function

for the equilibrium of the system e

x 0

( ) ( )t f tx x(Σ)

( ) ( ) is positive definite in

( ) ( ) 0 for all

i V H

ii V x H

and

x

x

if

.

Lyapunov Functions

Theorem L1. If there exists a Lyapunov function for

the equilibrium of the system

then the equilibrium is stable.

e

x 0

( ) ( ) ,t f tx x(Σ)

e

x 0

Theorem L2. If there exists a Lyapunov function for

the equilibrium of the system

and

then the equilibrium is asymptotically stable.

e

x 0

( ) ( ) ,t f tx x(Σ)

e

x 0

( ) 0 and ( ) 0 for all , V V H 0 x x x 0,. .

Lyapunov Theorems

31 1 1 2

32 2 1 2

( ) ( ) [ ( )] ( )

( ) ( ) ( ) [ ( )]

x t x t x t x tdf

x t x tdt x t x t

2 2

1 2 1 2( ) ( , ) [ ] [ ]V V x x x x x

2 is an open setH R 0

2 2

1 2 1 2and( ) 0 ( ) ( , ) [ ] [ ] 0 if V V V x x x x 0 x x 0

Hence, ( ) V is positive definitex

?? IS STABLE ?? e

x 0

Example 5.1 … AGAIN

1 2 1 2

1 2

1 2 1 1 2 2 1 2

( , ) ( , )( , ) ( , ) ( , )

V x x V x x

x xV x x f x x f x x

.

2 2

1 2 1 2( ) ( , ) [ ] [ ]V V x x x x x

1 21

1

( , )2

V x xx

x

1 22

2

( , )2

V x xx

x

1 2 1 2

1 2

1 2 1 1 2 2 1 2

( , ) ( , )( , ) ( , ) ( , )

V x x V x x

x xV x x f x x f x x

. 12x 22x3

1 2( [ ] )x x 3

1 2( [ ] )x x

31 1 1 2 1 2

32 2 1 2 1 2

( , ) [ ]

( , ) [ ]

x f x x x xf

x f x x x x

Example 5.1 … AGAIN

1 2 1 2

1 2

1 2 1 1 2 2 1 2

( , ) ( , )( , ) ( , ) ( , )

V x x V x x

x xV x x f x x f x x

. 12x 22x3

1 2( [ ] )x x 3

1 2( [ ] )x x

4 4

1 2 1 1 2 1 2 2( , ) 2[ ] 2 2 2[ ]V x x x x x x x x .

4 4

1 2 1 2( , ) 2([ ] [ ] )V x x x x .

4 4(0,0) 2([0] [0] ) 0V .

4 4

1 2 1 2( , ) 2([ ] [ ] ) 0V x x x x .

1

2

0

0

x

x

and if , then Theorem L2 IS

ASYMPTOTICALLY

STABLE

e

x 0

Example 5.1 … AGAIN

2 4

1 2 2 12

( ) ( , ) [ ] [ ]q

V V x x x x x

2 is an open setH R 0

2 4

1 2 2 12

and( ) 0 ( ) ( , ) [ ] [ ] 0 if q

V V V x x x x 0 x x 0

Hence, ( ) V is positive definitex

1 1 2

3

2 2 1 2

( ) ( ) ( )

( ) ( ) [ ( )] 3 ( )

x t x t x tdf

x t x t q x t x tdt

1 2

3

2 1 2

0

[ ] 3 0

x xf

x q x x

1

2

0

0

x

x

e

x

0q

Example 5.2 … AGAIN

1 2 1 1 2

3

2 1 2 2 1 2

( , )

[ ] 3 ( , )

x x f x xf

x q x x f x x

1 2 1 2

1 2

1 2 1 1 2 2 1 2

( , ) ( , )( , ) ( , ) ( , )

V x x V x x

x xV x x f x x f x x

.

31 21

1

( , )2 [ ]

V x xq x

x

1 22

2

( , )2

V x xx

x

1 2 1 2

1 2

1 2 1 1 2 2 1 2

( , ) ( , )( , ) ( , ) ( , )

V x x V x x

x xV x x f x x f x x

. 3

12 [ ]q x 22x2x 3

1 2( [ ] 3 )q x x

2 4

1 2 2 12

( ) ( , ) [ ] [ ]q

V V x x x x x

Example 5.2 … AGAIN

3 3 2 2

1 2 1 2 1 2 2 2( , ) 2 [ ] 2 [ ] 6[ ] 6[ ]V x x q x x q x x x x .

1 2 1 2

1 2

1 2 1 1 2 2 1 2

( , ) ( , )( , ) ( , ) ( , )

V x x V x x

x xV x x f x x f x x

. 3

12 [ ]q x 22x2x 3

1 2( [ ] 3 )q x x

e

x 0

Hence, 2 2

2( ) 6[ ] 0 for all V x H R x x.

and Theorem L1 implies that is stable

?? IS ASYMPTOTICALLY STABLE ?? e

x 0

Example 5.2 … AGAIN

?? IS ASYMPTOTICALLY STABLE ?? e

x 0

2

1 2 2( , ) 6[ ] 0V x x x .

2(0,0) 6[0] 0V .

. 2(1,0) 6[0] 0V

BUT

SO

( ) 0 for all , V H x x x 0.

