Download - RC Beam Design JPv4

Transcript
  • MATERIAL PROPERTIESconcrete compressive strength f'c = 35 MPa

    flexural steel rebar yield strength fy = 400 MPa

    shear steel rebar yield strength fyt = 400 MPa

    8.5.1 modulus of elasticity of concrete Ec = 27.81 GPa

    8.5.2 modulus of elasticity of steel rebar Es = 200 GPa

    10.2.3 maximum concrete strain c, max = 0.003

    10.3.4 minimum steel rebar strain s, min = 0.005

    STRENGTH REDUCTION FACTOR9.3.2.1 bending b = 0.90

    9.3.2.3 shear (taken v or s) v or s = 0.60

    9.3.2.3 torsion tor = 0.75

    SECTION DIMENSIONeffective length Leff = 5000 mm

    overall depth h = 600 mm

    width bw = 300 mm

    cover to rebar center dc = 60 mm

    concrete clear cover cc = 40 mm

    effective depth d = 540 mm

    estimated flexural rebar size Dflex = 19 mm

    estimated shear/torsion rebar size Dsh/tor = 10 mm

    FACTORED INTERNAL FORCESThis data will be used for ultimate limit state design

    M3 = -78.00 71.00 -78.00 kN.m

    red. M3 = -78.00 71.00 -78.00 kN.m

    V2 = 103.00 0.00 -103.00 kN

    T = 0.00 0.00 0.00 kN.m

    redist. % = 0.00

    ULTIMATE LIMIT STATE DESIGN Sway IntermediateFLEXURAL REINFORCEMENT DESIGN

    design bending moment M3 = 78.00 15.60 78.00 kN.m

    26.00 86.60 26.00 kN.m

    10.2.7.3 factor of compressive block 1 = 0.80

    10.2.7.1 depth of compressive block a = 18.29 3.61 18.29 mm

    6.03 20.35 6.03 mm

    maximum depth of compressive block amax = 162.00 mm

    maximum depth of neutral axis cmax = 202.50 mmPage 1 of 15

  • design based on single reinforcement

    required single reinforcement As = 408.15 80.52 408.15 mm2

    134.50 454.03 134.50 mm2

    design based on double reinforcement

    concrete compressive force C = 1445.85 kN

    moment resistance of compressive conc & tension steel Muc = 597.28 kN.m

    moment resisted by compressive steel & tension steel Mus = 0.00 0.00 0.00 kN.m

    0.00 0.00 0.00 kN.m

    steel stress at compressive region fs' = 400.00 MPa (yielded)

    tensile steel for balancing compression in concrete As1 = 0.00 0.00 0.00 mm2

    0.00 0.00 0.00 mm2

    tension steel for balancing compression in steel As2 = 0.00 0.00 0.00 mm2

    0.00 0.00 0.00 mm2

    required tensile reinforcement As = 0.00 0.00 0.00 mm2

    0.00 0.00 0.00 mm2

    required compressive reinforcement As' = 0.00 0.00 0.00 mm2

    0.00 0.00 0.00 mm2

    minimum required & maximum allowed for flexural reinforcement

    10.5.1 minimum required tensile reinforcement Asmin = 599.00 599.00 599.00 mm2

    10.5.3 minimum requirement for neglecting 10.5.1 Asmin = 544.20 605.37 544.20 mm2

    taking the minimum of 10.5.1 & 10.5.3 for eco. design Asmin = 544.20 599.00 544.20 mm2

    minimum reduirement based on seismic consideration Asmin = 181.40 108.84 181.40 mm2

    21.5.2.1 maximum allowed flexural reinforcement Asmax = 4050.00 4050.00 4050.00 mm2

    design required rebar area left mid right

    top 544.20 108.84 544.20 mm2

    bottom 181.40 599.00 181.40 mm2

    SHEAR REINFORCEMENT DESIGN

    design shear force Vu = 103.00 0.00 103.00 kN

    provided flexural reinforcement ratio w = 0.0045 0.0044 0.0045

    8.6.1 concrete shear modification factor = 1.00

    11.2.1.1 shear capacity provided by concrete max Vc = 162.93 kN

    11.2.2.1 shear capacity provided by concrete max Vc = 277.94 kN

    shear capacity provided by concrete 180.16 170.38 180.16 kN

    199.70 170.38 199.70 kN

    Vc = 162.93 162.93 162.93 kN

    11.4.7.2 shear resisted by steel rebar Vs = 5.24 0.00 5.24 kN

    11.4.7.2 shear rebar required Av/s = 24.27 0.00 24.27 mm2/m

    minimum required & maximum allowed for shear reinforcement

    11.4.6.3 minimum required shear reinforcement min Av/s = 275.10 mm2/m

    11.4.7.9 maximum allowed shear reinforcement max Av/s = 2928.46 mm2/m

    design required rebar area Av/s = 275.10 275.10 275.10 mm2/m

    TORSIONAL REINFORCEMENT DESIGN

    design torsion Tu = 0.00 0.00 0.00 kN.m

    design shear Vu = 103.00 0.00 103.00 kN

    minimum concrete shear capacity Vc = 162.93 kN

    gross sectional area Acp = 180000.00 mm2

    Page 2 of 15

  • sectional outside perimeter pcp = 1800.00 mm

    sectional perimeter i/ torsional reinf. center line ph = 1440.00 mm

    sectional area i/ torsional reinf. center line Aoh = 107100.00 mm2

    sectional area i/ shear flow path Ao = 100000.00 mm2

    11.5.1 checking for threshold torsion if Tu 6.63 kN.m (satisfied)

    note:

    11.5.3.1 checking for shear-torsion combination action 0.636 2.929 (satisfied)

    note:

    additional transversal reinforcement due to torsion At/s = 0.00 mm2/m

    11.5.5.2 min. combined shear-torsion reinf. (Av+2At)/s = 275.10 mm2/m

    11.5.5.2 min. additional transverse torsion reinf. min At/s = 0.00 mm2/m

    11.5.5.3 min. additional transverse torsion reinf. min At/s = 131.25 mm2/m

    11.5.5.3 min. additional longitudinal reinf. min Al = 1118.14 mm2

    11.5.3.7 required additional longitudinal reinf. Al = 0.00 mm2

    design additional transv. torsion reinf. At/s = 0.00 mm2/m

    design additional longitudinal reinf. Al = 0.00 mm2

    REBAR AREA DESIGN

    distribution method for longitudinal torsion reinforcement

    flexural rebar top 544.20 108.84 544.20 mm2

    bottom 181.40 599.00 181.40 mm2

    torsional rebar/2faces, i.e. left and right 50% @2 faces 0.00 0.00 0.00 mm2

    shear rebar 275.10 275.10 275.10 mm2/m

    21.5.2.1 check for maximum allowed flexural reinforcement 2.5% OK OK OK

    11.4.7.9 check for maximum allowed shear reinforcement OK OK OK

    SERVICEABILITY LIMIT STATE DESIGNDEFLECTION CHECK

    effective length Leff = 5000.00 mm

    provided compression reinforcement As' = 6433.98 mm2 ---> 8D32

    deflection under Dead Load (DL) DL = 26.86 mm

    deflection under Live Load (LL) LL = 9.87 mm

    deflection under Sustained Service Load SUS = 39.74 mm

    9.5.2.5 time-dependent factor = 2.00 5 years or more

    9.5.2.5 compression steel rasio to effective cross section ' = 0.0397

    9.5.2.5 long-term deflection multiplier = 0.67

    9.5.2.5 estimated additional long-term deflection long = 26.62 mm

    deflection limit check

    immediate deflection limit imm, lim = 27.78 mm L/180

    total deflection limit tot, lim = 20.83 mm L/240

    immediate deflection under Live Load imm = 9.87 mm OK

    short term total deflection under Service Load short = 36.73 mm

    long-term deflection long = 63.35 mm

    note:

    note: WARNING! Short-term deflection exceeds maximum deflection allowed.

    MATERIAL PROPERTIESconcrete compressive strength f'c = 35 MPa

    flexural steel rebar yield strength fy = 400 MPa

    shear steel rebar yield strength fyt = 400 MPa

    8.5.1 modulus of elasticity of concrete Ec = 27.81 GPa

    Page 3 of 15

  • 8.5.2 modulus of elasticity of steel rebar Es = 200 GPa

    10.2.3 maximum concrete strain c, max = 0.003

    10.3.4 minimum steel rebar strain s, min = 0.005

    STRENGTH REDUCTION FACTOR9.3.2.1 bending b = 0.90

    9.3.2.3 shear (taken v or s) v or s = 0.60

    9.3.2.3 torsion tor = 0.75

    SECTION DIMENSIONeffective length Leff = 5000 mm

    overall depth h = 600 mm

    width bw = 300 mm

    cover to rebar center dc = 60 mm

    concrete clear cover cc = 40 mm

    effective depth d = 540 mm

    estimated flexural rebar size Dflex = 19 mm

    estimated shear/torsion rebar size Dsh/tor = 10 mm

    FACTORED INTERNAL FORCESThis data will be used for ultimate limit state design

    M3 = 0.00 0.00 0.00 kN.m

    red. M3 = 0.00 0.00 0.00 kN.m

    V2 = 0.00 0.00 0.00 kN

    T = 0.00 0.00 0.00 kN.m

    redist. % = 0.00

    ULTIMATE LIMIT STATE DESIGN Sway IntermediateFLEXURAL REINFORCEMENT DESIGN

    design bending moment M3 = 0.00 0.00 0.00 kN.m

    0.00 0.00 0.00 kN.m

    10.2.7.3 factor of compressive block 1 = 0.80

    10.2.7.1 depth of compressive block a = 18.29 3.61 18.29 mm

    6.03 20.35 6.03 mm

    maximum depth of compressive block amax = 162.00 mm

    maximum depth of neutral axis cmax = 202.50 mm

    design based on single reinforcement

    required single reinforcement As = 408.15 80.52 408.15 mm2

    134.50 454.03 134.50 mm2Page 4 of 15

  • design based on double reinforcement

    concrete compressive force C = 1445.85 kN

    moment resistance of compressive conc & tension steel Muc = 597.28 kN.m

    moment resisted by compressive steel & tension steel Mus = 0.00 0.00 0.00 kN.m

    0.00 0.00 0.00 kN.m

    steel stress at compressive region fs' = 400.00 MPa (yielded)

