Download - Static Charged Black Holes in Massive Type IIA

Transcript
Page 1: Static Charged Black Holes in Massive Type IIA

東京工業大学

セミナー (2012年5月16日)

Flux Compactifications, and

Static Charged Black Holes in Massive Type IIAbased on arXiv:1108.1113, arXiv:1203.1544

木村哲士 (立教大学)

Page 2: Static Charged Black Holes in Massive Type IIA

はじめに

以下の流れでお話をします

動機

RN-AdSブラックホールとストリング理論のコンパクト化

設定

(non)-CYコンパクト化とゲージ化された超重力理論

AdSブラックホール

nearly-Kahler coset space G2/SU(3)

AdS真空

静的条件と解

Tetsuji KIMURA : Flux Compactifications and Gauged SUGRA - 2 -

Page 3: Static Charged Black Holes in Massive Type IIA

動機

ストリング理論のコンパクト化において

Reissner-Nordstrom AdSブラックホール解を考えたい

Page 4: Static Charged Black Holes in Massive Type IIA

動機

Reissner-Nordstrom AdSブラックホール解を考えたい

理由 • フラックスコンパクト化での重力解の調査

• ハイパー多重項がある N = 2 gauged SUGRAの探索

• 「AdS/CMT」の設定を小耳に挟む:'

&

$

%

荷電粒子が AdSブラックホールに落ちていく過程をみる

Einstein + Λc.c. + Maxwell + charged matters

この設定 (に近いもの)をストリング理論で与えるには?

Tetsuji KIMURA : Flux Compactifications and Gauged SUGRA - 4 -

Page 5: Static Charged Black Holes in Massive Type IIA

障害

設定を超重力理論に埋め込むときの障害

• 宇宙項 vs物質場 vs超対称性 (4D)

物質場がある系で負の宇宙「定数」をそのまま超対称作用積分に導入することはできない

• 宇宙項 vsコンパクト化 (10D)

負の宇宙項を持つ真空解を与えるには Romans’ massが必要 (type IIA)

• Maxwell場 vsフラックス (4D)

field strengthは Romans’ massのために変形

AdS/CMTの起源を type IIAストリング理論に求めないならば、上記の障害は気にならない (?)

Tetsuji KIMURA : Flux Compactifications and Gauged SUGRA - 5 -

Page 6: Static Charged Black Holes in Massive Type IIA

設定

ストリング理論のコンパクト化

Page 7: Static Charged Black Holes in Massive Type IIA

Calabi-Yau

Calabi-Yau多様体 MCY

Ricci平坦な Kahler多様体

トーションなし

ホロノミー群は SU(3) ⊂ SU(4) ∼ SO(6)

Levi-Civita接続の共変微分について共変定数な 2形式 (J)と正則 3形式 (Ω):

dJ = ∇[mJnp] = 0 dΩ = ∇[mΩnpq] = 0

Tetsuji KIMURA : Flux Compactifications and Gauged SUGRA - 7 -

Page 8: Static Charged Black Holes in Massive Type IIA

Calabi-Yau compactification in type IIA

NS-NS場の展開:ϕ(x, y) = φ(x)

gmn(x, y) = iva(x) (ωa)mn(y), gmn(x, y) = i zȷ(x)

((χȷ)mpqΩ

pqn

||Ω||2

)(y)

B2 (x, y) = B2 (x) + ba(x)ωa(y)

ta(x) ≡ ba(x) + iva(x)

R-R場の展開:C1 (x, y) = A0

1 (x)

C3 (x, y) = Aa1 (x) ∧ ωa(y) + ξI(x)αI(y)− ξI(x)β

I(y)

コホモロジー 基底 自由度

H(1,1) ωa a = 1, . . . , h(1,1)

H(0) ⊕H(1,1) ωΛ = (1, ωa)Λ = 0, 1, . . . , h(1,1)

H(2,2) ⊕H(6) ωΛ = (ωa, vol.|vol.|)

H(2,1) χi i = 1, . . . , h(2,1)