Theorem L2 does not apply

NEED A BETTER THEOREM

Example 5.2 … AGAIN

1 1 2

3

2 2 1 2

( ) ( ) ( )

( ) ( ) ( ) [ ( )]

x t x t x tdf

x t x t x t x tdt

1 2

3

2 1 2

0

[ ] 0

x xf

x x x

1

2

0

0

x

x

e

x

1 2

2

2 0, 0

0 1 0 1( )

1 [ ] 1 0x

x x

fx

J 0

Try the linearization Theorem

?? IS STABLE ?? e

x 0

Example 5.3

20 0 1 1

det ( ) det( ) det 10 1 0 1

I

J 0

2 1 0

1 i Re( ) 0 for 1,2i i

Linearization Theorems do not apply

BUT

Example 5.3

ZOOM IN

Example 5.3

“LOOKS”

LIKE A CENTER

Example 5.3

1 1 2

3

2 2 1 2

( ) ( ) ( )

( ) ( ) ( ) [ ( )]

x t x t x tdf

x t x t x t x tdt

2 2

1 2 1 2( ) ( , ) [ ] [ ]V V x x x x x

1 2

3

2 1 2

0

[ ] 0

x xf

x x x

1

2

0

0

x

x

e

x

2 is an open setH R 0

2 2

1 2 1 2and( ) 0 ( ) ( , ) [ ] [ ] 0 if V V V x x x x 0 x x 0

Hence, ( ) V is positive definitex

Example 5.3

1 2 1 1 2

3

2 1 2 2 1 2

( , )

[ ] ( , )

x x f x xf

x x x f x x

1 2 1 2

1 2

1 2 1 1 2 2 1 2

( , ) ( , )( , ) ( , ) ( , )

V x x V x x

x xV x x f x x f x x

.

2 2

1 2 1 2( ) ( , ) [ ] [ ]V V x x x x x

1 21

1

( , )2

V x xx

x

1 22

2

( , )2

V x xx

x

1 2 1 2

1 2

1 2 1 1 2 2 1 2

( , ) ( , )( , ) ( , ) ( , )

V x x V x x

x xV x x f x x f x x

. 12x 22x2x 3

1 2( [ ] )x x

Example 5.3

1 2 1 2

1 2

1 2 1 1 2 2 1 2

( , ) ( , )( , ) ( , ) ( , )

V x x V x x

x xV x x f x x f x x

. 12x 22x2x 3

1 2( [ ] )x x

3

1 2 1 2 2 1 2( , ) 2 2 ( [ ] )V x x x x x x x .

4 4

1 2 1 2 2 1 2 2( , ) 2 2 2[ ] 2[ ]V x x x x x x x x .

4 2

2( ) 2[ ] 0 for all V x H R x x.

e

x 0

Hence,

and Theorem L1 implies that is stable

?? IS ASYMPTOTICALLY STABLE ?? e

x 0

Example 5.3

?? IS ASYMPTOTICALLY STABLE ?? e

x 0

4

1 2 2( , ) 2[ ] 0V x x x .

4(0,0) 2[0] 0V .

. 4(1,0) 2[0] 0V

BUT

SO

( ) 0 for all , V H x x x 0.

Theorem L2 does not apply

NEED A BETTER THEOREM

Example 5.3

nR

x3

x1

M

0x

0x

0( ) ( ; ) for all t t M t t 0

x x x

M0

x

0( ) nt R 0x x(IC)

( ) , ( )t f t tx x(Σ)

Positively Invariant Sets

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

dS t S t I t

dt

dI t S t I t I t I t S t

dt

If ( ) , then

( ) ( ) ( ) 0

S t

dI t I t S t

dt

NOT ISOLATED

NSI ee 0 ,0

Equilibrium

SIR Models

I(t)

S(t)

S(t) + I(t) N = 1

M

M0

LOTS OF (POSITIVELY)

INVARIANT SETS

SIR Models

0( ; , ) nt t R0x x

0( ; , ) nt t R0x x

nR0x

nR0x

Trajectories

Given , the (positive) trajectory through

Is the set

nR0x 0x

0 0( ; , ) :nt t R t t 0x x

Given , the (negative) trajectory through

Is the set

nR0x 0x

0 0( ; , ) :nt t R t t 0x x

Given , the trajectory through

Is the set

nR0x 0x

0( ; , ) : ( , )nt t R t 0x x

Trajectories & Limit Sets

Given , a point p belongs to the omega

limit set (-limit set) of

if for each and every there is a

such that

nR0x

0( ; , ) nt t R0x x

0 0T t t T

0( ; , )t t p 0x x <

( ) : is an -limit point of nR 0 0x p p x

-limit Sets

( ) : is an -limit point of nR 0 0x p p x

0( ) : there is a sequence with lim ( ; , )k kk

t t t

0 0x p x x p

Theorem LIM1. If is bounded for

, then

is a non-empty, compact and connected positively

invariant set.

