Download - Problem Set 1 Solutions - Illinois State University 360/Homework...Chemistry 360 Dr. Jean M. Standard Problem Set 1 Solutions 1. Determine the first derivatives of each of the following

Transcript
Page 1: Problem Set 1 Solutions - Illinois State University 360/Homework...Chemistry 360 Dr. Jean M. Standard Problem Set 1 Solutions 1. Determine the first derivatives of each of the following

Chemistry 360 Dr. Jean M. Standard

Problem Set 1 Solutions 1. Determine the first derivatives of each of the following functions of one variable.

a.)

f (x) = 3x2e−βx (β is a constant)

" f (x) = 6x − 3β x2( )e−βx

b.)

Y (x) = A cos π x( ) (A is a constant)

" Y (x) = − π A sin π x( )

c.)

g(y) = 1− 2y2

" g (y) = − 2y 1− 2y2( )−1 / 2

d.)

H (T ) = a + bT + cT 2 + dT

(a, b, c, and d are constants)

" H (T ) = b + 2cT − dT 2

e.)

u(r) = Ar12 − B

r6 (A and B are constants)

" u (r) = − 12Ar13 + 6B

r7

f.)

s(t) = e−3t 1 − ℓn(t)[ ]

" s (t) = − 3e−3t 1 − ℓn(t)[ ] − e−3t

t

Page 2: Problem Set 1 Solutions - Illinois State University 360/Homework...Chemistry 360 Dr. Jean M. Standard Problem Set 1 Solutions 1. Determine the first derivatives of each of the following

2

2. Determine the indefinite or definite integrals of each of the following functions of one variable.

Note: For the solutions below involving indefinite integrals, the constant C is used to correspond to an overall arbitrary constant of integration. a.) kA2 dA∫ (k is a constant)

kA2 dA∫     =   k A2 dA∫

=   k A3

3  +  C  .

b.) 3V dV

V1

V2∫

3V dV

V1

V2∫    =   3 V dVV1

V2∫

=  3  V2

2

"

#$

%

&' 

V1

V2

 .

Here, to complete the solution, we must evaluate the result at the limits of integration. The final result is therefore

3V dVV1

V2∫   =  3  V22

2  − V1

2

#

$%

&

'( .

c.) 1V + b∫  dV (b is a constant)

Here, we can let u =V + b . Then, du = dV (since b is a constant). Substituting, the integral becomes 1u∫  du  =  ln u( )  +  C.

Expressing the result in terms of V gives

1V + b∫  dV   =  ln V + b( )  +  C.

Page 3: Problem Set 1 Solutions - Illinois State University 360/Homework...Chemistry 360 Dr. Jean M. Standard Problem Set 1 Solutions 1. Determine the first derivatives of each of the following

3

2. continued d.) eaRT∫  dT (a and R are constants)

Here, we can let u = aRT . Then, du = aR dT , or alternately, dT = 1aR du . Substituting, the integral

becomes

eaRT∫  dT   =   1aR  eu∫  du

=   1aR eu  + C  .

Expressing the result in terms of T gives

eaRT∫  dT   =   1aR eaRT  + C  .

e.) aT 2  +  b

T 3!

"#

$

%& dT300

500∫ (a =250, b=5.0×104)

The easiest way to tackle this integral is to break it into the sum of two integrals,

aT 2  +  b

T 3!

"#

$

%& dT300

500∫   =  a 1

T 2 dT

300

500∫    +   b 1

T 3 dT

300

500∫  

=  a T −2  dT300

500∫    +   b T −3  dT

300

500∫

aT 2  +  b

T 3!

"#

$

%& dT300

500∫   = a  −T −1( )

300

500   +   b  − 12 T

−2( )300

500 .

The next step is to evaluate the result at the limits and substitute the numerical values of a and b,

aT 2  +  b

T 3!

"#

$

%& dT300

500∫   = a  −T −1( )

300

500   +   b  − 12 T

−2( )300

500 

=  a  − 1500

+  1300

!

"#

$

%&   +   

b2  − 1

500( )2+  1300( )2

!

"##

$

%&&

=  250 −1500

+  1300

!

"#

$

%&    +  2.5×104 −

1500( )2

+  1300( )2

!

"##

$

%&&

=  250 1.333×10−3( )  +  2.5×104 7.111×10−6( )=  0.333  +  0.178

aT 2  +  b

T 3!

"#

$

%& dT300

500∫   =  0.511 .