H(3) (αI, βI) I = 0, 1, . . . , h(2,1)

dωΛ = 0 = dωΛ

dαI = 0 = dβI

Tetsuji KIMURA : Flux Compactifications and Gauged SUGRA - 8 -

Page 9: Static Charged Black Holes in Massive Type IIA

SU(3)-structure manifolds

non-CY manifold M6

Ricci 2-formがゼロのまま、トーションを許す

(SU(3)-structure manifold)

dJ = 0 and/or dΩ = 0

CYからのズレ:

dJ =3

2Im(W1Ω) +W4 ∧ J +W3 , dΩ = W1J ∧ J +W2 ∧ J +W5 ∧ Ω

W1 , W2 , W3 , W4 , W5 : intrinsic torsion classes

Tetsuji KIMURA : Flux Compactifications and Gauged SUGRA - 9 -

Page 10: Static Charged Black Holes in Massive Type IIA

Intrinsic torsion classes of SU(3)-structure manifolds

dJ =3

2Im(W1Ω) +W4 ∧ J +W3 , dΩ = W1J ∧ J +W2 ∧ J +W5 ∧ Ω

complex

hermitian W1 = W2 = 0

balanced W1 = W2 = W4 = 0

special hermitian W1 = W2 = W4 = W5 = 0

Kahler W1 = W2 = W3 = W4 = 0

Calabi-Yau W1 = W2 = W3 = W4 = W5 = 0

conformally CY W1 = W2 = W3 = 3W4 + 2W5 = 0

almost complex

symplectic W1 = W3 = W4 = 0

nearly Kahler W2 = W3 = W4 = W5 = 0

almost Kahler W1 = W3 = W4 = W5 = 0

quasi Kahler W3 = W4 = W5 = 0

semi Kahler W4 = W5 = 0

half-flat ImW1 = ImW2 = W4 = W5 = 0

Tetsuji KIMURA : Flux Compactifications and Gauged SUGRA - 10 -

Page 11: Static Charged Black Holes in Massive Type IIA

Flux charges in type IIA

閉形式でない (dJ,dΩ)を、基底形式の外微分の性質に翻訳する:

NS-NS

d

(βI

αI

)Σ−

(eΛ

I mΛI

eΛI mΛI

)QT

(ωΛ

ωΛ

)Σ+

e0I, e0I : H-flux charges (Hfl = −e0IαI + e0Iβ

I)

eaI, eaI : geometric flux charges (トーション)

mΛI,mΛI : nongeometric flux charges (eΛI, eΛI の“磁気的”双対)

R-R

F ≡ F0 + F2 + . . .+ F10 ≡ eBG (自己双対条件 F = λ(∗F) , λ(F(k)) ≡ (−)[k+12 ]F(k))

1√2G = (GΛ

0 +GΛ2 +GΛ

4 )ωΛ − (G0Λ + G2Λ + G4Λ) ωΛ

+(GI1 +GI

3 )αI − (G1I + G3I)βI

GΛ0 ≡ pΛ , G0Λ ≡ qΛ − ξIeΛI + ξIeΛ

I

c ≡ (pΛ, qΛ)T: R-R flux charges (p0: Romans’ mass)

Tetsuji KIMURA : Flux Compactifications and Gauged SUGRA - 11 -

Page 12: Static Charged Black Holes in Massive Type IIA

4D N = 2 gauged SUGRA

10次元 IIA型作用 (democratic formulation) S(10D)IIA = SNS + SR:

SNS + SR =1

2

∫e−2ϕ

R ∗ 1+ 4dϕ ∧ ∗dϕ− 1

2H3 ∧ ∗H3

− 1

8

∫ [F ∧ ∗F

]10

“自己双対 F = λ(∗F)” と “場の方程式 (d +H∧) ∗ F = 0 ⇔ (d−H∧)F = 0”

↓↓↓4次元 N = 2可換ゲージ群を持つ超重力理論 (非自明なポテンシャル項付き)

(非可換ゲージ群の実現は今のところ難しい )

3種類のゲージ化された超重力理論

ゲージ化:物質場の住む空間の isometry groupをゲージ化すること

Appendixベクトル多重項: special Kahler geometry (SKG)

ハイパー多重項: quaternionic geometry (QG)Appendix

Tetsuji KIMURA : Flux Compactifications and Gauged SUGRA - 12 -

Page 13: Static Charged Black Holes in Massive Type IIA

4D N = 2 gauged SUGRA

3種類のゲージ化された超重力理論 0 = mΛI = mΛ

I = pΛ nV個のベクトル多重項

nH個のハイパー多重項

普遍ハイパー多重項

[hep-th/9605032]

0 = mΛI = mΛI

nV個のベクトル多重項

nH個のハイパー多重項

1個のテンソル多重項

[hep-th/0312210]

generic nV個のベクトル多重項

nH個のハイパー多重項

nT個のテンソル多重項

[hep-th/0409097]

