Download - Review of ICARE-CNRS activities on facilitating CO …cleancoal.polsl.pl/pdf/Gokalp.pdfηis-compresseur = 0.9, ... CO 2 1 H O 7 56 1 N x 1 O 3 78 N 1 CH 2 x O 3 78 N CO → + −β

Transcript

Review of ICARE-CNRS activities on facilitating CO2 capture

from the combustion of fossil fuels

Centre National de la Recherche Scientifique - CNRS

Institut de Combustion, Aérothermique,

Réactivité et Environnement - ICARE

Iskender GÖKALPDirector

Outline

• Few words about ICARE-CNRS @ Orléans

• Basic chemical kinetic studies on the oxydation of methane,

ethylene and propene in the presence of CO2 and H2O

(ANR project TACOMA)

• Combustion of methane in oxygene enriched air coupled withmembrane capture of CO2. Basic and pilot system studies

(CNRS Energy Program project COCASE)

• Retrofitting a pulverised coal power plant into a oxyfuel system. (FP7 TREN demonstration project SOMALOX)

• Interdisciplinary and comparative analyses of the acceptabilityof new energy technologies: the case studies of CCS in France

and Canada (CNRS Energy Program project ALICANTE)

• 10th ICCEU

ICARE in Orléans

• Institut de

• Combustion

• Aérothermique

• Réactivité et

• Environnement

• Institute for Combustion, Aerothermalsciences, Reactivity, Environnement

ICARE – CNRS

Institut de Combustion, AérothermiqueRéactivité et Environnement1c, avenue de la Recherche Scientifique45071 Orléans – Cedex 2 – France

Orléans

Paris

ICARE is in Orléans, 125 km from Paris

Total staff : 120

26 Researchers and faculty21 Engineers and technicians39 PhD students and post-docs34 Various trainees

Where is ICARE ?

Main research domains and areas

Two main research domains:

Energy & Environnement

Space & Propulsion

Four main research thematics:

Chemical kinetics of combustion and reactive systems

Dynamics of combustion and reactive systems

Atmospheric chemistry

Supersonic, hypersonic, rarefied, ionized flows

Research domains of ICARE

Energy & EnvironmentPropulsion & Space

• Combustion• Chemical kinetics• Plasmas physics• Fluid mechanics, turbulence• Two phase flows• Supersonic, hypersonic flows• Ionized, rarefied flows

Application domains

• Aerospace propulsion• Electric propulsion• Liquid and solid propulsion

• Atmospheric reentry• Atmospheric chemistry• Energy production• Alternative fuels, biofuels, hydrogen• Pollutant emissions reductions• Industrial risk prevention

Main contractual cooperations

Main international cooperations: UE, Russie, USA, Canada, Chine, Japon, Ukraine,

Turquie, Argentine, etc

Outline

• Few words about ICARE-CNRS @ Orléans

• Basic chemical kinetic studies on the oxydation of ethylene and

propene in the presence of CO2 and H2O

(ANR project TACOMA)

• Combustion of methane in oxygene enriched air coupled withmembrane capture of CO2. Basic and pilot system studies

(CNRS Energy Program project COCASE)

• Retrofitting a pulverised coal power plant into a oxyfuel system. (FP7 TREN demonstration project SOMALOX)

• Interdisciplinary and comparative analyses of the acceptabilityof new energy technologies: the case studies of CCS in France

and Canada (CNRS Energy Program project ALICANTE)

• 10th ICCEU

Project TACOMA (GDF SUEZ; TOTAL; IFP; ICARE-CNRS)

• A new combustion mode for glass, petrochemistry, steelindustries to concentrate CO2 in the flue gases

• Combustion of heavy oil and natural gas diluted withrecirculation of burnt gases

• Ethylene and propene are the main products of the

cracking of heavy oil

• Oxydation of C2H4 and C3H6 in O2/N2/CO2/H2O at

atmospheric pressure, over a wide range of initial concentrations, temperatures and equivalence ratios. A

detailed chemical kinetic reaction mechanism was used

to simulate the experiments and analyze the results.

