Download - Spherical Coordinates - MATH 311, Calculus IIIbanach.millersville.edu/~bob/math311/Spherical/main.pdf · Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department

Transcript

3.36pt

Spherical CoordinatesMATH 311, Calculus III

J. Robert Buchanan

Department of Mathematics

Spring 2019

Spherical CoordinatesAnother means of locating points in three-dimensional space isknown as the spherical coordinate system.

Coordinate DefinitionsIf the point P has Cartesian coordinates (x , y , z), the pointsspherical coordinates (ρ, φ, θ) are as follows:

ρ: the distance from the origin O to P.

ρ =√

x2 + y2 + z2 ≥ 0

φ: the angle between vector 〈x , y , z〉 and the positivez-axis.

0 ≤ φ = cos−1

(z√

x2 + y2 + z2

)≤ π

θ: the angle between vector 〈x , y ,0〉 and the positivex-axis.

θ = cos−1

(x√

x2 + y2

)

Converting from Spherical to Cartesian Coordinates

Given the spherical coordinates (ρ, φ, θ),

x = ρ sinφ cos θ

y = ρ sinφ sin θ

z = ρ cosφ.

Converting from Spherical to Cylindrical Coordinates

Given the spherical coordinates (ρ, φ, θ),

r = ρ sinφ

θ = θ

z = ρ cosφ.

Example (1 of 6)

If point P has spherical coordinates (ρ, φ, θ) = (2, π/4, π/3),find the coordinates of P in

1. Cartesian coordinates.2. Cylindrical coordinates.

Example (2 of 6)

1. Cartesian coordinates:

x = ρ sinφ cos θ = 2 sinπ

4cos

π

3=

1√2

y = ρ sinφ sin θ = 2 sinπ

4sin

π

3=

√32

z = ρ cosφ = 2 cosπ

4=√

2

2. Cylindrical coordinates:

r = ρ sinφ = 2 sinπ

4=√

2

θ = θ =π

3z = ρ cosφ = 2 cos

π

4=√

2

Example (3 of 6)

If point P has Cartesian coordinates (x , y , z) = (0,2√

3,−2),find the coordinates of P in

1. Spherical coordinates.2. Cylindrical coordinates.

Example (4 of 6)1. Spherical coordinates:

ρ =√

x2 + y2 + z2 =

√02 + (2

√3)2 + (−2)2 = 4

φ = cos−1

(z√

x2 + y2 + z2

)= cos−1

(−2

4

)=

2π3

θ = cos−1

(x√

x2 + y2

)= cos−1 (0) =

π

2

2. Cylindrical coordinates:

r =√

x2 + y2 =

√02 + (2

√3)2 = 2

√3

θ = cos−1

(x√

x2 + y2

)= cos−1 (0) =

π

2

z = z = −2

Example (5 of 6)

Find the equation in spherical coordinates of the hyperboloid of2 sheets: x2 − y2 − z2 = 1.

1 = x2 − y2 − z2

= ρ2 sin2 φ cos2 θ − ρ2 sin2 φ sin2 θ − ρ2 cos2 φ

= ρ2(

sin2 φ cos2 θ − sin2 φ sin2 θ − cos2 φ)

= ρ2(

sin2 φ[cos2 θ − sin2 θ

]− cos2 φ

)= ρ2

(sin2 φ cos 2θ − cos2 φ

)

Example (5 of 6)

Find the equation in spherical coordinates of the hyperboloid of2 sheets: x2 − y2 − z2 = 1.

1 = x2 − y2 − z2

= ρ2 sin2 φ cos2 θ − ρ2 sin2 φ sin2 θ − ρ2 cos2 φ

= ρ2(

sin2 φ cos2 θ − sin2 φ sin2 θ − cos2 φ)

= ρ2(

sin2 φ[cos2 θ − sin2 θ

]− cos2 φ

)= ρ2

(sin2 φ cos 2θ − cos2 φ

)

Example (6 of 6)

Find the equation in Cartesian coordinates of the surfacewhose equation in spherical coordinates is ρ = sinφ sin θ.

ρ = sinφ sin θ

ρ2 = ρ sinφ sin θ

x2 + y2 + z2 = yx2 + y2 − y + z2 = 0

x2 +

(y − 1

2

)2

+ z2 =14

Example (6 of 6)

Find the equation in Cartesian coordinates of the surfacewhose equation in spherical coordinates is ρ = sinφ sin θ.