スカラー場 a, ξI, ξIのいくつかが “磁荷” pΛ,mΛI,m

ΛIによってテンソル場に双対変換[hep-th/0701247], [arXiv:0804.0595]

Tetsuji KIMURA : Flux Compactifications and Gauged SUGRA - 13 -

Page 14: Static Charged Black Holes in Massive Type IIA

4D N = 2 gauged SUGRA

N = 2ゲージ化されていない超重力理論では−→ポテンシャル項がない

漸近平坦な (極限)荷電ブラックホールの解析などではこの理論でも十分だった

N = 2ゲージ化された超重力理論では −→ポテンシャル項が登場する

ポテンシャル項の極致が超対称性を (部分的に)破り、宇宙項を与える

Tetsuji KIMURA : Flux Compactifications and Gauged SUGRA - 14 -

Page 15: Static Charged Black Holes in Massive Type IIA

AdSブラックホール

in 4D N = 2 gauged SUGRA with B-field

from massive type IIA on a nearly-Kahler coset space G2/SU(3)TK, arXiv:1108.1113, arXiv:1203.1544

Page 16: Static Charged Black Holes in Massive Type IIA

a nearly-Kahler coset space G2/SU(3)

D. Cassani and A.K. Kashani-Poor [arXiv:0901.4251]

NSNS-sector : torsion and H-flux

RR-sector : 2-, 4-form and Romans’ mass (0-form)

dJ =3

2Im(W1Ω) , dΩ = W1 J ∧ J

dωΛ = eΛα , dα = 0 , dβ = eΛ ωΛ , dωΛ = 0

eΛmΛR = 0

1 vector multiplet with cubic prepotential F =X1X1X1

X0

1 universal hypermultiplet (no other HMs) → hyper-tensor multiplet

Tetsuji KIMURA : Flux Compactifications and Gauged SUGRA - 16 -

Page 17: Static Charged Black Holes in Massive Type IIA

4D N = 2超対称多重項

4D multiplets from NSNS from RR fermions

supergravity multiplet gµν A0µ ψi

µ

1 vector multiplet t A1µ λi

1 hyper-tensor multiplet φ, Bµν ξ0, ξ0 ζα

A0µ : from RR one-form C1

t : from complexified “Kahler” modulus t = X1/X0 = b+ iv

A1µ : from RR three-form C3

ξ0, ξ0 : from RR three-form C3

Expansion Lagrangian

FΛ2 = dAΛ

1 +mΛRB2:Stuckelberg-type deformation

Tetsuji KIMURA : Flux Compactifications and Gauged SUGRA - 17 -

Page 18: Static Charged Black Holes in Massive Type IIA

真空

in arXiv:0901.4251

in arXiv:0901.4251

Appendix ひとつの N = 1 AdS真空 と ふたつのN = 0 AdS真空 Appendix

ΛN=0c.c. < ΛN=1

c.c. < ΛN=0c.c.

[NOTE]

type IIA弦理論から 4D N = 1 AdS vacuaを導出するには Romans’ massが必要

D. Lust and D. Tsimpis, hep-th/0412250

Tetsuji KIMURA : Flux Compactifications and Gauged SUGRA - 18 -

Page 19: Static Charged Black Holes in Massive Type IIA

RN-AdSブラックホール計量での場の配位

Reissner-Nordstrom AdSブラックホールの下、物質場の配位を調べる:'

&

$

%

ds2 = −e2A(r)dt2 + e−2A(r)dr2 + r2dΩ2

e2A(r) = 1− 2η

r+

Z2

r2+r2

ℓ2, Z2 = Q2 + P 2 , Λc.c. = − 3

ℓ2

vector fields AΛµ の電荷・磁荷: pΛ =

∫FΛ2 , qΛ =

∫F2Λ

↓FΛθϕ ≡ fΛ(θ, ϕ) sin θ , FΛ

tr ≡ e−2C(r)

r2gΛ(θ, ϕ)

時間依存性がない解を探そうとすると、

AΛµ , Bµν, gµν の運動方程式から「すべての場の共変定数性」が示される:

Appendix 0 = ∂µt = ∂µφ = Dµξ0 = Dµξ0 = ∂[µBνρ] = FΛ

µν Appendix

Tetsuji KIMURA : Flux Compactifications and Gauged SUGRA - 19 -

Page 20: Static Charged Black Holes in Massive Type IIA

ブラックホール電荷

ブラックホール電荷 Z2 = Q2 + P 2は

次の様に記述される:

Z2 = −1

2

[pΛµΛΣ p

Σ + (qΛ − νΛΓ pΓ)(µ−1)ΛΣ(qΣ − νΣ∆ p

∆)]

e−1L = 12R+ 1

2µΛΣFΛ ∧ ∗FΣ + 1

2νΛΣFΛ ∧ FΣ + . . .