    tensile steel for balancing compression in concrete As1 = 0.00 0.00 0.00 mm2

    0.00 0.00 0.00 mm2

    tension steel for balancing compression in steel As2 = 0.00 0.00 0.00 mm2

    0.00 0.00 0.00 mm2

    required tensile reinforcement As = 0.00 0.00 0.00 mm2

    0.00 0.00 0.00 mm2

    required compressive reinforcement As' = 0.00 0.00 0.00 mm2

    0.00 0.00 0.00 mm2

    minimum required & maximum allowed for flexural reinforcement

    10.5.1 minimum required tensile reinforcement Asmin = 599.00 599.00 599.00 mm2

    10.5.3 minimum requirement for neglecting 10.5.1 Asmin = 544.20 605.37 544.20 mm2

    taking the minimum of 10.5.1 & 10.5.3 for eco. design Asmin = 544.20 599.00 544.20 mm2

    minimum reduirement based on seismic consideration Asmin = 0.00 0.00 0.00 mm2

    21.5.2.1 maximum allowed flexural reinforcement Asmax = 4050.00 4050.00 4050.00 mm2

    design required rebar area left mid right

    top 544.20 80.52 544.20 mm2

    bottom 134.50 599.00 134.50 mm2

    SHEAR REINFORCEMENT DESIGN

    design shear force Vu = 0.00 0.00 0.00 kN

    provided flexural reinforcement ratio w = 0.0042 0.0042 0.0042

    8.6.1 concrete shear modification factor = 1.00

    11.2.1.1 shear capacity provided by concrete max Vc = 162.93 kN

    11.2.2.1 shear capacity provided by concrete max Vc = 277.94 kN

    shear capacity provided by concrete 170.38 170.38 170.38 kN

    170.38 170.38 170.38 kN

    Vc = 162.93 162.93 162.93 kN

    11.4.7.2 shear resisted by steel rebar Vs = 0.00 0.00 0.00 kN

    11.4.7.2 shear rebar required Av/s = 0.00 0.00 0.00 mm2/m

    minimum required & maximum allowed for shear reinforcement

    11.4.6.3 minimum required shear reinforcement min Av/s = 275.10 mm2/m

    11.4.7.9 maximum allowed shear reinforcement max Av/s = 2928.46 mm2/m

    design required rebar area Av/s = 275.10 275.10 275.10 mm2/m

    TORSIONAL REINFORCEMENT DESIGN

    design torsion Tu = 0.00 0.00 0.00 kN.m

    design shear Vu = 0.00 0.00 0.00 kN

    minimum concrete shear capacity Vc = 162.93 kN

    gross sectional area Acp = 180000.00 mm2

    sectional outside perimeter pcp = 1800.00 mm

    sectional perimeter i/ torsional reinf. center line ph = 1440.00 mm

    sectional area i/ torsional reinf. center line Aoh = 107100.00 mm2

    sectional area i/ shear flow path Ao = 100000.00 mm2

    11.5.1 checking for threshold torsion if Tu 6.63 kN.m (satisfied)

    note:Page 5 of 15

  • 11.5.3.1 checking for shear-torsion combination action 0.000 2.929 (satisfied)

    note:

    additional transversal reinforcement due to torsion At/s = 0.00 mm2/m

    11.5.5.2 min. combined shear-torsion reinf. (Av+2At)/s = 275.10 mm2/m

    11.5.5.2 min. additional transverse torsion reinf. min At/s = 0.00 mm2/m

    11.5.5.3 min. additional transverse torsion reinf. min At/s = 131.25 mm2/m

    11.5.5.3 min. additional longitudinal reinf. min Al = 1118.14 mm2

    11.5.3.7 required additional longitudinal reinf. Al = 0.00 mm2

    design additional transv. torsion reinf. At/s = 0.00 mm2/m

    design additional longitudinal reinf. Al = 0.00 mm2

    REBAR AREA DESIGN

    distribution method for longitudinal torsion reinforcement

    flexural rebar top 544.20 108.84 544.20 mm2

    bottom 181.40 599.00 181.40 mm2

    torsional rebar/2faces, i.e. left and right 50% @2 faces 0.00 0.00 0.00 mm2

    shear rebar 275.10 275.10 275.10 mm2/m

    21.5.2.1 check for maximum allowed flexural reinforcement 2.5% OK OK OK

    11.4.7.9 check for maximum allowed shear reinforcement OK OK OK

    SERVICEABILITY LIMIT STATE DESIGNDEFLECTION CHECK

    effective length Leff = 5000.00 mm

    provided compression reinforcement As' = 0.00 mm2 ---> D

    deflection under Dead Load (DL) DL = 26.86 mm

    deflection under Live Load (LL) LL = 9.87 mm

    deflection under Sustained Service Load SUS = 39.74 mm

    9.5.2.5 time-dependent factor = 2.00 5 years or more

    9.5.2.5 compression steel rasio to effective cross section ' = 0.0000

    9.5.2.5 long-term deflection multiplier = 2.00

    9.5.2.5 estimated additional long-term deflection long = 26.62 mm

    deflection limit check

    immediate deflection limit imm, lim = #DIV/0! mm L/180

    total deflection limit tot, lim = #DIV/0! mm L/240

    immediate deflection under Live Load imm = 9.87 mm OK

    short term total deflection under Service Load short = 36.73 mm

    long-term deflection long = 63.35 mm

    note:

    note: WARNING! Short-term deflection exceeds maximum deflection allowed.

    MATERIAL PROPERTIESconcrete compressive strength f'c = 35 MPa

    flexural steel rebar yield strength fy = 400 MPa

    shear steel rebar yield strength fyt = 400 MPa

    8.5.1 modulus of elasticity of concrete Ec = 27.81 GPa

    8.5.2 modulus of elasticity of steel rebar Es = 200 GPa

    10.2.3 maximum concrete strain c, max = 0.003

    10.3.4 minimum steel rebar strain s, min = 0.005

    STRENGTH REDUCTION FACTOR9.3.2.1 bending b = 0.90Page 6 of 15

  • 9.3.2.3 shear (taken v or s) v or s = 0.60

    9.3.2.3 torsion tor = 0.75

    SECTION DIMENSIONeffective length Leff = 5000 mm

    overall depth h = 600 mm

    width bw = 300 mm

    cover to rebar center dc = 60 mm

    concrete clear cover cc = 40 mm

    effective depth d = 540 mm

    estimated flexural rebar size Dflex = 19 mm

    estimated shear/torsion rebar size Dsh/tor = 10 mm

    FACTORED INTERNAL FORCESThis data will be used for ultimate limit state design

    M3 = 0.00 0.00 0.00 kN.m

    red. M3 = 0.00 0.00 0.00 kN.m

    V2 = 0.00 0.00 0.00 kN

    T = 0.00 0.00 0.00 kN.m

    redist. % = 0.00

    ULTIMATE LIMIT STATE DESIGN Sway IntermediateFLEXURAL REINFORCEMENT DESIGN

    design bending moment M3 = 0.00 0.00 0.00 kN.m

    0.00 0.00 0.00 kN.m

    10.2.7.3 factor of compressive block 1 = 0.80

    10.2.7.1 depth of compressive block a = 18.29 3.61 18.29 mm

    6.03 20.35 6.03 mm

    maximum depth of compressive block amax = 162.00 mm

    maximum depth of neutral axis cmax = 202.50 mm

    design based on single reinforcement

    required single reinforcement As = 408.15 80.52 408.15 mm2

    134.50 454.03 134.50 mm2

    design based on double reinforcement

    concrete compressive force C = 1445.85 kN

    moment resistance of compressive conc & tension steel Muc = 597.28 kN.m

    moment resisted by compressive steel & tension steel Mus = 0.00 0.00 0.00 kN.m

    0.00 0.00 0.00 kN.m

    steel stress at compressive region fs' = 400.00 MPa (yielded)Page 7 of 15

  • tensile steel for balancing compression in concrete As1 = 0.00 0.00 0.00 mm2

    0.00 0.00 0.00 mm2

    tension steel for balancing compression in steel As2 = 0.00 0.00 0.00 mm2

    0.00 0.00 0.00 mm2

    required tensile reinforcement As = 0.00 0.00 0.00 mm2

    0.00 0.00 0.00 mm2

    required compressive reinforcement As' = 0.00 0.00 0.00 mm2

    0.00 0.00 0.00 mm2

    minimum required & maximum allowed for flexural reinforcement

    10.5.1 minimum required tensile reinforcement Asmin = 599.00 599.00 599.00 mm2

    10.5.3 minimum requirement for neglecting 10.5.1 Asmin = 544.20 605.37 544.20 mm2

    taking the minimum of 10.5.1 & 10.5.3 for eco. design Asmin = 544.20 599.00 544.20 mm2

    minimum reduirement based on seismic consideration Asmin = 0.00 0.00 0.00 mm2

    21.5.2.1 maximum allowed flexural reinforcement Asmax = 4050.00 4050.00 4050.00 mm2

