Download - Strategies for Next Generation Neutrinoless Double-Beta ...lss.fnal.gov/conf/C0406141/avignone.pdfStrategies for Next Generation Neutrinoless Double-Beta Decay Experiments Frank Avignone

Transcript
  • Strategies for Next Generation Neutrinoless Double-Beta Decay Experiments

    Frank AvignoneUniversity of South Carolina

    Neutrino-2004College de France, ParisJune 2004

  • General Theme

    I will not discuss the details of individual experiments.

    I will discuss the important parameters and how they impact the experimental techniques.

    The Parameters of interest are: , ,G0ν M0ν

    b ≡

    δE ≡

    ! ≡ detection efficiency, Mass, Isotopic abundance, background rate, and energy resolution.

  • Parameters of Sensitivity

    T1/20ν

    T 0ν1/2 !

    ln2Nt!

    γ√

    bMt δE

    T 0ν1/2 !

    ln2(A0/W ) × 103(Mat!)γ√

    bMt δE

    T0ν1/2 ∝

    a!

    W

    √Mt

    b δE

    a ≡ isotopic abundance

    b ≡ background rate in c/(keV · kg · y)

    M ≡ source mass

    δE ∝ energy resolution

    ! ≡ detection efficiency

    W ≡ molecular weight

  • Detection with a 4 CL

    σ

    C

    C −B = 4 C

    B

    δE

    a ≡ isotopic abundance

    b ≡ background rate in c/(keV · kg · y)

    M ≡ source mass

    δE ∝ energy resolution

    ! ≡ detection efficiency

    W ≡ molecular weight

    T 0ν1/2 ! 4.74 × 10

    25a!

    W

    √Mt

    b δEy

  • Neutrinoless Double-Beta Decay Experimental Figure of Merit

    f ≡ηa"

    W

    √M

    bδE

    η ≡ G0ν |M0ν |2 × 1013 = FN × 1013

    η ≡ 〈η〉nuclear models

  • Available Experimental Techniques

    Cryogenic Bolometry

    Ionization Detectors

    Scintillation Detectors

    Time Projection Chambers

    Tracking Chambers

  • Available Enriched Isotopes 48Ca - AVLIS† (USA)

    76Ge - Centrifuge (Russia)

    82Se - Centrifuge (Russia)

    100Mo - Centrifuge (Russia) & AVLIS† (USA)

    116Cd - Centrifuge (Russia) & AVLIS† (USA)

    130Te - Centrifuge (Russia)

    136Xe - Centrifuge (Russia)

    150Nd - AVLIS† (USA) † Technology available at LLNL. No known production program.

  • Average TheoreticalNuclear Structure Factors

    Parent Isotope

    !

    FN " G0#M

    0#2

    y$1

    48Ca

    !

    (5.4"1.4+3.0) #10

    "14

    76Ge

    !

    (7.3± 0.6) "10#14

    82Se

    !

    (1.7"0.3+0.4) #10

    "13

    100Mo

    !

    (1.0 ± 0.3) "10#12

    116Cd

    !

    (1.3"0.3+0.7) #10

    "13

    130Te

    !

    (4.2 ± 0.5) "10#13

    136Xe

    !

    (2.8 ± 0.4) "10#14

    150Nd

    !

    (5.7"0.7+1.0) #10

    "12

  • Table of Values of

    η ≡ 〈G0ν |M0ν |2〉 × 1013

    Isotope

    !

    " 48Ca 0.5476Ge 0.7382Se 1.70

    100Mo 10.0116Cd 1.30130Te 4.20136Xe 0.28150Nd 57.0

    η

  • Cryogenic Detector

    CUORE/CUORICINO (Gran Sasso)

    760 kg of (nat. abundance = 33.8%)

    1000 bolometers at ~ 8 mK

    25 Towers of 40 bolometers per tower

    CUORICINO ~ 1 tower, operated 03/04

    TeO2

    T1/20ν ≥ 7.5x1023 y

  • !"#"$#%&'()#*" "+","-#.&/ ,%01+"