一方で、ゲージ場と電荷 (pΛ, qΛ)の関係は

次の様に与えられる:

0 = FΛθϕ = pΛ sin θ , 0 = FΛ

tr = − 1

r2(µ−1)ΛΣ(qΣ − νΣΓp

Γ)

つまり、

pΛ = 0 = qΛ → Z2 = 0

Tetsuji KIMURA : Flux Compactifications and Gauged SUGRA - 20 -

Page 21: Static Charged Black Holes in Massive Type IIA

結果

結果

Massive type IIA on G2/SU(3)から得られる

4D N = 2 gauged SUGRA with B-fieldは、

Reissner-Nordstrom AdSブラックホール解を持ち得ない (Z2 = 0に退化)。

ブラックホール質量・電荷・宇宙項などをコンパクト化の情報で記述するために、もう少し非自明なブラックホール解を考える必要がある?

(そろそろ違うテーマをやりたい...)

Tetsuji KIMURA : Flux Compactifications and Gauged SUGRA - 21 -

Page 22: Static Charged Black Holes in Massive Type IIA

おわりに

Page 23: Static Charged Black Holes in Massive Type IIA

おわりに

以下の流れでお話をしました

動機

RN-AdSブラックホールとストリング理論のコンパクト化

設定

(non)-CYコンパクト化とゲージ化された超重力理論

AdSブラックホール

nearly-Kahler coset space G2/SU(3)

AdS真空

静的条件と共変定数解

Tetsuji KIMURA : Flux Compactifications and Gauged SUGRA - 23 -

Page 24: Static Charged Black Holes in Massive Type IIA

Appendix

4D N = 2 gauged SUGRA

Coset spaces

Gauged SUGRA from type IIA on G2/SU(3)

Analysis on static AdS black holes

Page 25: Static Charged Black Holes in Massive Type IIA

Geometric flux compactification in type IIA

10D type IIA action S(10D)IIA = SNS + SR = SNS + SR + SCS: (democratic form)

SNS =1

2

∫e−2ϕ

R ∗ 1+ 4dϕ ∧ ∗dϕ− 1

2H3 ∧ ∗H3

, SR = −1

8

∫ [F ∧ ∗F

]10

with “constraint F = λ(∗F)” and “EoM (Bianchi) (d +H∧) ∗ F = 0 ⇔ (d−H∧)F = 0”

SU(3)-structure with mΛR = 0↓↓↓ SU(3)-structure with mΛ

R = 0

4D N = 2 abelian gauged SUGRA (with ξIII ≡ (ξI, ξI)T):

S(4D) =

∫d4x

√−g[1

2R+

1

4ImNΛΣF

ΛµνF

Σµν − ϵµνρσ

8√−g

ReNΛΣFΛµνF

Σρσ − gab ∂µt

a∂µtb − giȷ ∂µzi∂µzȷ

−∂µφ∂µφ+e2φ

2(MH)IIIJJJDµξ

IIIDµξJJJ − e2φ

4

(Dµa− ξIII(CH)IIIJJJDµξ

JJJ)2 − V (t, t, q)

]'

&

$

%

• (eΛI, eΛI) : geometric flux charges & eRΛ : RR-flux charges ←− non-CY data

(with constraints eΛIeΣI − eΛIeΣI = 0)

• ta ∈ SKGV and zi ∈ SKGH ⊂ HM are ungauged (in general)

• DµξI = ∂µξ

I − eΛIAΛ

µ & DµξI = ∂µξI − eΛIAΛµ

• Dµa = ∂µa− (2eRΛ − ξIeΛI + ξIeΛI)AΛ

µ

• V (t, t, q): scalar potential D. Cassani, arXiv:0804.0595

Tetsuji KIMURA : Flux Compactifications and Gauged SUGRA - 25 -

Page 26: Static Charged Black Holes in Massive Type IIA

Generic form of 4D N = 2 gauged SUGRA with B-field

Non-vanishing mΛR dualizes the axion field a in standard SUGRA to B-field.