    design required rebar area left mid right

    top 544.20 80.52 544.20 mm2

    bottom 134.50 599.00 134.50 mm2

    SHEAR REINFORCEMENT DESIGN

    design shear force Vu = 0.00 0.00 0.00 kN

    provided flexural reinforcement ratio w = 0.0042 0.0042 0.0042

    8.6.1 concrete shear modification factor = 1.00

    11.2.1.1 shear capacity provided by concrete max Vc = 162.93 kN

    11.2.2.1 shear capacity provided by concrete max Vc = 277.94 kN

    shear capacity provided by concrete 170.38 170.38 170.38 kN

    170.38 170.38 170.38 kN

    Vc = 162.93 162.93 162.93 kN

    11.4.7.2 shear resisted by steel rebar Vs = 0.00 0.00 0.00 kN

    11.4.7.2 shear rebar required Av/s = 0.00 0.00 0.00 mm2/m

    minimum required & maximum allowed for shear reinforcement

    11.4.6.3 minimum required shear reinforcement min Av/s = 275.10 mm2/m

    11.4.7.9 maximum allowed shear reinforcement max Av/s = 2928.46 mm2/m

    design required rebar area Av/s = 275.10 275.10 275.10 mm2/m

    TORSIONAL REINFORCEMENT DESIGN

    design torsion Tu = 0.00 0.00 0.00 kN.m

    design shear Vu = 0.00 0.00 0.00 kN

    minimum concrete shear capacity Vc = 162.93 kN

    gross sectional area Acp = 180000.00 mm2

    sectional outside perimeter pcp = 1800.00 mm

    sectional perimeter i/ torsional reinf. center line ph = 1440.00 mm

    sectional area i/ torsional reinf. center line Aoh = 107100.00 mm2

    sectional area i/ shear flow path Ao = 100000.00 mm2

    11.5.1 checking for threshold torsion if Tu 6.63 kN.m (satisfied)

    note:

    11.5.3.1 checking for shear-torsion combination action 0.000 2.929 (satisfied)

    note:

    additional transversal reinforcement due to torsion At/s = 0.00 mm2/m

    11.5.5.2 min. combined shear-torsion reinf. (Av+2At)/s = 275.10 mm2/m

    11.5.5.2 min. additional transverse torsion reinf. min At/s = 0.00 mm2/m

    11.5.5.3 min. additional transverse torsion reinf. min At/s = 131.25 mm2/m

    11.5.5.3 min. additional longitudinal reinf. min Al = 1118.14 mm2

    Page 8 of 15

  • 11.5.3.7 required additional longitudinal reinf. Al = 0.00 mm2

    design additional transv. torsion reinf. At/s = 0.00 mm2/m

    design additional longitudinal reinf. Al = 0.00 mm2

    REBAR AREA DESIGN

    distribution method for longitudinal torsion reinforcement

    flexural rebar top 544.20 108.84 544.20 mm2

    bottom 181.40 599.00 181.40 mm2

    torsional rebar/2faces, i.e. left and right 50% @2 faces 0.00 0.00 0.00 mm2

    shear rebar 275.10 275.10 275.10 mm2/m

    21.5.2.1 check for maximum allowed flexural reinforcement 2.5% OK OK OK

    11.4.7.9 check for maximum allowed shear reinforcement OK OK OK

    SERVICEABILITY LIMIT STATE DESIGNDEFLECTION CHECK

    effective length Leff = 5000.00 mm

    provided compression reinforcement As' = 0.00 mm2 ---> D

    deflection under Dead Load (DL) DL = 26.86 mm

    deflection under Live Load (LL) LL = 9.87 mm

    deflection under Sustained Service Load SUS = 39.74 mm

    9.5.2.5 time-dependent factor = 2.00 5 years or more

    9.5.2.5 compression steel rasio to effective cross section ' = 0.0000

    9.5.2.5 long-term deflection multiplier = 2.00

    9.5.2.5 estimated additional long-term deflection long = 26.62 mm

    deflection limit check

    immediate deflection limit imm, lim = #DIV/0! mm L/180

    total deflection limit tot, lim = #DIV/0! mm L/240

    immediate deflection under Live Load imm = 9.87 mm OK

    short term total deflection under Service Load short = 36.73 mm

    long-term deflection long = 63.35 mm

    note:

    note: WARNING! Short-term deflection exceeds maximum deflection allowed.