0( ; , ) nt t R0x x

0t t( ) 0x

0 0ˆ ˆˆ ˆ( ; , ) ( ) for all t t t t 0 0x x x

ˆ ( )0 0x x

-limit Sets

nR

x3

x1

( ) ( ; )

as

t t M

t

0x x x

M

0

For any 0 there is a

( ) such that

if ( ), then there is

a point with

( ; )

T T t

t T

p M

t p

0x x <

Convergence to a Set

nR

x3

x1

x2

M

0( ; , ) nt t R0x x

1 0( ; , )t t 0x xM1p

0( ( ); , )T t 0x x

2 0( ; , )t t 0x x

M2p

Convergence to a Set

Example NS2

M

Example NS2

( ) ( )x t y t2 2( ) ( ) ([ ( )] [ ( )] 1) ( )y t x t x t y t y t

1 2

2 2

2 1 1 2 2

( ) ( )

( ) ( ) ([ ( )] [ ( )] 1) ( )

x t x td

x t x t x t x t x tdt

1 2

2 2

2 1 1 2 2

0

([ ] [ ] 1) 0

x xf

x x x x x

2 0x 1 0x

Example 4.1 .. again a =1 > 0

Example 4.1 .. again a =1 > 0

M

Example 4.1 .. again a =1 > 0

M

Example 4.1 .. again a =1 > 0

LIMIT CYCLE

M

Example 4.1 .. again a =1 > 0

Theorem LIM2. If is bounded for

, then

i.e. approaches its -limit set.

0( ; , ) nt t R0x x

0t t0( ; , ) ( )t t 0 0x x x

0( ; , )t t 0x x

Theorem LIM3. If is bounded for

, and then

0( ; , ) nt t R0x x

0t t ( ) M 0x

0( ; , )t t M0x x

LaSalle Theorems

0( ; , ) nt t R0x x

( ) 0x

0x

M

Theorem LIM2: Example NS2

ˆLet be a bounded closed positively invariant setnH R

H

ˆ( ) : nV H R R x

minˆ ( ) ( ) > , for all

ˆ ( ) ( ) 0 for all

i V v H

ii V x H

and

x x

x.

ˆ : ( ) 0E H V x x.

E

ˆ is LARGEST invariant subset of E H E M

LaSalle’s Invariance Theorem

0( ; , )t t 0x x M

Theorem LaSalle IP: If is a

function satisfying (i) and (ii) above and

is the largest

invariant subset of

, then

for each the trajectory

approaches M.

H0x

ˆ( ) : nV H R R x

ˆE H M

ˆ : ( ) 0E H V x x.

0( ; , )t t 0x x

H

0x

EM

Lets apply this to some previous examples

0( ; , )t t 0x x M

LaSalle’s Invariance Theorem

2 4

1 2 2 12

( ) ( , ) [ ] [ ]q

V V x x x x x

2 is an open setH R 0

2 4

1 2 2 12

and( ) 0 ( ) ( , ) [ ] [ ] 0 if q

V V V x x x x 0 x x 0

Hence, ( ) V is positive definitex

1 1 2

3

2 2 1 2

( ) ( ) ( )

( ) ( ) [ ( )] 3 ( )

x t x t x tdf

x t x t q x t x tdt

1 2

3

2 1 2

0

[ ] 3 0

x xf

x q x x

1

2

0

0

x

x

e

x

0q

Example 5.2 … AGAIN

1 2 1 1 2

3

2 1 2 2 1 2

( , )

[ ] 3 ( , )

x x f x xf

x q x x f x x

1 2 1 2

1 2

1 2 1 1 2 2 1 2

( , ) ( , )( , ) ( , ) ( , )

V x x V x x

x xV x x f x x f x x

.

31 21

1

( , )2 [ ]

V x xq x

x

1 22

2

( , )2

V x xx

x

1 2 1 2

1 2

1 2 1 1 2 2 1 2

( , ) ( , )( , ) ( , ) ( , )

V x x V x x

x xV x x f x x f x x

. 3

12 [ ]q x 22x2x 3

1 2( [ ] 3 )q x x

2 4

1 2 2 12

( ) ( , ) [ ] [ ]q

V V x x x x x

Example 5.2 … AGAIN

3 3 2 2

1 2 1 2 1 2 2 2( , ) 2 [ ] 2 [ ] 6[ ] 6[ ]V x x q x x q x x x x .

1 2 1 2

1 2

1 2 1 1 2 2 1 2

( , ) ( , )( , ) ( , ) ( , )

V x x V x x

x xV x x f x x f x x

. 3

12 [ ]q x 22x2x 3

1 2( [ ] 3 )q x x

e

x 0

Hence, 2 2

2( ) 6[ ] 0 for all V x H R x x.

and Theorem L1 implies that is stable

?? IS ASYMPTOTICALLY STABLE ?? e

x 0

Example 5.2 … AGAIN

?? IS ASYMPTOTICALLY STABLE ?? e

x 0

2

1 2 2( , ) 6[ ] 0V x x x .

2(0,0) 6[0] 0V .

. 2(1,0) 6[0] 0V

BUT

SO

( ) 0 for all , V H x x x 0.

Theorem L2 does not apply

APPLY LaSALLE’s Theorem

Example 5.2 … AGAIN

1 2( , ) : ( ) 2ˆ . 4 x x VH x

2 4

1 2 2 12

( ) ( , ) [ ] [ ]q

V V x x x x x

Example 5.2 … AGAIN q= -.5

Example 5.2 … AGAIN q= -.5

ˆ : ( ) 0E H V x x.