4D gauged action is different from the standard one:

S(4D) =

∫ [1

2R(∗1) + 1

2ImNΛΣF

Λ2 ∧ ∗FΣ

2 +1

2ReNΛΣF

Λ2 ∧ FΣ

2 − gab dta ∧ ∗dtb − giȷ dz

i ∧ ∗dzȷ

−dφ ∧ ∗dφ− e−4φ

4H3 ∧ ∗H3 −

e2φ

2(MH)IIIJJJDξ

III ∧ ∗DξJJJ − V (∗1)

+1

2dB ∧

[ξIII(CH)IIIJJJDξ

JJJ +(2eRΛ − ξIeΛI + ξIeΛ

I)AΛ

1

]− 1

2mΛ

ReRΛB2 ∧B2

]

Constraints among flux charges:

eΛIeΣI − eΛIeΣ

I = 0, mΛReΛ

I = 0 = mΛReΛI

Tetsuji KIMURA : Flux Compactifications and Gauged SUGRA - 26 -

Page 27: Static Charged Black Holes in Massive Type IIA

Scalar potential

Scalar potential from (non)geometric flux compactifications:

V = g2[4huvk

ukv +3∑

x=1

(gabDaPxDbPx − 3|Px|2

)]= . . . ≡ VNS + VR (abelian: kaΛ = 0)

VNS = gabDaP+DbP+ + giȷDiP+DȷP+ − 2|P+|2

= −2 g2e2φ[ΠT

H QTMV QΠH +ΠT

V QMHQTΠV + 4ΠT

H CTHQ

T(ΠVΠ

TV +ΠVΠ

TV)QCH ΠH

]VR = gabDaP3DbP3 + |P3|2

= −1

2g2e4φ

(eRΛ − eΛIξ

I + eΛI ξI)(ImN )−1|ΛΣ

(eRΣ − eΣIξ

I + eΣI ξI)

'

&

$

%

ΠV = eKV/2(XΛ,FΛ)T

ta = Xa/X0

a = 1, . . . , nV

SKGV of vector-moduli

P+ ≡ P1 + iP2 = 2eφΠTV QCH ΠH

P− ≡ P1 − iP2 = 2eφΠTV QCH ΠH

P3 = e2φΠTV CV(cR + Qξ)

'

&

$

%

ΠH = eKH/2(ZI,GI)T

zi = Zi/Z0

i = 1, . . . , nH

SKGH of hyper-moduli

CV,H =

(0 1

−1 0

); Q =

(eΛ

I eΛI

mΛI mΛI

), Q = CT

HQCV cR =

(mΛ

R

eRΛ

)

Cassani et.al., arXiv:0804.0595, arXiv:0911.2708 App.top

Tetsuji KIMURA : Flux Compactifications and Gauged SUGRA - 27 -

Page 28: Static Charged Black Holes in Massive Type IIA

Coset spaces with SU(3)-structure

D. Cassani and A.K. Kashani-Poor, arXiv:0901.4251 App.top

M6

G2

SU(3)= S6 Sp(2)

S(U(2)× U(1))= CP 3 SU(3)

U(1)× U(1)= F(1, 2; 3)

SM = SKGVSU(1, 1)

U(1): t3

(SU(1, 1)

U(1)

)2: st2

(SU(1, 1)

U(1)

)3: stu

HM = SQGSU(2, 1)

U(2): UHM

SU(2, 1)

U(2): UHM

SU(2, 1)

U(2): UHM

SKGH ⊂ HM — — —

matters 1 VM + 1 UHM 2 VM + 1 UHM 3 VM + 1 UHM

Each SKGV has a cubic prepotential: F =1

3!dabc

XaXbXc

X0

nilmanifolds and solvmanifolds: M. Grana, R. Minasian, M. Petrini and A. Tomasiello, hep-th/0609124coset spaces with SU(3)- or SU(2)-structure: P. Koerber, D. Lust and D. Tsimpis, arXiv:0804.0614

a pair of SU(3)-structures with (mΛI,mΛI): D. Gaiotto and A. Tomasiello, arXiv:0904.3959

Tetsuji KIMURA : Flux Compactifications and Gauged SUGRA - 28 -

Page 29: Static Charged Black Holes in Massive Type IIA

4D N = 2 gauged SUGRA from type IIA on G2/SU(3)