    MATERIAL PROPERTIESconcrete compressive strength f'c = 35 MPa

    flexural steel rebar yield strength fy = 400 MPa

    shear steel rebar yield strength fyt = 400 MPa

    8.5.1 modulus of elasticity of concrete Ec = 27.81 GPa

    8.5.2 modulus of elasticity of steel rebar Es = 200 GPa

    10.2.3 maximum concrete strain c, max = 0.003

    10.3.4 minimum steel rebar strain s, min = 0.005

    STRENGTH REDUCTION FACTOR9.3.2.1 bending b = 0.90

    9.3.2.3 shear (taken v or s) v or s = 0.60

    9.3.2.3 torsion tor = 0.75

    SECTION DIMENSIONeffective length Leff = 5000 mm

    overall depth h = 600 mmPage 9 of 15

  • width bw = 300 mm

    cover to rebar center dc = 60 mm

    concrete clear cover cc = 40 mm

    effective depth d = 540 mm

    estimated flexural rebar size Dflex = 19 mm

    estimated shear/torsion rebar size Dsh/tor = 10 mm

    FACTORED INTERNAL FORCESThis data will be used for ultimate limit state design

    M3 = 0.00 0.00 0.00 kN.m

    red. M3 = 0.00 0.00 0.00 kN.m

    V2 = 0.00 0.00 0.00 kN

    T = 0.00 0.00 0.00 kN.m

    redist. % = 0.00

    ULTIMATE LIMIT STATE DESIGN Sway IntermediateFLEXURAL REINFORCEMENT DESIGN

    design bending moment M3 = 0.00 0.00 0.00 kN.m

    0.00 0.00 0.00 kN.m

    10.2.7.3 factor of compressive block 1 = 0.80

    10.2.7.1 depth of compressive block a = 18.29 3.61 18.29 mm

    6.03 20.35 6.03 mm

    maximum depth of compressive block amax = 162.00 mm

    maximum depth of neutral axis cmax = 202.50 mm

    design based on single reinforcement

    required single reinforcement As = 408.15 80.52 408.15 mm2

    134.50 454.03 134.50 mm2

    design based on double reinforcement

    concrete compressive force C = 1445.85 kN

    moment resistance of compressive conc & tension steel Muc = 597.28 kN.m

    moment resisted by compressive steel & tension steel Mus = 0.00 0.00 0.00 kN.m

    0.00 0.00 0.00 kN.m

    steel stress at compressive region fs' = 400.00 MPa (yielded)

    tensile steel for balancing compression in concrete As1 = 0.00 0.00 0.00 mm2

    0.00 0.00 0.00 mm2

    tension steel for balancing compression in steel As2 = 0.00 0.00 0.00 mm2

    0.00 0.00 0.00 mm2

    required tensile reinforcement As = 0.00 0.00 0.00 mm2

    0.00 0.00 0.00 mm2

    required compressive reinforcement As' = 0.00 0.00 0.00 mm2Page 10 of 15

  • 0.00 0.00 0.00 mm2

    minimum required & maximum allowed for flexural reinforcement

    10.5.1 minimum required tensile reinforcement Asmin = 599.00 599.00 599.00 mm2

    10.5.3 minimum requirement for neglecting 10.5.1 Asmin = 544.20 605.37 544.20 mm2

    taking the minimum of 10.5.1 & 10.5.3 for eco. design Asmin = 544.20 599.00 544.20 mm2

    minimum reduirement based on seismic consideration Asmin = 0.00 0.00 0.00 mm2

    21.5.2.1 maximum allowed flexural reinforcement Asmax = 4050.00 4050.00 4050.00 mm2

    design required rebar area left mid right

    top 544.20 80.52 544.20 mm2

    bottom 134.50 599.00 134.50 mm2

    SHEAR REINFORCEMENT DESIGN

    design shear force Vu = 0.00 0.00 0.00 kN

    provided flexural reinforcement ratio w = 0.0042 0.0042 0.0042

    8.6.1 concrete shear modification factor = 1.00

    11.2.1.1 shear capacity provided by concrete max Vc = 162.93 kN

    11.2.2.1 shear capacity provided by concrete max Vc = 277.94 kN

    shear capacity provided by concrete 170.38 170.38 170.38 kN

    170.38 170.38 170.38 kN

    Vc = 162.93 162.93 162.93 kN

    11.4.7.2 shear resisted by steel rebar Vs = 0.00 0.00 0.00 kN

    11.4.7.2 shear rebar required Av/s = 0.00 0.00 0.00 mm2/m

    minimum required & maximum allowed for shear reinforcement

    11.4.6.3 minimum required shear reinforcement min Av/s = 275.10 mm2/m

    11.4.7.9 maximum allowed shear reinforcement max Av/s = 2928.46 mm2/m

    design required rebar area Av/s = 275.10 275.10 275.10 mm2/m

    TORSIONAL REINFORCEMENT DESIGN

    design torsion Tu = 0.00 0.00 0.00 kN.m

    design shear Vu = 0.00 0.00 0.00 kN

    minimum concrete shear capacity Vc = 162.93 kN

    gross sectional area Acp = 180000.00 mm2

    sectional outside perimeter pcp = 1800.00 mm

    sectional perimeter i/ torsional reinf. center line ph = 1440.00 mm

    sectional area i/ torsional reinf. center line Aoh = 107100.00 mm2

    sectional area i/ shear flow path Ao = 100000.00 mm2

    11.5.1 checking for threshold torsion if Tu 6.63 kN.m (satisfied)

    note:

    11.5.3.1 checking for shear-torsion combination action 0.000 2.929 (satisfied)

    note:

    additional transversal reinforcement due to torsion At/s = 0.00 mm2/m

    11.5.5.2 min. combined shear-torsion reinf. (Av+2At)/s = 275.10 mm2/m

    11.5.5.2 min. additional transverse torsion reinf. min At/s = 0.00 mm2/m

    11.5.5.3 min. additional transverse torsion reinf. min At/s = 131.25 mm2/m

    11.5.5.3 min. additional longitudinal reinf. min Al = 1118.14 mm2

    11.5.3.7 required additional longitudinal reinf. Al = 0.00 mm2

    design additional transv. torsion reinf. At/s = 0.00 mm2/m

    design additional longitudinal reinf. Al = 0.00 mm2

    REBAR AREA DESIGN

    distribution method for longitudinal torsion reinforcementPage 11 of 15

  • flexural rebar top 544.20 108.84 544.20 mm2

    bottom 181.40 599.00 181.40 mm2

    torsional rebar/2faces, i.e. left and right 50% @2 faces 0.00 0.00 0.00 mm2

    shear rebar 275.10 275.10 275.10 mm2/m

    21.5.2.1 check for maximum allowed flexural reinforcement 2.5% OK OK OK

    11.4.7.9 check for maximum allowed shear reinforcement OK OK OK

    SERVICEABILITY LIMIT STATE DESIGNDEFLECTION CHECK

    effective length Leff = 5000.00 mm

    provided compression reinforcement As' = 0.00 mm2 ---> D

    deflection under Dead Load (DL) DL = 26.86 mm

    deflection under Live Load (LL) LL = 9.87 mm

    deflection under Sustained Service Load SUS = 39.74 mm

    9.5.2.5 time-dependent factor = 2.00 5 years or more

    9.5.2.5 compression steel rasio to effective cross section ' = 0.0000

    9.5.2.5 long-term deflection multiplier = 2.00

    9.5.2.5 estimated additional long-term deflection long = 26.62 mm

    deflection limit check

    immediate deflection limit imm, lim = #DIV/0! mm L/180

    total deflection limit tot, lim = #DIV/0! mm L/240

    immediate deflection under Live Load imm = 9.87 mm OK

    short term total deflection under Service Load short = 36.73 mm

    long-term deflection long = 63.35 mm

    note:

    note: WARNING! Short-term deflection exceeds maximum deflection allowed.

    MATERIAL PROPERTIESconcrete compressive strength f'c = 35 MPa

    flexural steel rebar yield strength fy = 400 MPa

    shear steel rebar yield strength fyt = 400 MPa

    8.5.1 modulus of elasticity of concrete Ec = 27.81 GPa

    8.5.2 modulus of elasticity of steel rebar Es = 200 GPa

    10.2.3 maximum concrete strain c, max = 0.003

    10.3.4 minimum steel rebar strain s, min = 0.005

    STRENGTH REDUCTION FACTOR9.3.2.1 bending b = 0.90

    9.3.2.3 shear (taken v or s) v or s = 0.60

    9.3.2.3 torsion tor = 0.75

    SECTION DIMENSIONeffective length Leff = 5000 mm

    overall depth h = 600 mm

    width bw = 300 mm

    cover to rebar center dc = 60 mm

    concrete clear cover cc = 40 mm

    effective depth d = 540 mm

    estimated flexural rebar size Dflex = 19 mm

    estimated shear/torsion rebar size Dsh/tor = 10 mm

    Page 12 of 15

  • FACTORED INTERNAL FORCESThis data will be used for ultimate limit state design

    M3 = 0.00 0.00 0.00 kN.m

    red. M3 = 0.00 0.00 0.00 kN.m

    V2 = 0.00 0.00 0.00 kN

    T = 0.00 0.00 0.00 kN.m

    redist. % = 0.00

    ULTIMATE LIMIT STATE DESIGN Sway IntermediateFLEXURAL REINFORCEMENT DESIGN

    design bending moment M3 = 0.00 0.00 0.00 kN.m

    0.00 0.00 0.00 kN.m

    10.2.7.3 factor of compressive block 1 = 0.80

    10.2.7.1 depth of compressive block a = 18.29 3.61 18.29 mm

    6.03 20.35 6.03 mm

    maximum depth of compressive block amax = 162.00 mm

    maximum depth of neutral axis cmax = 202.50 mm

    design based on single reinforcement

    required single reinforcement As = 408.15 80.52 408.15 mm2

    134.50 454.03 134.50 mm2

    design based on double reinforcement

    concrete compressive force C = 1445.85 kN

    moment resistance of compressive conc & tension steel Muc = 597.28 kN.m

    moment resisted by compressive steel & tension steel Mus = 0.00 0.00 0.00 kN.m

    0.00 0.00 0.00 kN.m

    steel stress at compressive region fs' = 400.00 MPa (yielded)

    tensile steel for balancing compression in concrete As1 = 0.00 0.00 0.00 mm2

    0.00 0.00 0.00 mm2

    tension steel for balancing compression in steel As2 = 0.00 0.00 0.00 mm2

    0.00 0.00 0.00 mm2

    required tensile reinforcement As = 0.00 0.00 0.00 mm2

    0.00 0.00 0.00 mm2

    required compressive reinforcement As' = 0.00 0.00 0.00 mm2

    0.00 0.00 0.00 mm2

    minimum required & maximum allowed for flexural reinforcement

    10.5.1 minimum required tensile reinforcement Asmin = 599.00 599.00 599.00 mm2

    10.5.3 minimum requirement for neglecting 10.5.1 Asmin = 544.20 605.37 544.20 mm2