Project TACOMA-ICARE CNRS

Conclusions • The oxidation of ethylene is inhibited by water and the

effect decreases with the increasing equivalence ratio. Carbon dioxide accelerates slightly the consumption of C2H4 under fuel-rich conditions. The oxidation of ethylene in presence of water vapor yields reduced formation of carbon monoxide and increased acetylene production. Carbon dioxide participates to the production of CO when initially present in ethylene-O2-N2 reacting mixtures.

• The oxidation of propene is less affected by the presence of CO2 or H2O in the reacting mixture under the present JSR conditions.

Outline

• Few words about ICARE-CNRS @ Orléans

• Basic chemical kinetic studies on the oxydation of methane,

ethylene and propene in the presence of CO2 and H2O

(ANR project TACOMA)

• Combustion of methane in oxygene enriched air coupled withmembrane capture of CO2. Basic and pilot system studies

(CNRS Energy Program project COCASE)

• Retrofitting a pulverised coal power plant into a oxyfuel system. (FP7 TREN demonstration project SOMALOX)

• Interdisciplinary and comparative analyses of the acceptabilityof new energy technologies: the case studies of CCS in France

and Canada (CNRS Energy program project ALICANTE)

• 10th ICCEU

Oxygen enriched air combustion of methane in

relation with membrane capture of CO2

Project COCASE (CNRS Energy Program)

• Membrane capture of CO2 is a promisingtechnology but needs a minimum of 20% CO2 concentration in the flue gases.

• Combustion of CH4 in oxygen enrichedair with CO2 recirculation is investigated to optimise the O2 concentration, the CO2 recirculation rate, the CO2 concentration rate and the membrane properties

2

1

Air Power

3

Compression

Transport

Storage

4

y x’ x

W1 W2

N2

εεεε O2

O2

N2

CO2

H2O

N2

Fuel N2

εεεε CO2

Flue gas

CO2

N2

H2O

Project COCASE: Global principle

CNRS – UNIVERSITE et INSA de Rouen

COCASE - Orléans le 03/07/09

Z1-Z

Impact énergétique de la récupération du CO2

Cycle turbine réaliste + recyclage + recompression - capture CO2(idéal): P3 = HP= 30bar, P1=P2 = Patmo, T4 = 1200°C

ηis-compresseur = 0.9, ηis-turbine = 0.9, ∆PCh Comb = 5%

Séparateur idéal :

• récupération 100%

• XCO2 = 1

CNRS – UNIVERSITE et INSA de Rouen

COCASE - Orléans le 03/07/09

Impact énergétique de la récupération du CO2

ηηηηréf = 44%

écart au ηηηη réf = coût

Impact du taux de recirculation Z et de la pression Pin en entrée du séparateur

sur le rendement

Rendement : Turbine réelle – Séparateur idéal

CNRS – UNIVERSITE et INSA de Rouen

COCASE - Orléans le 03/07/09

Impact énergétique de la récupération du CO2

Impact du taux de recirculation Z et de la pression Pin en entrée du séparateur

sur le cout de capture du CO2

Coût de référence

Rendement : Turbine réelle – Séparateur idéal

Co

ût

: (G

J/T

on

ne

CO

2)

CNRS – UNIVERSITE et INSA de Rouen

COCASE - Orléans le 03/07/09

Impact énergétique de la récupération du CO2

Taux de récupération de la membrane

en fonction de la sélectivité de la membrane et de la pression Pin (entrée membrane)

Xin = 0.11 maximale avec taux de recirculation maximale (0.7)Xout = 0.9

Evolution du taux de récupération

en fonction de la pression d'entrée

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

Pin (bar)

Ta

ux

de

cu

rati

on

(R

)

R [alpha=100]

R [alpha=125]

R [alpha=150]

R [alpha=175]

R [alpha=200]

Eric Favre LSGC

Résultats à phi=0,9 (condition n°1 : enrichissement seul)Température et vitesse de flamme en f° du %O2 dans l’air (1, 4, 8

bars), To=600K

0

500

1000

1500

2000

2500

3000

3500

4000

20 30 40 50 60 70 80 90 100% O 2

T (

K)

0

100

200

300

400

500

600

700

800

SL

(c

m/s

)

1 bar

4 bar

8 bar

P

P

Même tendance qu’à phi=1,1 :¤ Quand O2 ����, T(K) et SL ����

¤ Pour le même pourcentage de O2 : . T(K) ���� quand P ����, . SL ���� quand P ����

Résultats à phi=0,9 : Température et vitesse de flamme en f° du %O2 dans l’air, To=600K, avec ou sans dilution (4 bars)

0

500

1000

1500

2000

2500

3000

3500

20 40 60 80 100

% O 2

T (

K)

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

SL

(c

m/s

)

010

2030 40

50 60

010

20 3040

5060

¤ ���� T(K) et ���� SLo quand la dilution au CO2 ����

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

20 30 40 50 60 70 80 90 100

% O2

XC

O2

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

XN

O+

XN

O2

@1

5%

O2

Résultats à phi=0,9 : CO2 et NOx (Thomsen) en f° du %O2 dans l’air, To=600K, avec ou sans dilution (4 bars)

%CO2

0

10

20

30

40

5060

10

20

30

40

50

60

Résultats à phi=0,9 : Refroidissement : environ 60% de CO2 froid (300K) nécessaire quelle que soit la pression et les conditions

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

20 30 40 50 60 70 80 90 100

TGAZBRULES

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1273

Conditions initiales :

To=600K

4 bars

Dilution avec 30% de CO2

dTTCnQ

Q

f

i

fT

T

pi

T

i

i

i

)(

0

?

=

=

CO2 de

refroidissement

%O2

Tfinale

High Pressure Chamber

Pressure

regulation

Windows

Axial

displacement

• H = 1.2 m

• Dint = 0.3 m

• Water cooling

system

• Windows heating

system

• Laser light

absorbing paint

Laminar Burner

Experimental

conditions

� U0 = 0.7 à 1 m/s

� φ = 0.9 à 1.05

� P < 0.2 MPa

� Re < 1300 AIR AIR

Characteristics

� Bunsen Burner

� D = 12 mm

Study of the FlickeringObjectives High Pressure

Turbulent Burner

� U ≈ 2.1 m/s

� φ = 0.6 à 0.7

� P = 0.1 à 0.9 MPa

� Pilot flame flow < 7%

Main flow

� T = 300 K

� u’ et LU cste

Experimental

conditions

Flow conditions• Mean flow velocity :

� U0 = 0.7 to 1 m/s (Laminar)

� U ≈ 2.1 m/s (Turbulent)

• Equivalence ratio :

� φ = 0.9 to 1.05 (Laminar)

� φ = 0.6 (Turbulent)

• CO2 addition :

where and x the air excess

• Pressure :

� P < 0.2 MPa (Laminar)

� P < 0.9 MPa (Turbulent)

• Temperature of fresh gases : 300 K

[ ]).)(()(.)(

).)(()(

22222

2224

N783O1xN1567OH12CO

CON783Ox2CH1

+β−+β−+β−+→

β++++β−

)()(

)(

24

2

COnCHn

COn

+=β

Laser diagnostics

Laser Sheet

200 µm thick

100 mm high

Cylindrical lens

Focal: 25.4 mm

Spherical lens

Focal: 1000 mm

Windows

Camera

1016x1008 pixels2

0.11pixel/mm

High

Pressure

Chamber

Bunsen

Burner 15 Hz pulse

532.5 nm

180mJ

Methodology

Camera CCD : 40 Hz – Resolution : 34.8 µm/pixel

500 images for each experimental condition

P = 0,1 MPa P = 0,125 MPa P = 0,15 MPa P = 0,175 MPa P = 0,2 MPa

CO2 addition effect

(P=0.1MPa - φφφφ=0.95 -

U0=1.2m/s)

Pressure effect

(U0=1 m/s et φφφφ= 1)

β = 0 β = 0.2 β = 0.4

Laminar flame velocities

Flame surface density

The CO2 dilution

has no effect on the

flame surface

density.