ρ = sinφ sin θ

ρ2 = ρ sinφ sin θ

x2 + y2 + z2 = yx2 + y2 − y + z2 = 0

x2 +

(y − 1

2

)2

+ z2 =14

Spherical Coordinate Equations (1 of 3)Sphere: ρ = c > 0, a constant

x2 + y2 + z2 = c2

Spherical Coordinate Equations (2 of 3)

Plane: θ = θ0, with 0 ≤ θ0 ≤ 2π

Spherical Coordinate Equations (3 of 3)

Cone: φ = φ0, with 0 < φ0 < π

Volume Element in Spherical Coordinates

∆V ≈ (ρ sinφ∆θ)(ρ∆φ)(∆ρ)

= ρ2 sinφ∆ρ∆φ∆θ

dV = ρ2 sinφdρdφdθ

Iterated Integrals in Spherical Coordinates

The triple integral of f (ρ, φ, θ) over the solid region

Q = {(ρ, φ, θ) |g1(φ, θ) ≤ ρ ≤ g2(φ, θ), h1(θ) ≤ φ ≤ h2(θ), α ≤ θ ≤ β}

is∫∫∫Q

f (ρ, φ, θ) dV =

∫ β

α

∫ h2(θ)

h1(θ)

∫ g2(φ,θ)

g1(φ,θ)f (ρ, φ, θ)ρ2 sinφdρdφdθ.

Example

Evaluate the triple integral below by converting to sphericalcoordinates. ∫∫∫

Qe(x2+y2+z2)3/2

dV

where Q = {(x , y , z) | x2 + y2 + z2 ≤ 1}.

Solution

∫∫∫Q

e(x2+y2+z2)3/2dV =

∫ 2π

0

∫ π

0

∫ 1

0e(ρ2)3/2

ρ2 sinφdρdφdθ

= 2π∫ π

0

∫ 1

0ρ2eρ

3sinφdρdφ

= 2π∫ π

0

13

eρ3∣∣∣∣10

sinφdφ

= 2π∫ π

0

13

(e − 1) sinφdφ

=2(e − 1)π

3(− cosφ)|π0

=4(e − 1)π

3

Example

Find the volume of the solid that lies above the conez2 = x2 + y2 and below the sphere x2 + y2 + z2 = z.

Solution (1 of 2)

In spherical coordinates the equations of the cone and thesphere are

Cone: φ =π

4Sphere: ρ = cosφ.

Solution (2 of 2)

V =

∫∫∫Q

1 dV =

∫ 2π

0

∫ π/4

0

∫ cosφ

0(1)ρ2 sinφdρdφdθ

= 2π∫ π/4

0

∫ cosφ

0ρ2 sinφdρdφ

= 2π∫ π/4

0

13ρ3∣∣∣∣cosφ0

sinφdφ

=2π3

∫ π/4

0cos3 φ sinφdφ

= −2π3

∫ 1/√

2

1u3 du =

2π3

∫ 1

1/√

2u3 du

6u4∣∣∣11/√

2=π

8

Example

Find the mass and center of mass of the solid hemisphere ofradius a if the density at any point in the solid is proportional toits distance from the base.

0

0.2

0.4

0.6

0.8

Solution (1 of 3)

I The distance of a point in the hemisphere from the base isthe z-coordinate of the point.

I In spherical coordinates z = ρ cosφ.I Without loss of generality, we may choose the

proportionality constant to be 1.

m =

∫∫∫Q

z dV

Myz =

∫∫∫Q

x z dV

Mxz =

∫∫∫Q

y z dV

Mxy =

∫∫∫Q

z2 dV

Solution (2 of 3)

m =

∫ 2π

0

∫ π/2

0

∫ a

0(ρ cosφ)ρ2 sinφdρdφdθ

= 2π∫ π/2

0

∫ a

0ρ3 cosφ sinφdρdφ

=πa4

2

∫ π/2

0cosφ sinφdφ =

πa4

2

∫ 1

0u du =

πa4

4

Mxy =

∫ 2π

0

∫ π/2

0

∫ a

0(ρ cosφ)2ρ2 sinφdρdφdθ

= 2π∫ π/2

0

∫ a

0ρ4 cos2 φ sinφdρdφ

=2πa5

5

∫ π/2

0cos2 φ sinφdφ

= −2πa5

5

∫ 0

1u2 du =

2πa5

5

∫ 1

0u2 du =

2πa5

15

Solution (3 of 3)

Myz =

∫ 2π

0

∫ π/2

0

∫ a

0(ρ sinφ cos θ)ρ2 sinφdρdφdθ

=

∫ a

0

∫ π/2

0

∫ 2π

0ρ3 sin2 φ cos θ dθ dφdρ

= 0

Mxz =

∫ 2π

0

∫ π/2

0

∫ a

0(ρ sinφ sin θ)ρ2 sinφdρdφdθ

=

∫ a

0

∫ π/2

0

∫ 2π

0ρ3 sin2 φ sin θ dθ dφdρ

= 0

Thus

(x , y , z) =

(Myz

m,Mxz

m,Mxy

m

)=

(0,0,

8a15

).

Homework

I Read Section 13.7.I Exercises: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49,

53, 57