Page 4: Problem Set 1 Solutions - Illinois State University 360/Homework...Chemistry 360 Dr. Jean M. Standard Problem Set 1 Solutions 1. Determine the first derivatives of each of the following

4

3. For each of the following functions of x and y, determine the partial derivatives

∂ f∂x#

$ %

&

' ( y, ∂ f

∂y#

$ %

&

' ( x, ∂

2 f∂x2

#

$ % %

&

' ( ( y

, ∂2 f∂y2

#

$ % %

&

' ( ( x

, ∂2 f∂x∂y

#

$ % %

&

' ( ( , and

∂2 f∂y∂x

#

$ % %

&

' ( ( .

a.)

f (x, y) = x2y + 3y

∂ f∂ x

#

$ %

&

' ( y

= 2xy ∂ f∂ y

#

$ %

&

' ( x

= x2 + 3

∂2 f∂ x2

#

$ % %

&

' ( ( y

= 2y ∂2 f

∂ y2

#

$ % %

&

' ( ( x

= 0

∂2 f∂ x∂ y

#

$ % %

&

' ( ( = 2x ∂2 f

∂ y∂ x

#

$ % %

&

' ( ( = 2x

b.)

f (x, y) = 5ex y + y

∂ f∂ x

#

$ %

&

' ( y

= 5ex y ∂ f∂ y

#

$ %

&

' ( x

= 5ex + 1

∂2 f∂ x2

#

$ % %

&

' ( ( y

= 5ex y ∂2 f

∂ y2

#

$ % %

&

' ( ( x

= 0

∂2 f∂ x∂ y

#

$ % %

&

' ( ( = 5ex ∂2 f

∂ y∂ x

#

$ % %

&

' ( ( = 5ex

c.)

f (x, y) = y ℓn(x) + x ℓn(x)

∂ f∂ x

#

$ %

&

' ( y

= yx

+ 1 + ℓn(x) ∂ f∂ y

#

$ %

&

' ( x

= ℓn(x)

∂2 f∂ x2

#

$ % %

&

' ( ( y

= − yx2 + 1

x ∂

2 f∂ y2

#

$ % %

&

' ( ( x

= 0

∂2 f∂ x∂ y

#

$ % %

&

' ( ( = 1

x ∂2 f

∂ y∂ x

#

$ % %

&

' ( ( = 1

x

Page 5: Problem Set 1 Solutions - Illinois State University 360/Homework...Chemistry 360 Dr. Jean M. Standard Problem Set 1 Solutions 1. Determine the first derivatives of each of the following

5

3. continued

d.)

f (x, y) = 6x3

∂ f∂ x

#

$ %

&

' ( y

= 18x2 ∂ f∂ y

#

$ %

&

' ( x

= 0

∂2 f∂ x2

#

$ % %

&

' ( ( y

= 36x ∂2 f

∂ y2

#

$ % %

&

' ( ( x

= 0

∂2 f∂ x∂ y

#

$ % %

&

' ( ( = 0 ∂2 f

∂ y∂ x

#

$ % %

&

' ( ( = 0

e.)

f (x, y) = xy( )1/ 2

∂ f∂ x

#

$ %

&

' ( y

= 12 x

−1 / 2 y1 / 2 ∂ f∂ y

#

$ %

&

' ( x

= 12 x

1 / 2 y−1 / 2

∂2 f∂ x2

#

$ % %

&

' ( ( y

= − 14 x

−3 / 2 y1 / 2 ∂2 f

∂ y2

#

$ % %

&

' ( ( x

= − 14 x

1 / 2 y−3 / 2

∂2 f∂ x∂ y

#

$ % %

&

' ( ( = 1

4 x−1 / 2y−1 / 2 ∂2 f

∂ y∂ x

#

$ % %

&

' ( ( = 1

4 x−1 / 2y−1 / 2

f.)

f (x, y) = 3x2 cosy + xy3

∂ f∂ x

#

$ %

&

' ( y

= 6x cos y + y 3 ∂ f∂ y

#

$ %

&

' ( x

= − 3x 2 sin y + 3xy2

∂ 2 f∂ x 2

#

$ %

&

' ( y

= 6 cos y ∂2 f

∂ y 2

#

$ %

&

' ( x

= − 3x 2 cos y + 6xy

∂ 2 f∂ x∂ y

#

$ %

&

' ( = − 6x sin y + 3y 2 ∂ 2 f

∂ y∂ x

#

$ %

&

' ( = − 6x sin y + 3y 2

Page 6: Problem Set 1 Solutions - Illinois State University 360/Homework...Chemistry 360 Dr. Jean M. Standard Problem Set 1 Solutions 1. Determine the first derivatives of each of the following

6

4. For each of the following functions of two variables, evaluate the two first partial derivatives. [Where it appears in the expressions below, R corresponds to the gas constant.]

a.)

H (T ,P) = 32 R ℓnT − PℓnP + 3T

2P

∂H∂T

#

$ %

&

' ( P

= 3R2T

+ 32P

∂H∂ P

#

$ %

&

' ( T

= −1 − ℓnP − 3T2P2

b.)

s(v, t) = 12 vt

2 + ve−v

∂ s∂ v#

$ %

&

' ( t

= 12 t

2 + e−v − ve−v

∂ s∂ t#

$ %

&

' ( v

= vt

c.)

g(x, y) = e−3x 1− x2( ) y3ℓny

∂ g∂ x

#

$ %

&

' ( y

= e−3x −3 1− x2( ) − 2x* + ,

- . / y

3ℓny

∂ g∂ y

#

$ %

&

' ( x

= e−3x 1− x2( ) 3y2ℓny + y2( )

d.)