1 2 2ˆ( , ) : 0 E x x H xx

1 2

3

2 1 2

( ) ( )

( ) [ ( )] 3 ( )

x t x td

x t q x t x tdt

1x

2x

2

1 2 2( , ) : 6[ ] 0x x xE x { } e

M x 0

2IF ( ) 0, thenx t 3

2 1 20 ( ) [ ( )] 3 ( )x t q x t x t

1( ) 0x t

1

2

0

0

x

x

e

x

Invariant Sets in E

1x

2x

2

1 2 2( , ) : 6[ ] 0x x xE x { } e

M x 0

ˆ is LARGEST invariant subset of E EH M

0( ; , )t t 0 ex x M = x = 0

LaSalle’s Invariance Theorem Implies

Hence IS ASYMPTOTICALLY STABLE e

x 0

Example 5.2 … AGAIN

1 1 2

3

2 2 1 2

( ) ( ) ( )

( ) ( ) ( ) [ ( )]

x t x t x tdf

x t x t x t x tdt

1 2

3

2 1 2

0

[ ] 0

x xf

x x x

1

2

0

0

x

x

e

x

1 2

2

2 0, 0

0 1 0 1( )

1 [ ] 1 0x

x x

fx

J 0

Try the linearization Theorem

?? IS STABLE ?? e

x 0

Example 5.3 … AGAIN

20 0 1 1

det ( ) det( ) det 10 1 0 1

I

J 0

2 1 0

1 i Re( ) 0 for 1,2i i

Linearization Theorems do not apply

BUT

Example 5.3 … AGAIN

ZOOM IN

Example 5.3 … AGAIN

“LOOKS”

LIKE A CENTER

Example 5.3 … AGAIN

1 1 2

3

2 2 1 2

( ) ( ) ( )

( ) ( ) ( ) [ ( )]

x t x t x tdf

x t x t x t x tdt

2 2

1 2 1 2( ) ( , ) [ ] [ ]V V x x x x x

1 2

3

2 1 2

0

[ ] 0

x xf

x x x

1

2

0

0

x

x

e

x

2 is an open setH R 0

2 2

1 2 1 2and( ) 0 ( ) ( , ) [ ] [ ] 0 if V V V x x x x 0 x x 0

Hence, ( ) V is positive definitex

Example 5.3 … AGAIN

1 2 1 1 2

3

2 1 2 2 1 2

( , )

[ ] ( , )

x x f x xf

x x x f x x

1 2 1 2

1 2

1 2 1 1 2 2 1 2

( , ) ( , )( , ) ( , ) ( , )

V x x V x x

x xV x x f x x f x x

.

2 2

1 2 1 2( ) ( , ) [ ] [ ]V V x x x x x

1 21

1

( , )2

V x xx

x

1 22

2

( , )2

V x xx

x

1 2 1 2

1 2

1 2 1 1 2 2 1 2

( , ) ( , )( , ) ( , ) ( , )

V x x V x x

x xV x x f x x f x x

. 12x 22x2x 3

1 2( [ ] )x x

Example 5.3 … AGAIN

1 2 1 2

1 2

1 2 1 1 2 2 1 2

( , ) ( , )( , ) ( , ) ( , )

V x x V x x

x xV x x f x x f x x

. 12x 22x2x 3

1 2( [ ] )x x

3

1 2 1 2 2 1 2( , ) 2 2 ( [ ] )V x x x x x x x .

4 4

1 2 1 2 2 1 2 2( , ) 2 2 2[ ] 2[ ]V x x x x x x x x .

e

x 0

Hence, 4 2

2( ) 2[ ] 0 for all V x H R x x.

and Theorem L1 implies that is stable

?? IS ASYMPTOTICALLY STABLE ?? e

x 0

Example 5.3 … AGAIN

?? IS ASYMPTOTICALLY STABLE ?? e

x 0

4

1 2 2( , ) 2[ ] 0V x x x .

4(0,0) 2[0] 0V .

. 4(1,0) 2[0] 0V

BUT

SO

( ) 0 for all , V H x x x 0.

Theorem L2 does not apply

APPLY LaSALLE’s Theorem

Example 5.3 … AGAIN

1 2( , ) : ( ) 1ˆ . x x VH x

2 2

1 2 2 1( ) ( , ) [ ] [ ] V V x x x xx

Example 5.2 … AGAIN q= -.5

H

4

1 2 2( , ) : 2[ ] 0x x xE x

ˆ : ( ) 0H VE x x.

Example 5.3 … AGAIN

1 2

3

2 1 2

( ) ( )

( ) ( ) 3[ ( )]

x t x td

x t x t x tdt

1x

2x

4

1 2 2( , ) : 2[ ] 0x x xE x { } e

M x 0

2IF ( ) 0, thenx t 3

2 1 20 ( ) ( ) [ ( )]x t x t x t

1( ) 0x t

1

2

0

0

x

x

e

x

Example 5.3 … AGAIN

1x

2x

4

1 2 2( , ) : 2[ ] 0x x xE x { } e

M x 0

ˆ is LARGEST invariant subset of E EH M

0( ; , )t t 0 ex x M = x = 0

LaSalle’s Invariance Theorem Implies

Hence IS ASYMPTOTICALLY STABLE e

x 0

Example 5.3 … AGAIN

1 2( ) ( )x t x t3

2 1 2 1( ) ( ) ( ) [ ( )] x t qx t x t x t

1 2

3

2 1 2 1

0

[ ] 0

x xf

x qx x x

2 0x 2

1 1( [ ] ) 0 x q x

2

1 10 or ( [ ] ) 0 x q x

Example 4.2 … AGAIN

1 2

3

2 1 2 1[ ]

x xf

x qx x x

1

2

2 1

0 1( )

3[ ] 1

x x

xf f

x q xJ Jx

1

2

0

0e

x

x

x0q

Example 4.2 … AGAIN

1

2

2 1

0 1( )

3[ ] 1

x x

xf f

x q xJ Jx

1

2

0

0e

x

x

x

0 0 1( )

