Download - Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

Transcript
Page 1: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

Super-Resolution Optical Microscopy

Bo HuangLight Microscopy

May 10, 2010

Page 2: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

1nm

10nm

100nm

1µm

10µm

0.1mm

1nm

10nm

100nm

1µm

10µm

0.1mm

1600 1700 1800 1900

Naked eye: ~ 50-100 μm

1595, Zaccharias and Hans JanssenFirst microscope, 9x magnification

Antony Van Leeuwenhoek(1632-1723), 200x Ernst Abbe (1840-1905)

The “physical” diffraction limit

Compound microscope>1000x

2000

d 2 NA

l

Page 3: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

The diffraction barrier

1nm

10nm

100nm

1µm

10µm

0.1mm

1nm

10nm

100nm

1µm

10µm

0.1mm

Atom

icCe

llula

rSu

b-ce

llula

rM

olec

ular

http://www.3dchem.com; http://cs.stedwards.edu; http://cvcweb.ices.utexas.edu; Fotin et al., Nature 2004; http://hrsbstaff.ednet.ns.ca; http://www.ebi.ac.uk

1 μm

Diffraction limit: ~ 250 nm lateral~ 600 nm axial

Page 4: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

50 years to extend the resolution

• Confocal microscopy (1957)• Near-field scanning optical microscopy

(1972/1984)• Multiphoton microscopy (1990)• 4-Pi microscopy / I5M (1991-1995)• Structured illumination microscopy (2000)• Negative refractive index (2006)

Page 5: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

Near-field scanning optical microscopy

Excitation light

Optical fiber

Aperture

Sample Ianoul et al., 2005

β2 adrenergic receptor clusters on the plasma membrane

~ 50 nm

Page 6: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

4-Pi / I5M

d 2 NA

l

NA = n sin

Major advantage:Similar z resolution as x-y resolution

Page 7: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

Patterned illumination

= x

x

Excitation Detection

Detector Detector

Page 8: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

Structured Illumination Microscopy (SIM)9 images

Reconstruction

WF SIM

Gustafsson, J Microscopy 2000

2

=

Page 9: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

The diffraction limit still exists

NAd

22

1 l·³

Confocal

4Pi / I5M

SIM

Page 10: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

Breaking the diffraction barrier

Page 11: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

Confocal

4Pi / I5M

SIM

Breaking the diffraction barrier

The Fluorophore!

Page 12: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

Stim

ulat

ed

Emis

sion

Stimulated Emission Depletion (STED)

Send to a dark state

Detector

h

2h

Exci

tatio

n

Fluo

resc

ence

sSTED II

FLFL

/10

FL0

0Is

Page 13: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

STED microscopy

ExcitationFluorescence

StimulatedEmission

÷ =

Excitation STEDpattern

EffectivePSF

Hell 1994, Hell 2000

Detector

Excitation

Depletion

Light modulator

?

Page 14: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

Saturated depletion

ISTED = ISISTED = 2 ISISTED = 10 ISISTED = 100 IS

STEDpattern

SaturatedDepletion

zero point

NAIId

s 2/1

1 l·

+=

Page 15: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

STED images of microtubules

Wildanger et al., 2009

Page 16: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

The “patterned illumination” approach

÷

Excitation Depletionpattern

• Ground state• Triplet state• Isomerization etc.

=

Multiple cycles

Page 17: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

Saturated SIM

Iex

FLFluorescencesaturation

Saturation level

Saturated illumination pattern

Sharp zero linesGustaffson, PNAS 2005

WF Deconvolution

SIM SSIM

50 nm resolution

Suffers from fast photobleaching under saturated excitation condition

Page 18: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

The single-molecule switching approach

Page 19: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

Single-Molecule Localization

FWHM ≈ 320 nm

Yildiz et al., Science, 2003

Image of one fluorescent molecule

Page 20: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

Single-molecule localization precision

1 photon

10 photons 100 photons 1000 photons

d 2 NA

l

NANd

2

1 l·=

Page 21: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

Super-resolution imaging by localizationRaw imagesConventional fluorescence STORM Image