10D type IIA onG2

SU(3)with fluxes

↓↓↓4D N = 2 abelian gauged SUGRA with B-field (Λ = 0, 1 and ξ000 ≡ (ξ0, ξ0)

T)

S =

∫ [1

2R (∗1) +

1

2µΛΣF

Λ ∧ ∗FΣ +1

2νΛΣF

Λ ∧ FΣ − gtt dt ∧ ∗dt

− dφ ∧ ∗dφ − e−4φ

4dB ∧ ∗dB − e2φ

2

(Dξ0 ∧ ∗Dξ0 + Dξ0 ∧ ∗Dξ0

)+ dB ∧ ξ0 dξ0

+ dB ∧(eRΛ − eΛ0 ξ

0)AΛ − 1

2mΛ

R eRΛB ∧B − V (∗1)]

'

&

$

%

• gµν, t, Bµν, φ; (eΛ0, eΛ0) : NS-NS sector Precise data onG2

SU(3):

e10 = 0, m0R = 0, eR0 = 0

eΛ0 = 0 = e00

m1R = 0 = eR1

• AΛµ , ξ0, ξ0; (mΛ

R , eRΛ) : R-R sector

• GM : (gµν, A0µ), VM : (Aa

µ, t), UHM → TM : (φ,Bµν, ξ0, ξ0)

• Dξ0 = dξ0 − eΛ0AΛ

1 , Dξ0 = dξ0 − eΛ0AΛ1

• FΣ2 = dAΣ

1 +mΣRB2

• V (t, φ, ξ0) = VNS(t, φ) + VR(t, φ, ξ0)

µΛΣ ≡ ImNΛΣ, νΛΣ ≡ ReNΛΣ D. Cassani, arXiv:0804.0595 Main

Tetsuji KIMURA : Flux Compactifications and Gauged SUGRA - 29 -

Page 30: Static Charged Black Holes in Massive Type IIA

Equations of motion

Rµν − 1

2Rgµν =

1

4gµν µΛΣF

ΛρσF

Σρσ − µΛΣFΛµρF

Σνσ g

ρσ − gµν gtt∂ρt∂ρt+ 2gtt ∂µt∂νt

(δgµν)−gµν ∂ρφ∂ρφ+ 2∂µφ∂νφ− e−4φ

24gµνHρσλH

ρσλ +e−4φ

4HµρσHν

ρσ

−e2φ

2gµν

(Dρξ

0Dρξ0 +Dρξ0Dρξ0

)+ e2φ

(Dµξ

0Dνξ0 +Dµξ0Dν ξ0

)− gµνV ,

0 =1√−g

∂µ

(√−g µΛΣF

Σµσ)− ϵµνρσ

2√−g

∂µ

(νΛΣF

Σνρ

)+ϵµνρσ

2√−g

∂µBνρ(eRΛ − ξ0eΛ0)− e2φQΛ000Dσξ000 , (δAΛ

µ)

0 =1√−g

∂µ

(√−g gtt gµν∂νt

)+

1

4∂t(µΛΣ)F

ΛµνF

Σµν − ϵµνρσ

8√−g

∂t(νΛΣ)FΛµνF

Σρσ − ∂tgtt ∂µt∂

µt− ∂tV , (δt)

0 =2√−g

∂µ

(√−g gµν∂νφ

)+

e4φ

6HµνρH

µνρ − e2φ(Dµξ

0Dµξ0 +Dµξ0Dµξ0

)− ∂φV , (δφ)

0 =1√−g

∂µ

(e−4φ√−gHµρσ

)+ϵµνρσ√−g

[Dµξ

000(CH)000000Dνξ000 + (eRΛ − ξ0eΛ0)F

Λµν

](δBµν)

+2mΛRµΛΣF

Σρσ − ϵµνρσ√−g

mΛRνΛΣF

Σµν ,

0 = − 2√−g

∂µ

(√−g e2φgµνDνξ

000)+∂V

∂ξ000− ϵµνρσ

2√−g

∂µBνρDσξ000(CH)000000 . (δξ000)

Tetsuji KIMURA : Flux Compactifications and Gauged SUGRA - 30 -

Page 31: Static Charged Black Holes in Massive Type IIA

(Non)-SUSY AdS vacua

Vacuum I : N = 1 t∗ = −±1 + i

√15

2

[3

5 (e10)2

∣∣∣∣ eR0

m0R

∣∣∣∣]1/3 , ξ0∗ = −2

5

[2√3m0

R(eR0)2

5 e10

]1/3, exp(φ∗) =

4

3

[ √5 e10√

3m0R(eR0)2

]1/3V∗ = −5

√5

2

[5 (e10)