Determination

Localement

<Cn>

<Cn+1>

<Cn>

<Cn+1>

Pour <Cn+1/2> n = [0, 9]

β = 0 β = 0.1 β = 0.2 β = 0.35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

<C>

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Σ (

1/m

m)

β = 0

β = 0.35

P = 0.1 MPa

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

<C>

β = 0

β = 0.35

P = 0.9 MPa

BML Model

Mean reaction rate

Σ⋅⋅⋅ρ= 0

0

LGF ISw

0 0.2 0.4 0.6 0.8 1

<C>

P = 0.9 MPa

0 0.2 0.4 0.6 0.8 1

<C>

0

0.04

0.08

0.12

Ta

ux

de

com

bu

stio

n (

kg

.s-1

.m-3) β = 0

β = 0.1

β = 0.2

β = 0.35

P = 0.1 MPa

β = 0 β = 0.1 β = 0.2 β = 0.35

Mean fuel consumption rate

decrease with the dilution rate

Power at 0.1 MPa = 2.2 kW

(theoretical = 2 kW)

Power at 0.9 MPa = 12 kW

(theoretical = 14 kW)

CNRS – UNIVERSITE et INSA de Rouen

COCASE - Orléans le 03/07/09

Méthane

Chambre de

combustionCol Sonique Ajustable

Chambre de

prémélange

1200°C max

Gas turbine combustion chamber facility of CORIA-CNRS, Rouen

Mesure de l’émission de CH*

Caméra ICCD

Filtre-431nm

Mesure de polluant

Analyseur de gaz

CO; CO2; O2 ; NOx

Air CO2Air CO2

Combustion Dilution

CH4 + (1+e) 2 ( O2 + 3.78 N2 + b CO2 )

CNRS – UNIVERSITE et INSA de Rouen

COCASE - Orléans le 03/07/09

Evolution of turbulent flame structure with CO2 dilution rate, at contant equivalence ratio

b = 0 b = max

Exti

ncti

on

Attached flame Lifted flame

Outline

• Few words about ICARE-CNRS @ Orléans

• Basic chemical kinetic studies on the oxydation of methane,

ethylene and propene in the presence of CO2 and H2O

(ANR project TACOMA)

• Combustion of methane in oxygene enriched air coupled withmembrane capture of CO2. Basic and pilot system studies

(CNRS Energy Program project COCASE)

• Retrofitting a pulverised coal power plant into a oxyfuel system. (FP7 TREN demonstration project SOMALOX)

• Interdisciplinary and comparative analyses of the acceptabilityof new energy technologies: the case studies of CCS in France

and Canada (CNRS Energy Program project ALICANTE)

• 10th ICCEU

Topic ENERGY.2008.6.1.3: Efficiency Improvement of Oxygen-based combustion

Content/scope: Further research and demonstration work is needed on oxygen based combustion technologies in respect to the CO2 capture processto make this technology available for large scale power plants. Work in this area should include – but not be limited to - issues like advanced burner designs as well as slagging, fouling and corrosivity of flue gases, the identification of the optimal CO2 capture rate, combination of CO2 capture with other gas cleaning processes and processes for separation, compression and conditioning of CO2. It is envisaged that a project under this topic will test, demonstrate and further develop existing technologies in a medium sized test environment. Scalability of the results to large scale power plants has to be in the focus of the activities. Funding scheme: Collaborative project with a dominant demonstration component.Expected impact: Oxygen-based combustion technologies can play an important role for CCS. Projects under this topic shall further develop these technologies and test them in small scale demonstration plants and thereby pave the way for their use in industrial scale power plants.Open in call: FP7-ENERGY-2008-2

Why oxy-fuel lignite combustion ?

• To improve the efficiency of lignite combustion; retrofitting possible; rapid benefits for electricity production for countries such as Turkey and Greece

• To ease CO2 capture

• less NOx as recycled NO (fuel NO) is burned out and no thermal NOx (no N2)

• EOR

• Enhanced CBM

Issues (1)

• Retrofit is possible and demonstrated in pilot scale systems. O2 is mixed with a fraction (important about 65%) of the flue gases (CO2 and H2O mainly or if after condensation mainly only CO2). This helps to reduce the flame temperature and obtain flame conditions equivalent to air burning. As the CO2 and H2O thermal capacities are higher than that of N2, more O2 concentration is needed to obtain full conversion. It is possible to adjust the O2 and flue gas concentration to match the heat transfer parameters to that of air burning

Issues (2)

• As the flow physical parameters are different between air and recycled flue gas and oxygen mixture, if we want to match the heat transfer rate, the flow rates will be different. Therefore a new burner design is necessary

• SO2 SO3 emissions may increase, corrosion should be handled

• Heat transfer parameters may also need adjustment; no air in leakage should be allowed, so the boiler should be very well sealed

Issues (3)

• ASU (air separation unit) is the most energy consuming part, 95% O2 is generally used to reduce the cost penalty

• Also for CO2 recycling and capture compressors are necessary

• Therefore, oxy-fuel coal burning with CCS gives clearly a lower energy efficiency compared to air burning

• But CCS with air burning and amine based systems is even more costly; then we have to compare comparable issues

Issues (4)

• The efficiency issue should be considered

globally. With oxy-fuel combustion we shall

burn much more efficiently the lignite.