    taking the minimum of 10.5.1 & 10.5.3 for eco. design Asmin = 544.20 599.00 544.20 mm2

    minimum reduirement based on seismic consideration Asmin = 0.00 0.00 0.00 mm2

    Page 13 of 15

  • 21.5.2.1 maximum allowed flexural reinforcement Asmax = 4050.00 4050.00 4050.00 mm2

    design required rebar area left mid right

    top 544.20 80.52 544.20 mm2

    bottom 134.50 599.00 134.50 mm2

    SHEAR REINFORCEMENT DESIGN

    design shear force Vu = 0.00 0.00 0.00 kN

    provided flexural reinforcement ratio w = 0.0042 0.0042 0.0042

    8.6.1 concrete shear modification factor = 1.00

    11.2.1.1 shear capacity provided by concrete max Vc = 162.93 kN

    11.2.2.1 shear capacity provided by concrete max Vc = 277.94 kN

    shear capacity provided by concrete 170.38 170.38 170.38 kN

    170.38 170.38 170.38 kN

    Vc = 162.93 162.93 162.93 kN

    11.4.7.2 shear resisted by steel rebar Vs = 0.00 0.00 0.00 kN

    11.4.7.2 shear rebar required Av/s = 0.00 0.00 0.00 mm2/m

    minimum required & maximum allowed for shear reinforcement

    11.4.6.3 minimum required shear reinforcement min Av/s = 275.10 mm2/m

    11.4.7.9 maximum allowed shear reinforcement max Av/s = 2928.46 mm2/m

    design required rebar area Av/s = 275.10 275.10 275.10 mm2/m

    TORSIONAL REINFORCEMENT DESIGN

    design torsion Tu = 0.00 0.00 0.00 kN.m

    design shear Vu = 0.00 0.00 0.00 kN

    minimum concrete shear capacity Vc = 162.93 kN

    gross sectional area Acp = 180000.00 mm2

    sectional outside perimeter pcp = 1800.00 mm

    sectional perimeter i/ torsional reinf. center line ph = 1440.00 mm

    sectional area i/ torsional reinf. center line Aoh = 107100.00 mm2

    sectional area i/ shear flow path Ao = 100000.00 mm2

    11.5.1 checking for threshold torsion if Tu 6.63 kN.m (satisfied)

    note:

    11.5.3.1 checking for shear-torsion combination action 0.000 2.929 (satisfied)

    note:

    additional transversal reinforcement due to torsion At/s = 0.00 mm2/m

    11.5.5.2 min. combined shear-torsion reinf. (Av+2At)/s = 275.10 mm2/m

    11.5.5.2 min. additional transverse torsion reinf. min At/s = 0.00 mm2/m

    11.5.5.3 min. additional transverse torsion reinf. min At/s = 131.25 mm2/m

    11.5.5.3 min. additional longitudinal reinf. min Al = 1118.14 mm2

    11.5.3.7 required additional longitudinal reinf. Al = 0.00 mm2

    design additional transv. torsion reinf. At/s = 0.00 mm2/m

    design additional longitudinal reinf. Al = 0.00 mm2

    REBAR AREA DESIGN

    distribution method for longitudinal torsion reinforcement

    flexural rebar top 544.20 108.84 544.20 mm2

    bottom 181.40 599.00 181.40 mm2

    torsional rebar/2faces, i.e. left and right 50% @2 faces 0.00 0.00 0.00 mm2

    shear rebar 275.10 275.10 275.10 mm2/m

    21.5.2.1 check for maximum allowed flexural reinforcement 2.5% OK OK OK

    11.4.7.9 check for maximum allowed shear reinforcement OK OK OKPage 14 of 15

  • SERVICEABILITY LIMIT STATE DESIGNDEFLECTION CHECK

    effective length Leff = 5000.00 mm

    provided compression reinforcement As' = 0.00 mm2 ---> D

    deflection under Dead Load (DL) DL = 26.86 mm

    deflection under Live Load (LL) LL = 9.87 mm

    deflection under Sustained Service Load SUS = 39.74 mm

    9.5.2.5 time-dependent factor = 2.00 5 years or more

    9.5.2.5 compression steel rasio to effective cross section ' = 0.0000

    9.5.2.5 long-term deflection multiplier = 2.00

    9.5.2.5 estimated additional long-term deflection long = 26.62 mm

    deflection limit check

    immediate deflection limit imm, lim = #DIV/0! mm L/180

    total deflection limit tot, lim = #DIV/0! mm L/240

    immediate deflection under Live Load imm = 9.87 mm OK

    short term total deflection under Service Load short = 36.73 mm

    long-term deflection long = 63.35 mm

    note:

    note: WARNING! Short-term deflection exceeds maximum deflection allowed.

    Page 15 of 15