2x real time

Activation LocalizationDeactivation

Also named as PALM (Betzig et al., Science, 2006) and FPALM (Hess et al., Biophys. J. 2006)

Huang et al., Annu Rev Biochem, 2009

Stochastic Optical Reconstruction Microscopy = STORM

Page 22: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

Photoswitching of red cyanine dyesph

otoa

ctiva

tion

Dea

ctiva

tion

650 nm

360 nm650 nm

Fluorescent

Dark

Cy5 / Alexa 647

NN+

+ thiol

Bates eta l., PRL 2005, Bates et al., Science 2007, Dempsey et al., JACS 2009

Page 23: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

B-SC-1 cell, anti-β tubulin

Commercial secondary antibody

5 μm500 nm

Alexa 647

40,000 frames, 1,502,569 localization points

-80-40

040

80

0

50

100

150

-80

-400

4080

FWHM = 24 nmstdev = 10 nm

Page 24: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

The “single-molecule switching” approach

Multiple photons

• Photoswitching• Blinking• Diffusion• Binding etc.

+StochasticSwitching =

Page 25: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

STORM probes commercially available or already in your lab

400 500 600 700 nm

Cyanine dye + thiol systemCy5

Cy5.5 Cy7

Rhodamine dye + redox system

Atto590

Alexa568

Atto655 Atto700Alexa488

Heilemann et al., 2009

Atto565

Bates et al., 2005, Bates et al., 2007, Huang et al., 2008

Photoactivatible fluorescent proteins

PA-GFP

PS-CFP2

Dronpa

mEosFP2

Dendra2

EYFP Reviews:Lukyanov et al., Nat. Rev. Cell Biol., 2005

Lippincott-Schwartz et al., Trends Cell Biol., 2009

Alexa532

Atto520

PAmCherry

Alexa647

Page 26: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

3D Imaging

Page 27: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

In a 2D world…Satellite image of ???

Google maps

Page 28: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

3D STED

Harke et al., Nano Lett, 2008

Page 29: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

3D STORM/PALM

EMCCD

(x, y, z)

4002000-200-400z (nm)

(x, y)Astigmatic imaging

Huang et al., Science 2008

Bi-plane imaging

Double-helical PSFJuette et al., Science 2008

EMCCD

SLM

14006000-500-900z (nm)Pavani et al., PNAS 2009

Page 30: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

5 μm

Huang, Wang, Bates and Zhuang,Science, 2008

Scale bar: 200 nm

3D Imaging of the Microtubule Networkz (nm)

300

0

600

Page 31: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

I5S

isoSTED

iPALM

4Pi scheme

The use of two opposing objectives

Near isotropic3D resolution

Shal et al., Biophys J 2008

Schmidt et al., Nano Lett 2009

Shtengel et al., PNAS 2009

Page 32: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

3D resolution of super-resolution methods

x-y (nm)

z (nm)

Opposing objectives (nm) Two-photon

Conventional 250 600 4Pi: 120

SIM 100 250 I5S: 120 xyz

STED ~30 ~100 isoSTED: 30 xyz 100 µm deep

STORM/PALM 20-30 50-60 iPALM: 20 xy, 10 z

Page 33: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

Multi-color Imaging

Page 34: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

Excitation 2

STED 2

Muticolor STED

Excitation

STED2 color isoSTED resolving

the inner and outer membraneof mitochondria

Schmidt et al., Nat Methods 2008

1 µm

Page 35: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

Multicolor STORM/PALM: Emission

n1 n2

n1 = n2 50% SRA545 + 50% SRA617? 100% SRA577?

Single-molecule detection!