0 1J Jx e xf f

q

x

Example 4.2: q 0 … AGAIN

1 0 0 1 1

0 1 1 1q q

2 0 q

Example 4.2: q < 0 … AGAIN

1 0

( ( )0 1

J f

x 0

Theorem S1 IMPLIES 0

0

ex is asymptotically stable

1 2( ) 0 and ( ) 0real real

IN ALL CASES WHEN 0q

Theorem S1 IMPLIES

0

0

ex is asymptotically stable

IN ALL CASES WHEN 0q

Example 4.2: q > 0

Also, we found that

1 2 2

3 3

2 1 2 1 2 1[ ] [ ]

x x xf

x qx x x x x

1

2

0

0

x

x

ex

0 0 1 0 1( )

0 1 0 1J Jx xf f

q

ex

Example 4.2: q = 0

0 0 1( )

0 0 1J Jx xf f

ex

1 0 0 1 1

0 1 0 1 0 1

1det ( 1) 0

0 1

2 0 1 0 1 1

Example 4.2: q = 0

2 4

1 2 2 1

1

2( ) ( , ) [ ] [ ]V V x x x x x

2 is an open setH R 0

2 4

1 2 2 1

1

2and( ) 0 ( ) ( , ) [ ] [ ] 0 if V V V x x x x 0 x x 0

Hence, ( ) V is positive definitex

1 2 2

3 3

2 1 2 1 2 1[ ] [ ]

x x xf

x qx x x x x

Example 4.2: q = 0

1 2 1 1 2

3

2 1 2 2 1 2

( , )

[ ] ( , )

x x f x xf

x x x f x x

1 2 1 2

1 2

1 2 1 1 2 2 1 2

( , ) ( , )( , ) ( , ) ( , )

V x x V x x

x xV x x f x x f x x

.

31 21

1

( , )2[ ]

V x xx

x

1 22

2

( , )2

V x xx

x

1 2 1 2

1 2

1 2 1 1 2 2 1 2

( , ) ( , )( , ) ( , ) ( , )

V x x V x x

x xV x x f x x f x x

. 3

12[ ]x 22x2x 3

1 2( [ ] )x x

2 4

1 2 2 1

1

2( ) ( , ) [ ] [ ]V V x x x x x

Example 4.2: q = 0

1 2 1 2

1 2

1 2 1 1 2 2 1 2

( , ) ( , )( , ) ( , ) ( , )

V x x V x x

x xV x x f x x f x x

. 3

12[ ]x 22x2x 3

1 2( [ ] )x x

3 3 2 2

1 2 1 2 1 2 2 2( , ) 2[ ] 2[ ] 2[ ] [ ]V x x x x x x x x .

e

x 0

Hence, 2 2

2( ) 2[ ] 0 for all V x H R x x.

and Theorem L1 implies that is stable

?? IS ASYMPTOTICALLY STABLE ?? e

x 0

Example 4.2: q = 0

1 2

3

2 1 2

( ) ( )

( ) [ ( )] ( )

x t x td

x t x t x tdt

1x

2x

2

1 2 2( , ) : 2[ ] 0x x xE x { } e

M x 0

2IF ( ) 0, thenx t 3

2 1 20 ( ) [ ( )] ( )x t x t x t

1( ) 0x t

1

2

0

0

x

x

e

x

Example 4.2: q = 0

1x

2x

4

1 2 2( , ) : 2[ ] 0x x xE x { } e

M x 0

ˆ is LARGEST invariant subset of E EH M

0( ; , )t t 0 ex x M = x = 0

LaSalle’s Invariance Theorem Implies

Hence IS ASYMPTOTICALLY STABLE e

x 0

Example 4.2: q = 0

q 0

R2

0

0

0x

0

q

1x

0

q

2x

STABLE UNSTABLE

STABLE

STABLE

0

0

0x

LaSalle’s Invariance

Theorem Implies ? EXPONENTIALLY?

?STABLE?

Bifurcation Diagram: Example 4.2

( ) ( )x t y t2 2( ) ( ) ([ ( )] [ ( )] 1) ( )y t qx t x t y t y t

1 2

2 2

2 1 1 2 2

( ) ( )

( ) ( ) ([ ( )] [ ( )] 1) ( )

x t x td

x t qx t x t x t x tdt

1 2

2 2

2 1 1 2 2

0

([ ] [ ] 1) 0

x xf

x qx x x x

2 0x 1 0x

Example 4.1 q < 0

Example 4.1 q = -1

0

0

1 ( , ) : ( , ) 0x y f x y y

2 2

2 ( , ) : ( , ) ( 1) 0x y f x y qx x y y

1

2 2

2

( , ) 0 ( , ) :

( , ) ( 1) 0

f x y yx y

f x y qx x y y

1q

Example 4.1 q = -1

1

2

( ) sin( )

( ) cos( )

x t t

x t t

PERIODIC SOLUTION

1q

2 2

1 2([ ( )] [ ( )] 1) 0x t x t

Example 4.1 q = -1

1

2

( ) sin( )

( ) cos( )

x t t

x t t

1q

LIMIT CYCLE

Example 4.1 q = -1

1q

Example 4.1 q = -1

1 2

2 2

2 1 1 2 2

( ) ( )

( ) ( ) ([ ( )] [ ( )] 1) ( )

x t x td

x t x t x t x t x tdt

1 2

2 2

2 1 1 2 2

0

([ ] [ ] 1) 0

x xf

x x x x x

2 0x 1 0x

2 2 2

1 2 1 2

1

4( ) ( , ) ([ ] [ ] 1)V V x x x x x

Example 4.1 q = -1

2 21 21 1 2

1

( , )([ ] [ ] 1)

V x xx x x

x

2 21 22 1 2

2

( , )([ ] [ ] 1)

V x xx x x

x

1 2 1 2

1 2

1 2 1 1 2 2 1 2

( , ) ( , )( , ) ( , ) ( , )

V x x V x x

x xV x x f x x f x x

.