Combustion studies should be done

• Captured CO2 should be used intelligently: for

EOR, for ECBM, for inclusion into cement and

concrete production, for ex-situ carbonation

etc. We have to increase the value of the

whole chain by using CO2 as a commodity

Issues (5)

• We need to chose a demonstration site for

oxy-fuel lignite combustion: SOMA A: EUAS,

TKI

• Compatible power level with the FP7

requirements: 22 MW with several burners of

the MW level

• Pulverized lignite with oxy-fuel retrofitting,

dissemination and scalability potential

• Enhanced CBM potential in the area…

SOMALOX

• A proposal for FP7 ENERGY TREN 2008 to demonstrate retrofitting the SOMA A pulverized lignite power plant (22 MW) to oxy-fuel combustion

• Partnership: AEE, RWE NPower, CKD Export, ENEA, TKI, EUAS, HABAS, CNRS, NTUA, JRC-IE, Cottbus, Nottingham…

Where is SOMA ?150 km north-east of Izmir

SOMALOX Work package structure

• WP I: Simulation of the optimisation of the SOMA A power plant for oxy-fuel lignite combustion retrofittingSimulation of the global processOptimisation of the lignite preparation for oxy-fuel combustion

• WP II Optimisation of oxygen production, gas cleaning, CO2 capture

• WP III Optimisation of the oxy-fuel lignite burner

• WP IV Retrofitting and Demonstration at the plant level

• WP V Economic, Environmental, Dissemination, Scalability analysis

Outline

• Few words about ICARE-CNRS @ Orléans

• Basic chemical kinetic studies on the oxydation of methane,

ethylene and propene in the presence of CO2 and H2O

(ANR project TACOMA)

• Combustion of methane in oxygene enriched air coupled withmembrane capture of CO2. Basic and pilot system studies

(CNRS Energy Program project COCASE)

• Retrofitting a pulverised coal power plant into a oxyfuel system. (FP7 TREN demonstration project SOMALOX)

• Interdisciplinary and comparative analyses of the acceptabilityof new energy technologies: the case studies of CCS in France

and Canada (CNRS Energy Program project ALICANTE)

• 10th ICCEU

Outline

• Few words about ICARE-CNRS @ Orléans

• Basic chemical kinetic studies on the oxydation of methane,

ethylene and propene in the presence of CO2 and H2O

(ANR project TACOMA)

• Combustion of methane in oxygene enriched air coupled withmembrane capture of CO2. Basic and pilot system studies

(CNRS Energy Program project COCASE)

• Retrofitting a pulverised coal power plant into a oxyfuel system. (FP7 TREN demonstration project SOMALOX)

• Interdisciplinary and comparative analyses of the acceptabilityof new energy technologies: the case studies of CCS in France

and Canada (CNRS Energy Program project ALICANTE)

• 10th ICCEU

THE NINTH ASIA-PACIFICINTERNATIONAL SYMPOSIUM

ON COMBUSTION ANDENERGY UTILIZATION

(9th APISCEU)

November 02-06, 2008Beijing, China

Organized byBeijing Society of Thermophysics and Energy

Engineering, ChinaInstitute of Engineering Thermophysics,

Chinese Academy of SciencesBeijing Shenwu Thermal Energy Technology

Co, LTD, ChinaYanshan Petro-Chemical Industry

Corporation, ChinaThe Combustion Institute, USA

Sponsored byBeijing Association for Science and

Technology, China

Internet: http://www.APISCEU9.org.cn

10th ICCEU• 10th International Conference on Combustion

and Energy Utilisation

• Will be organized at the University of Mugla, Turkey, on 4-8 May 2010

• Main topic: Clean fossil fuel technologies : (technical and socio-economic aspects)

• Contact: Iskender Gökalp

[email protected]