    ! "#$%&'(!)*+)!,- .'*!*/-$0!,.$!))&*.,1-+-,1-,(*/213)-*/!1-*24*"*5-67 $%&'(!)'*

    89:;*?>?>*$/@A=* B!%.23'*"#$%&'(!)*+)!,-'*0!B-*C--,* (-'(-1*D.(0*(."#$&

  • !"#$%!%'()*+,!"#$%!%'()*+,

    !"#$%&'(&)*+,-.+%/&01&2#&-$3,!$-4,53,!%$-&)*+,-.)6! 17&2#&'(&8&17&2#&-"9&$23&'(! %,:3!"%&)*+,-.6&;-./.01'234-5+,!'6'7'-8

    !9),.2.0)

    !9),.2.0)&!"#$%6&@A&B,CA&2!>)3$-)

    !!!!

    !DEF'2-

    !"#$%!%'()*+,'+--./0,1!"#$%!%'()*+,'+--./0,1

    $2/+*',.+3'-4).,3+*3'-5-6.*-)2*

    728.9'62-):)2*)*;'-1-:./

    !"#$%!%'()*+,'+--./0,1!"#$%!%'()*+,'+--./0,1

    $2/+*',.+3'-4).,3+*3'-5-6.*-)2*

    728.9'62-):)2*)*;'-1-:./

    CUORICINO

  • Ionization Detectors

    COBRA - CdTe

    GEM - (Ge Crystals in LN)

    GENIUS - (Ge Crystals in LN)

    Majorana - (Ge Crystals in Cryostat)

    MPI - (Ge Crystals in LN)

    76Ge

    76Ge

    76Ge

    76Ge

  • COBRA

    10 kg of CdTe (CdZnTe) Detectors

    Measure 7(9) double-beta isotopes at once

    Systematic studies of Cd and Te isotopes

    Rare beta decays of 113Cd and 123Te

    Dark matter search

    Slide adapted from presentation of K. Zuberat DESY Zeuthen, 19-21 June 2001

  • NaI

    Veto system

    Pb

    Cu

    Fig. 1. Schematic layout of the proposed COBRA experiment. An array of CdTedetectors is installed within two NaI detectors, serving as active veto and part ofcoincidence measurements. This will be installed inside an OFHC copper shield,surrounded by low level lead. As a veto the complete setup will be surrounded by amuon veto consisting of high efficiency plastic scintillators.

    11

    CdTe - Array

    Slide adapted from presentation of K. Zuberat DESY Zeuthen, 19-21 June 2001

    COBRA

    1 ccm crystals

    Option:

    Pixel Detectors

    Tracking

  • Majorana Proposal

    500 kg of Ge (86% 76Ge)

    Conventional Cryostat Technology

    Could use GENIUS direct immersion in LN if feasible; cooperation with MPI

    Digital Electronics

    Pulse-Shape Discrimination

  • Majorana

  • Majorana

  • MPI 76Ge Proposal for Gran Sasso

    Bare Ge detectors in pure LN/LAr

    Phase 1: ~ 20 kg, HM/IGEX; 86% 76Ge

    Phase 2: Add 20 kg new enriched detectors

    Physics Reach

    Phase 1: refute claim at 99.6% or confirm at

    Phase 2: 10% measurement if KKDK correct. Push limit to 2×1026 years if not.

    Start construction early 2005

    Begin data acquisition 2006

  • Ge

    water

    insulation

    LN/LAr

    cleanroom

    lock

    lead

    MPI 76Ge Proposal

  • Scintillation Detectors

    CAMEO - 116Cd (CdWO4 crystals in liq. scint.)

    CANDLES - 48Cd (CaF2 crystals in liq. scint.)

    CARVEL - 48Cd (CaWO4 scintillators)

    GSO - 160Gd (Gd2SiO4 crystals in liq. scint.)

    Xe - 136Xe (Xe dissolved in liq. scint.)