1 2

2 2

2 1 1 2 2

0

([ ] [ ] 1) 0

x xf

x x x x x

2 2 2

1 2 1 2

1

4( ) ( , ) ([ ] [ ] 1)V V x x x x x

2 2 2 2 2 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2 2( , ) ([ ] [ ] 1) ([ ] [ ] 1) ([ ] [ ] 1)V x x x x x x x x x x x x x .

2 2

1 1 2 2( ([ ] [ ] 1) )x x x x 2x2 2

1 1 2([ ] [ ] 1)x x x 2 2

2 1 2([ ] [ ] 1)x x x

Example 4.1 q = -1

2 2 2 2 2 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2 2( , ) ([ ] [ ] 1) ([ ] [ ] 1) ([ ] [ ] 1)V x x x x x x x x x x x x x .

2 2 2 2

1 2 1 2 2( , ) ([ ] [ ] 1) 0V x x x x x .

2 2 2 2

1 2 1 2 2ˆ( , ) : ([ ] [ ] 1) 0x x x xE H x x

ˆ : ( ) 0H VE x x.

2 2

1 2 1 2 1 2 2ˆ ˆ( , ) : ([ ] [ ] 1) 0 ( , ) : 0x x H x x x x xE H x x

2 2

1 2 11 2ˆ( , ) : ([ ] [ ] 1) 0x x H x xE x

1 2E E E 1 22 2

ˆ( , ) : 0x x H xE x

WHAT IS H

Example 4.1 q = -1

1 2( , ) : ( )ˆ 2x x VH x

2 2 2

1 2 1 2

1

4( ) ( , ) ([ ] [ ] 1)V V x x x x x

1E

2E

2 { } e

x 0M

11

2 2

2 1 2{ [ , ] ([ ] [ ] 1) }Tx x x x x =M : 0

LIMIT CYCLE

Example 4.1 q = -1

1q

1 2( , ) : ( )ˆ 2x x VH x

3( ) ( ) [ ( )]x t qx t x t 3( , , ) [ ] 0f t x q qx x

q < 0 q > 0 q = 0

xe = 0 xe = 0

xe = -q(1/2)

xe = 0

xe = q(1/2)

Supercritical Pitchfork Bifurcation

Bifurcation Theory: 1D

q 0

R1

00x

1/ 2[ ]q1x

1/ 2[ ]q 2x

STABLE UNSTABLE

STABLE

STABLE

00x

Bifurcation Theory: 1D

3 5( ) ( ) [ ( )] [ ( )]x t qx t x t x t

3 5( , ) [ ] [ ] 0f x q qx x x

Bifurcation: 1D

1x

1x4

x2

x

3 5( ) ( ) [ ( )] [ ( )]x t qx t x t x t

3 5( , ) [ ] [ ] 0f x q qx x x

Bifurcation: 1D

1x

4x 2

x 3x

5x

1x

4x 2

x 3x

5x

3 5( ) ( ) [ ( )] [ ( )]x t qx t x t x t

3 5( , ) [ ] [ ] 0f x q qx x x

Bifurcation: 1D

3x

5x 3

x5

x1x

1x

q 0

R1

00x

3x

5x

STABLE UNSTABLE

STABLE

STABLE

00x

q = -.25

2x

4x

UNSTABLE

UNSTABLE

Subcritical Pitchfork Bifurcation

Bifurcation: 1D

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

q = -0.1

Bifurcation: 1D

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

q = 0

Bifurcation: 1D

q 0

R1

00x

3x

5x

STABLE UNSTABLE

STABLE

STABLE

00x

q = -.25

2x

4xUNSTABLE

UNSTABLE

Subcritical Pitchfork Bifurcation = BIG JUMP!!!

Bifurcation: 1D

2 2 2 2 2

2 2

( ) ( [ ( )] [ ( )] ([ ( )] [ ( )] ) ) ( )

( ([ ( )] [ ( )] )) ( )

x t q x t y t x t y t x t

b x t y t y t

2 2 2 2 2 2 2

2 2 2 2 2 2 2

0( ( ) ) ( ( ))

0( ( ) ) +( ( ))

x q x y x y x b x y yf

y q x y x y y b x y x

2 2 2 2 2

2 2

( ) ( [ ( )] [ ( )] ([ ( )] [ ( )] ) ) ( )

+( ([ ( )] [ ( )] )) ( )

y t q x t y t x t y t y t

b x t y t x t

0, 0 and b q

OR

Typical Hopf Bifurcation

2 2 2 2 2 2 2

2 2 2 2 2 2 2

0( ( ) ) ( ( ))

0( ( )) ( ( ) )

xq x y x y b x y

yb x y q x y x y

2 2 2 2 2 2 2

2 2 2 2 2 2 2

( ( ) ) ( ( ))det

( ( )) ( ( ) )

q x y x y b x y

b x y q x y x y

2 2 2 2 2 2 2 2 2( ( ) ) ( ( ))q x y x y b x y

0

0

x

y

ex

0, 0 and b q

2 2 2 2 2 2 2 2 2( ( ) ) ( ( )) 0q x y x y b x y

Typical Hopf Bifurcation

0( )