4

2√3 |m0

R(eR0)5|

]1/3≡ ΛI

c.c. < 0

Vacuum II : N = 0

t∗ =(± 1− i

√3) [ 3

5 (e10)2

∣∣∣∣eR0

m0R

∣∣∣∣]1/3 , ξ0∗ =

[9m0

R(eR0)2

25 e10

]1/3, exp(φ∗) =

2

3

[25 e10√

3m0R(eR0)2

]1/3V∗ = −80

27

[25 (e10)

4

√3 |m0

R(eR0)5|

]1/3≡ ΛII

c.c. < 0

Vacuum III : N = 0

t∗ = −i

[12√

5 (e10)2

∣∣∣∣ eR0

m0R

∣∣∣∣]1/3 , ξ0∗ = 0 , exp(φ∗) =√5

[5 e10

18m0R(eR0)2

]1/3V∗ = −25

√5

6

[5 (e10)

4

18 |m0R(eR0)5|

]1/3≡ ΛIII

c.c. < 0

Note: m0

R > 0 ; ξ0 is not fixed ; ΛIIc.c. < ΛI

c.c. < ΛIIIc.c. arXiv:0901.4251 jump App.top

Tetsuji KIMURA : Flux Compactifications and Gauged SUGRA - 31 -

Page 32: Static Charged Black Holes in Massive Type IIA

Analysis on static AdS black holes

静的:

0 = ∂t(任意の場)

計量:

ds2 = −e2A(r)dt2 + e−2A(r)dr2 + e2C(r)r2(dθ2 + sin2 θdϕ2

)電荷・磁荷:

pΛ =1

∫FΛ2 , qΛ =

1

∫FΛ2 with FµνΛ =

√−g2

ϵµνρσ∂L

∂FΛµν

FΛθϕ ≡ fΛ(θ, ϕ) sin θ , FΛ

tr ≡ e−2C

r2gΛ(θ, ϕ)

Tetsuji KIMURA : Flux Compactifications and Gauged SUGRA - 32 -

Page 33: Static Charged Black Holes in Massive Type IIA

Analysis on static AdS black holes

Equation of motion for AΛµ (FΛ

µν = 2∂[µAΛν] +mΛ

RBµν):

0 =ϵσµνρ

2√−g

∂µFΛνρ −ϵσµνρ

2√−g

∂µBνρ(eRΛ − eΛ0ξ0)− e2φeΛ0D

σξ0

Hrθϕ = 0 , Hθϕt = 0 ,

Hϕtr =(∂ϕBtr + ∂rBϕt

)=

1

mΣReRΣ

e−2C

r2∂ϕ

[eRΛg

Λ(θ, ϕ)],

0 = ∂r

[νΛΣf

Σ(θ, ϕ)− µΛΣ gΣ(θ, ϕ)

],

0 = ∂ϕ,θ

[(mΛ

RµΛΣ)fΣ(θ, ϕ) +

(mΛ

RνΛΣ − eRΣ)gΣ(θ, ϕ)

].

0 = Dtξ0 = −eΛ0AΛt → eΛ0F

Λtr = 0 → eΛ0g

Λ(θ, ϕ) = 0 ,

0 = Drξ0 = ∂rξ0 − eΛ0AΛr ,

0 =e−2C

r2∂ϕ

[µΛΣf

Σ(θ, ϕ) +(νΛΣ − eRΛ − eΛ0ξ

0

mΓReRΓ

eRΣ

)gΣ(θ, ϕ)

]+ eΛ0 e

2φ sin θDθξ0 ,

0 =e−2C

r2∂θ

[µΛΣf

Σ(θ, ϕ) +(νΛΣ − eRΛ − eΛ0ξ

0

mΓReRΓ

eRΣ

)gΣ(θ, ϕ)

]− eΛ0

e2φ

sin θDϕξ0 .