  • 1

    10

    102

    103

    104

    1000 2000 3000 4000 5000

    210Bi, Q

    ! = 1.16 MeV

    214Pb, Q

    ! = 1.02 MeV

    211Pb, Q

    ! = 1.37 MeV

    234mPa, Q

    ! = 2.27 MeV

    214Bi, Q

    ! = 3.27 MeV

    2! of 48

    Ca

    Energy (keV)

    Co

    un

    ts/1

    0 k

    eV

    210Pb,

    ! = 64 keVQ

    Energy, keV

    Counts

    /10 k

    eV

    0

    2000

    4000

    6000

    8000

    50 100 150

    0

    100

    200

    300

    400

    1000 2000 3000 4000 5000

    E219

    Rn, ! = 6.82 MeV

    !/" = 0.27

    E214

    Po, ! = 7.69 MeV

    !/" = 0.27

    Q", 214

    Bi, " = 3.27 MeV

    Energy in # scale (keV)

    Co

    un

    ts/1

    0 k

    eV

    T1/2

    = 120+30

    -50 µs

    Time interval (µs)

    Co

    un

    ts/1

    0 µ

    s

    0

    50

    100

    150

    200

    250

    100 200 300 400 500

    Carvel

  • tr 50

    o

    .= 45o

    r-

    a40

    35

    30

    .,<

    20

    154000 5000

    Energy (keV)

    Carvel

  • Time Projection, Tracking , & Drift Chambers

    DCBA - 150Nd (Nd foils in a drift chamber)

    MOON - 100Mo (Mo foils in plastic scint. - tracking chamber)

    NEMO/Super NEMO - 82Se (Se foils in a magnetic tracking chamber)

    EXO - 136Xe (Gas or liquid Xe TPC with +Ba identification)

  • DCBA

    DCBA-T (Test apparatus for technical development)

    DCBA-I (4xDCBA-T - Standard Module (SM) with natural Nd source)

    DCBA-II(1) (100-SM with natural Nd - 7.7 mol 150Nd)

    DCBA-II(2) (100-SM with 124 mol 150Nd enriched source)

    Sensitivity to effective neutrino mass ~0.05eV

    Drift Chamber Beta-ray Analyzer

    Slide adapted from presentation of N. Ishihara at NDM03 Nara, 9-14 June 2003

  • Slide from presentation of N. Ishihara at APPI 2004 Iwate, 16-20 February 2004

    DCBA

    !""#$$$%&'($)*+$,--. /($#0121343 5

    678β)

    β,

    8

    9 678

    β,

    β)

    :

    9

    β)

    678

    β,

    8

    :

    B

    9

    8:

    ee mmpT

    rBp

    !"#

    #

    ,;),, (-?@0$

    p =A&6;?

  • Molybdenum Observatory Of Neutrinos (MOON)

    Molybdenum foils between plastic scintillators for energy readout optical fibers for position readout

    MOON-I: 1 kg, 3 y, T1/2~6x1025 y (mee~0.1 eV)

    MOON-II: 250 kg, 3 y, T1/2~8x1026 y (mee~0.03 eV)

    MOON III: 750 kg, 7 y, T1/2~3x1027 y (mee~0.02 eV)

    Tracking with angular resolution

  • Size ; Plastic Scintillator ~ 50cm X 50cm

    100Mo foil ~ 30cm X 30cm

    100Mo

    Plastic Scintillator

    SciFi (X axis)

    SciFi (Y axis)

    Plastic Scintillator

    6mm

    0.4mm

    0.8mm

    Light Guide

    NaI active shield

    4 ~ 10 layers

    MOON

  • PlasticScintillator

    PlasticScintillator

    50cm

    100Mo

    2”PMT

    MA-PMT

    SciFi flax (X axis)

    SciFi flax(Y axis)

    SciFi(X axis)

    SciFi(Y axis)

    50cm

    50cm Light guide

    MOON

  • Beginning of data taking: February 2003 NEMO

  • The Super-NEMO Double-Beta Decay Expression of Interest

    At least 10 times the capacity of NEMO-3

    ~ 100 kg of enriched isotopes

    Sensitivity

    mν ~ 30 meV

    82Se, 100 Mo, 116Cd, 130Te, 136Xe

  • Super-NEMO Proposed Schedule

    Phase 1. (2004 - 2006) Feasibility Studies

    Phase 2. (mid 2006 - 2007) Engineering, Design, and Acceptance

    Phase 3. (2008 - end 2010) Construction

    Phase 4. (2011- ) Operation

  • Enriched Xenon Observatory

    136Xe - 40 m3 at 10 Atm. (2000 kg)

    80% 136Xe (Xe is a good scintillator.)