0J Jx x

qf f

q

ex

2 2 2 2 2 2 2

2 2 2 2 2 2 2

( ( ) ) ( ( ))

( ( ) ) +( ( ))

x q x y x y x b x y yf

y q x y x y y b x y x

1 0

0 1

q q

q q

2 2det ( ) 0q

qq

Typical Hopf Bifurcation

2 2det ( ) 0q

qq

2( )q

1 q i 2 q i

0q 0

0

ex 0 IS STABLE

0q 0

0

ex 0 IS UNSTABLE

( )iRe q

Typical Hopf Bifurcation

2 2 2 2 2

2 2

( ) ( [ ( )] [ ( )] ([ ( )] [ ( )] ) ) ( )

( ([ ( )] [ ( )] )) ( )

x t q x t y t x t y t x t

b x t y t y t

2 2 2 2 2

2 2

( ) ( [ ( )] [ ( )] ([ ( )] [ ( )] ) ) ( )

+( ([ ( )] [ ( )] )) ( )

y t q x t y t x t y t y t

b x t y t x t

( ) ( )cos( ( )) ( )sin( ( )) ( )

( ) ( )sin( ( )) ( )cos( ( )) ( )

x t r t t r t t t

y t r t t r t t t

( ) ( )cos( ( )) ( ) ( )sin( ( ))x t r t t y t r t t

Polar Coordinates

2 2 2 2 2

2 2

( ) ( [ ( )] [ ( )] ([ ( )] [ ( )] ) ) ( )

( ([ ( )] [ ( )] )) ( )

x t q x t y t x t y t x t

b x t y t y t

2( )r t 4[ ( )]r t ( )cos( ( ))r t t

2( )r t ( )sin( ( ))r t t

2 4( ) ( [ ( )] ([ ( )] ) ( )r t q r t r t r t

2( ) ( [ ( )] )t b r t

2 2 2 2 2

2 2

( ) ( [ ( )] [ ( )] ([ ( )] [ ( )] ) ) ( )

( ([ ( )] [ ( )] )) ( )

y t q x t y t x t y t y t

b x t y t x t

2( )r t 4[ ( )]r t

( )cos( ( ))r t t2( )r t

( )sin( ( ))r t t

Polar Coordinates

? HOW ?

WORK BACKWARDS

2 4( ) ( [ ( )] ([ ( )] ) ( )r t q r t r t r t

2( ) ( [ ( )] )t b r t

2 4( ) ( [ ( )] ([ ( )] ) ( )cos( ( ))

( )sin( ( )) ( )

x t q r t r t r t t

r t t t

( ) ( )cos( ( )) ( )sin( ( )) ( )x t r t t r t t t

2 4

2

( ) ( [ ( )] ([ ( )] ) ( )cos( ( ))

( )sin( ( ))( [ ( )] )

x t q r t r t r t t

r t t b r t

Polar Coordinates

2 2 2( ) cos( ) sin( )r x y x r y r

2 4

2

( ) ( [ ( )] ([ ( )] ) ( )cos( ( ))

( )sin( ( ))( [ ( )] )

x t q r t r t r t t

r t t b r t

2 2 2 2 2

2 2

( ) ( ([ ( )] [ ( )] ) (([ ( )] [ ( )] ) ) ( )cos( ( ))

( )sin( ( ))( ([ ( )] [ ( )] ))

x t q x t y t x t y t r t t

r t t b x t y t

2 2 2 2 2

2 2

( ) ( ([ ( )] [ ( )] ) (([ ( )] [ ( )] ) ) ( )

( )( ([ ( )] [ ( )] ))

x t q x t y t x t y t x t

y t b x t y t

Polar Coordinates

2 2 2 2 2

2 2

( ) ( ([ ( )] [ ( )] ) (([ ( )] [ ( )] ) ) ( )

( )( ([ ( )] [ ( )] ))

x t q x t y t x t y t x t

y t b x t y t

2 2 2 2 2

2 2

( ) ( [ ( )] [ ( )] ([ ( )] [ ( )] ) ) ( )

+( ([ ( )] [ ( )] )) ( )

y t q x t y t x t y t y t

b x t y t x t

2 4( ) ( [ ( )] ([ ( )] ) ( )r t q r t r t r t

2( ) ( [ ( )] )t b r t

Polar Coordinates

SIMILARLY …

2 4( ) ( [ ( )] ([ ( )] ) ( )r t q r t r t r t 2( ) ( [ ( )] )t b r t

3 5( ) ( ) [ ( )] [ ( )]r t qr t r t r t 2( ) ( [ ( )] )t b r t

3 5 qr r r 3 5 qr r r

Polar Coordinates

3 5( ) ( ) [ ( )] [ ( )]x t qx t x t x t

3 5( , ) [ ] [ ] 0f x q qx x x

Recall 1D example

3 5( ) ( ) [ ( )] [ ( )]r t qr t r t r t

2( ) ( [ ( )] )t b r t

3 5 qr r r 3 5 qr r r

Polar Coordinates

q = -.5

q = -.25

q = -.2

q = -.05

q = 0

q = 0.2

q 0

R2

0

0

0x

( )ts_lcx

STABLE

UNSTABLE

STABLE LIMIT CYCLE

0

0

0x

q = -.25

( )tus_lcx

4x

UNSTABLE LIMIT CYCLE

Subcritical Hopf Bifurcation = BIG JUMP!!!