Tetsuji KIMURA : Flux Compactifications and Gauged SUGRA - 33 -

Page 34: Static Charged Black Holes in Massive Type IIA

Analysis on static AdS black holes

Equation of motion for Bµν:

0 =1√−g

∂µ

(e−4φ√−gHµρσ

)+ϵµνρσ√−g

[Dµξ

0Dν ξ0 −Dµξ0Dνξ0 + (eRΛ − eΛ0ξ

0)FΛµν

]+2mΛ

RµΛΣFΣρσ − ϵµνρσ√

−gmΛ

RνΛΣFΣµν

0 = − 1

mΣReRΣ

e−2C

r2∂θ

[e−4φ sin θ ∂θ

(eRΛg

Λ(θ, ϕ))]

− 1

mΣReRΣ

e−2C

r2 sin θ∂ϕ

[e−4φ∂ϕ

(eRΛg

Λ(θ, ϕ))]

+2[(mΛ

RνΛΣ − (eRΣ − eΣ0 ξ0))fΣ(θ, ϕ)− (mΛ

RµΛΣ)gΣ(θ, ϕ)

]sin θ

−2(Dθξ

0Dϕξ0 −Dθξ0Dϕξ0),

0 =sin θ

mΣReRΣ

∂θ

(eRΛg

Λ(θ, ϕ))∂r

(e−4φ−2C

r2

)+ 2Drξ

0Dϕξ0 ,

0 =1

mΣReRΣ

1

sin θ∂ϕ

(eRΛg

Λ(θ, ϕ))∂r

(e−4φ−2C

r2

)− 2Drξ

0Dθξ0 ,

0 =2e−4C

r4 sin θ

[(mΛ

RµΛΣ)fΣ(θ, ϕ) + (mΛ

RνΛΣ − eRΣ)gΣ(θ, ϕ)

]

Tetsuji KIMURA : Flux Compactifications and Gauged SUGRA - 34 -

Page 35: Static Charged Black Holes in Massive Type IIA

Analysis on static AdS black holes

Equation of motion for gµν:

Rµν −1

2Rgµν =

1

4gµν µΛΣF

ΛρσF

Σρσ − µΛΣFΛµρF

Σνσ g

ρσ − gµν gtt∂ρt∂ρt+ 2gtt ∂µt∂νt

− gµν ∂ρφ∂ρφ+ 2∂µφ∂νφ− e−4φ

24gµνHρσλH

ρσλ +e−4φ

4HµρσHν

ρσ

− e2φ

2gµν

(Dρξ

0Dρξ0 +Dρξ0Dρξ0

)+ e2φ

(Dµξ

0Dνξ0 +Dµξ0Dν ξ0

)− gµνV

From now on we focus on

e2A(r) = 1− 2η

r+

Z2

r2+r2

ℓ2, e2C(r) = 1

Tetsuji KIMURA : Flux Compactifications and Gauged SUGRA - 35 -

Page 36: Static Charged Black Holes in Massive Type IIA

Analysis on static AdS black holes

gttEtt − grrErr = 0 = −2e2A(r)[gtt|∂rt|2 + (∂rφ)

2 +e2φ

2(Drξ

0)2]

grrErr + gθθEθθ =6

ℓ2= − 2

r2 sin2 θ

[gtt|∂ϕt|2 + (∂ϕφ)

2 +e2φ

2(Dϕξ

0)2 +e2φ

2(Dϕξ0)

2]− 2V

grrErr − gθθEθθ = −2Z2

r4=

1

r4µΛΣ

[fΛ(θ, ϕ)fΣ(θ, ϕ) + gΛgΣ

]− 2

r2

[gtt|∂θt|2 + (∂θφ)

2 +e2φ

2(Dθξ

0)2 +e2φ

2(Dθξ0)

2]

gθθEθθ − gϕϕEϕϕ = 0 =1

r2

[gtt|∂θt|2 + (∂θφ)

2 +e2φ

2(Dθξ

0)2 +e2φ

2(Dθξ0)

2]

− 1

r2 sin2 θ

[gtt|∂ϕt|2 + (∂ϕφ)

2 +e2φ

2(Dϕξ

0)2 +e2φ

2(Dϕξ0)

2]

jump App.top →

0 = ∂rt = ∂θt = ∂ϕt , 0 = ∂rφ = ∂θφ = ∂ϕφ

0 = Drξ0 = Dθξ

0 = Dϕξ0 , 0 = Dθξ0 = Dϕξ0

0 = Htrθ = Htrϕ

and fΛ = pΛ , gΛ = −(µ−1)ΛΣ(qΣ − νΣΓ p

Γ)

jump App.top

Tetsuji KIMURA : Flux Compactifications and Gauged SUGRA - 36 -