    Energy resolution ~2% at 2.5 MeV

    Possible Liquid Version

    R&D on tagging +Ba daughter ion

    200 kg Prototype (no tagging) was approved and is funded. It will be located in the DOE WIPP site in Carlsbad, New Mexico.

  • March 14-16, 2002 Sendai Neutrino Conference 21

    !"#$%&'()*+,$-%.%+"/+)+-01-+&2%,,(2%+3%+1),+45!+60'-+*),%2+')110!"#$%&'()*+,$-%.%+"/+)+-01-+&2%,,(2%+3%+1),+45!+60'-+*),%2+')110#1#1

    !"#$%&'()**)+,")-* .&/)01,2)(&34)#)$31"'5$&)/3562)7 89

    !"!" #$$"%&'(')*(+,-(-,."+/'0"1'-##+'(2(,0&-'3(452%#*067#$$"%&'(')*(+,-(-,."+/'0"1'-##+'(2(,0&-'3(452%#*06789:89:!"'''''''!"'''''''89:89:;(;(/ ??@A@#"@A@#" BCDEE'?8FF8G'F98GBCDEE'?8FF8G'F98G

    !"!"## $%$&'()*'$&)$&+,-',$%$&'()*'$&)$&+,-',../'+0"+$'1/'+0"+$'12)2)340'5$&"&&340'5$&"&&2264$0'764$0'72)2)8'0('9&8'0('9& :;:;?'1%)$@'A-B-A)$-C5"&+1'?'1%)$@'A-B-A)$-C5"&+1'

    D$0'9E-5CFD$0'9E-5CFG-5C9')-45$)A"5)*'),'&'A&',G-5C9')-45$)A"5)*'),'&'A&',B14()")@04&45)1"&')4B):=B14()")@04&45)1"&')4B):=HHI$I$

    HHIJ>#%-(0-'(66,-,#0(+IJ>#%-(0-'(66,-,#0(+4#0&-%(,0-4#0&-%(,0-

    HHK*2"'3(452%#*06K*2"'3(452%#*06%"6*4-,#0%"6*4-,#0

    !!""#$!#$!

    %%&&'$!'$!

    !!((#$!#$!

    %)'*+%)'*+

    ,-.*+,-.*+

    ('&"$&"*9'('&"$&"*9' JH$JH$

    !"#$%&'()**)+,")-* .&/)01,2)(&34)#)$31"'5$&)/3562)7 89

    !!"#$%&'(#)*#&+#$)+#$+#,-(#,.&/!!"#$%&'(#)*#&+#$)+#$+#,-(#,.&/

    ,.&/,.&/(0'((0'(

    EXO

  • Sample Figures of Merit

    500 kg of Ge enriched to 86% 76Ge

    760 kg of TeO2 nat. ab. 33.8% 130Te

    122 kg of TeO2 enriched to 85% 130Te

    f =(0.73)(0.86)(0.8)

    76

    √500

    (0.005)(4)! 1.05

    ! = 0.8 b = 0.005

    ! = 0.84 b ! 0.01 f = 0.89

    f = 0.90! = 0.84 b ! 0.01

  • Large Tracking Detector(Super NEMO?)

    M = 100 kg a = 0.9 ! = 0.3 b = 0.003 δE = 125 keV

    f =ηa"

    W

    √M

    b δE=

    η

    W(4.4)

    η

    W=

    1.7

    82= 0.002 f ! 0.09

    82Se:

    η

    W=

    57

    150= 0.38 f ! 1.7

    150Nd:

  • Target Half-Lives for

    mν = 0.04 eV

    Isotope

    !

    T1/ 20"

    48Ca 3.0!1027

    76Ge 2.3!1027

    82Se 9.4!1026

    100Mo 1.6!1026

    116Cd 1.3!1027

    130Te 3.9!1026

    136Xe 5.8!1027

    150Nd 2.9!1025

  • ConclusionsLarge value of

    High Efficiency

    High Isotopic Abundance

    Large Source Mass

    Good Energy Resolution

    Low Background

    Cost Feasibility

    G0ν |M0ν |2

    η (linear)

    (linear) !

    √M

    (linear) a

    √δE

    √b

    $

    f ≡ηa"

    W

    √M

    b δE