3-color imaging with one excitation wavelengthand two detection channels

Bossi et al., Nano Lett 2008

Page 36: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

Multicolor STORM/PALM: activation

phot

oacti

vatio

n

Dea

ctiva

tion

650 nm

360 nm650 nm

Fluorescent

Dark

Cy5

Cy5

Cy3

Cy3532 nm

Page 37: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

1 μm

Bates, Huang, Dempsey and Zhuang,Science, 2007

█ Cy3 / Alexa 647: Clathrin

█ Cy2 / Alexa 647: Microtubule

Crosstalk subtracted

Laser sequence

457

532

……

Cy3 A647 Cy2 A647

Page 38: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

Multicolor imaging

Multicolor capability

ConventionalSIM 4 colors in the visible range

STED 2 colors so far

STORM/PALM 3 activation x 3 emission

Page 39: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

Live Cell Imaging

Page 40: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

SIM

STORM/PALM

STED

2 µm

Kner, Chhun et al., Nat Methods, 2009

Nagerl et al., PNAS, 2008

Schroff et al., Nat Methods, 2008

Page 41: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

The limit of “Super-Resolution”

Page 42: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

Unbound theoretical resolution

• STORM/PALM– 6,000 photons 5 nm– 100,000 photos during Cy5 life time < 1 nm

• STED– 1:100 contrast of the donut 20 nm– Diamond defects: 8 nm

NAd

2S1 l

·=

NS =

1+ I/IsS =

Page 43: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

Effective resolution: Probe size matters

100 nm

Antibodies: ~ 10 nm

Localization precision: 22 nm

Measured width by STORM: 56 nm

Actual microtubule diameter: 25 nm

Small fluorophores: ~ 1 nm

100 nm

Fluorescent Proteins:~ 3 nm

Bacillus subtilis spore

500 nm

< 1000 photons ~ 6000 photons~ 6000 photons

Page 44: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

… …

Conventional image

STORM: a “time-for-space” strategy

STORM imageTi

me

Page 45: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

Effective resolution: Density mattersFrames for image reconstruction:

200 500 1,000 5,000 40,000

Point to point distance ≈ Feature sizePoint to point distance < ½ Feature size

This labeling density limit of resolution applies to all fluorescence microscopy methods

Nyquist criteria

Page 46: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

Effective resolution: Contrast mattersph

otoa

ctiva

tion

Dea

ctiva

tion

650 nm

360 nm650 nm

Fluorescent

Dark

e.g. 1%

e.g. 99%

1% means…

Sparsely labeled sample

Densely labeled sample

Page 47: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

Effective resolution: Contrast mattersph

otoa

ctiva

tion

Dea

ctiva

tion

650 nm

360 nm650 nm

Fluorescent

Dark

e.g. 1%

e.g. 99%

Homogeneous sample Microtubule

Average point-to-point distance:

40 nm 14 nm

1% means…

Common blinking dyes: >3%Cy5 + mercaptoethylamine: 0.1-0.2%

mEosFP: 0.001%

Page 48: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

Live cell STORM: Density matters

100x real time 1 μm

Plasma membrane staining of a BS-C-1 cell

Assuming: 1 molecule occupies 500 × 500 nm

↓On average 0.1 point / 0.25 µm2·frame

↓70 nm resolution ≡ 2000 frames

↓100 fps = 20 sec time resolution

Page 49: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

Stochastic switching + particle tracking

1 μm

Effective D = 0.66 μm2/s

1000 frames, 10 sec total time

-200 0 2000

50

100

Num

ber o

f loc

aliza

tions

Displacement / frame (nm)

DiD stained plasma membrane

1 μm

Page 50: Super-Resolution Optical Microscopy Bo Huang Light Microscopy May 10, 2010.

Comparison of time resolution

2D Spatial resolution Time resolution

SIM Wide-field 120 nm 9 frames (0.09 sec)

STED Scanning 60 nm 1 x 2 µm: 0.03 sec10 x 20 µm: 3 sec

STORM/PALM Wide-field 60 nm 3000 frames (3 sec)

3D Spatial resolution Time resolution

SIM Wide-field 120 nm 15 frames x 10 (1.5 sec)

STED Scanning 60 nm 1 x 2 x 0.6 µm: 0.6 sec10 x 20 x 0.6 µm: 60 sec

STORM/PALM Wide-field 60 nm 3000 frames (3 sec) – no scan!