Hopf Bifurication

Introduction to Dynamical Systems

Basic Ideas

Dynamical Systems

( ) ( , ) for all 0nt t R t x x z

(0) nR x z(IC) ( ) ( )t f tx x(Σ)

( ) ( , )S t x tz z( ) : n nS t R RDEFINE BY

( ) ( ) ( ) ( )ii S t S t S z z

( ) (0) : n n

ni S I R R

0( ) lim ( )

tiii S t

z z

Dynamical Systems

0 0lim ( ) lim ( , ) (0, )t t

S t x t x

z z z z

(0) (0, ) nS x I z z z = z

WHAT ABOUT (ii) ?

( ) ( ) ( ) ( )ii S t S t S z z

( ) : , 0n nS t R R t

A FAMILY OF CONTINUOUS OPERATORS

SATISFYING (i), (ii) and (iii) ABOVE IS CALLED A

DYNAMICAL SYSTEM ON nR

Dynamical Systems

( ) ( , )

( , ( , )) ( ) ( )

S t t

t x S t S

x

z

z

xz

z

z

( , ( , ))t x x z

( , )x z

0 time t

( , )t x z

Semi-groups

( ) ( ) ( ) ( )ii S t S t S z z

( ) (0) : n n

ni S I R R

0( ) lim ( )

tiii S t

z z

( ) : , 0 n nS t R R t

A FAMILY OF CONTINUOUS OPERATORS

SATISFYING

IS CALLED A SEMI-GROUP ON nR

nR

x3

x1

M

z

z

( ) ( ; ) for all 0S t t M t z x z

Mz

( ) : n nS t (Σ)

Invariant Sets

Positively Invariant Set

Invariant Sets

nR

x3

x1

M

z

z

( ) ( ; ) for all 0S t t M t z x z

Mz

Negatively Invariant Set

( ) : n nS t (Σ)

Invariant Sets

nR

x3

x1

M

z

z

( ) ( ; ) for all 0S t t M t z x z

Mz

Invariant Set

and

( ) ( ; ) for all 0S t t M t z x z

( ) : n nS t (Σ)

nR

x3

x1

( ) ( , )

as

S t t M

t

z x z

M

For any 0 there is a

0 such that

if , then there is

a point with

( )

T T

t T

p M

S t pz <

Convergence to a Set

nR

x3

x1

x2

M

( ) nS t Rz

1( )S t zM1p

( )S T z

2( )S t z

M2p

Convergence to a Set

Given , the (positive) orbit through is

the set

nRz z

( ) ( ) : 0 nS t R tz z

the (negative) orbit through is the set

z

( ) ( ) : 0 nS t R tz z

and the orbit through is the set z

( ) ( ) : ( , ) nS t R tz z

Orbits & Limit Sets

IF EXISTS FOR ALL ( )S t z 0t

Given , a point p is an omega limit point of

if for each and every there is a

such that

nz R

( )z

0 0T t T

( )zS t p <

-Limit Sets

0( ) ( )

s t sz zS t

___________

EQUIVALENTLY

( ) : is an -limit point of nz z R p p

- limit set of z

-Limit Sets

Given , a point p is an alpha limit point of

if for each and every there is a

such that

nz R

( )z

0 0T t T

( )zS t p <

1

0( ) [ ( )]

s t sz t zS

__________________EQUIVALENTLY

( ) : is an -limit point of nz z R p p

- limit set of z

Given , nRZ

Limit Sets

0( ) ( )

s t sS t

Z Z

____________

- limit set of Z

- limit set of Z

1

0( ) [ ( )]

s t sS t

Z Z

___________________

Invariant Set & Attractors

nRZ

( ) : , 0 n nS t R R t

if ( ) , 0S t t Z Z

A set , is (functional) invariant for the

semi-group

A set attracts a set under the

semi-group if, for any there exists a

such that

nRA

( ) ( , ) for all S t N t t B A

nRB

( )S t 0

( , ) 0t t A B

Attractors

( )S t B

B

( )S t B

A

( , )N A

An attractor is a set satisfying nRA

(i) is compact and invariant

and

(ii) attracts an open neighborhood of A

A

UA

Global Attractor

A global attractor is a set satisfying nRA

(i) is an attractor

and

(ii) attracts all bounded sets

A

A nRB

( ) : , 0 n nS t R R tA semi-group is

said to be dissipative if there is a bounded

positively invariant set that attracts all

bounded sets

nRWnRB

Dissipative System

( ) ( , ) for all 0nt t R t x x z

(0) nR x z(IC) ( ) ( )t f tx x(Σ)

( ) ( , )S t x tz z( ) : n nS t R RDEFINE BY

Theorem D1. If is smooth and there exist

constants such that

then the dynamical system defined by is dissipative

with absorbing set

0, 0

S t

(0, / ) : /B x x W

( ), for all , nf x x x Rx

: n nf R R

Dissipative System

( ) : , 0n nS t R R t

Theorem D2: If

is a dissipative dynamical system with absorbing set

, then

is a global attractor.

W

0( ) ( )

s t sS t

A W W

____________

A. M. Stuart and A. R. Humphries, Dynamical Systems and

Numerical Analysis, Cambridge University Press, 1998.

and

Jack K. Hale, Asymptotic Behavior of Dissipative Systems,

Mathematical Surveys 25, AMS Publications,Providence, RI 1989.