P(V ,T ) = RTV

1 + bV( )

∂ P∂V#

$ %

&

' ( T

= − RTV 2

∂ P∂T#

$ %

&

' ( V

= RV

1 + bV( )

e.)

u(r,θ ) = 32 r

2cosθ − rersinθ

∂ u∂ r#

$ %

&

' ( θ

= 3rcosθ − sinθ er + rer( )

∂ u∂θ

$

% &

'

( ) r

= − 32 r

2sinθ − rercosθ

Page 7: Problem Set 1 Solutions - Illinois State University 360/Homework...Chemistry 360 Dr. Jean M. Standard Problem Set 1 Solutions 1. Determine the first derivatives of each of the following

7

4. continued

f.)

H (T ,P) = 32 RT + RT 2Pe−3P

∂H∂T

#

$ %

&

' ( P

= 32 R + 2RTPe−3P

∂H∂ P

#

$ %

&

' ( T

= RT 2 e−3P − 3Pe−3P( )

g.)

P(V ,T ) = RT + RTVℓnV

∂ P∂V#

$ %

&

' ( T

= RT ℓnV + 1( )

∂ P∂T#

$ %

&

' ( V

= R + RVℓnV

5. For each of the following functions of three variables, evaluate the requested partial derivatives.

a.)

r = x2 + y2 + z2 ; evaluate

∂ r∂x#

$ %

&

' ( y,z

.

∂ r∂ x

#

$ %

&

' ( y,z

= x x2 + y2 + z2( )−1 / 2 = x

r

b.)

y = r sinθ cosφ ; evaluate

∂ y∂φ

$

% &

'

( ) r,θ

.

∂ y∂φ

$

% &

'

( ) r,θ

= − r sinθ sinφ

Page 8: Problem Set 1 Solutions - Illinois State University 360/Homework...Chemistry 360 Dr. Jean M. Standard Problem Set 1 Solutions 1. Determine the first derivatives of each of the following

8

6. Evaluate the following expressions using the ideal gas equation of state.

a.)

∂ P∂T#

$ %

&

' ( Vm

The partial derivative required involves P and also requires

Vm to be held constant. Therefore, the ideal gas equation of state should be solved for P and written in terms of

Vm before the partial derivative is evaluated,

P = nRTV

= RTVm

.

Then, the partial derivative may be evaluated,

∂ P∂T#

$ %

&

' ( Vm

= RVm

.

b.)

∂ P∂Vm

#

$ %

&

' ( T

The partial derivative required involves P and also requires a derivative of

Vm to be evaluated. Therefore, the ideal gas equation of state should be solved for P and written in terms of

Vm before the partial derivative is evaluated,

P = nRTV

= RTVm

.

Then, the partial derivative may be evaluated,

∂ P∂Vm

#

$ %

&

' ( T

= − RTVm

2 .

c.)

∂T∂ P#

$ %

&

' ( Vm

In this case, the partial derivative required involves T and also requires

Vm to be held constant. Therefore, the ideal gas equation of state should be solved for T and written in terms of

Vm before the partial derivative is evaluated,

T = PVnR

= PVmR

.

Then, the partial derivative may be evaluated,

∂T∂ P#

$ %

&

' ( Vm

= VmR

.

Page 9: Problem Set 1 Solutions - Illinois State University 360/Homework...Chemistry 360 Dr. Jean M. Standard Problem Set 1 Solutions 1. Determine the first derivatives of each of the following

9

6. continued

d.)

∂T∂Vm

#

$ %

&

' ( P

.

The partial derivative required involves T and also requires a derivative of

Vm to be evaluated. Therefore, the ideal gas equation of state should be solved for T and written in terms of

Vm before the partial derivative is evaluated,

T = PVnR

= PVmR

.

Then, the partial derivative may be evaluated,

∂T∂Vm

#

$ %

&

' ( P

= PR

.

7. The isothermal compressibility κ is defined by the relation

κ = − 1V

∂V∂ P%

& '

(

) * T

,

and the expansion coefficient α is given by

α = 1V

∂V∂T$

% &

'

( ) P

Evaluate these quantities for an ideal gas (assume that n is constant).

For the isothermal compressibility, the partial derivative required involves V. Therefore, the ideal gas equation of state should be solved for V before the partial derivative is evaluated,

V = nRTP

.

Next, the partial derivative may be evaluated,

∂V∂ P#

$ %

&

' ( T

= − nRTP2 .

Finally, the partial derivative may be substituted into the expression for the isothermal compressibility and simplified,

κ = − 1V

∂V∂ P%

& '

(

) * T

= − 1V⋅ −

nRTP2

%

& '

(

) * = P

nRT⋅nRTP2

%

& '

(

) *

κ = 1P

.

Page 10: Problem Set 1 Solutions - Illinois State University 360/Homework...Chemistry 360 Dr. Jean M. Standard Problem Set 1 Solutions 1. Determine the first derivatives of each of the following

10

7. continued For the expansion coefficient, the partial derivative required also involves V. Therefore, the ideal gas equation of state should be solved for V before the partial derivative is evaluated,

V = nRTP

.

Next, the partial derivative may be evaluated,

∂V∂T#

$ %

&

' ( P

= nRP

.

Finally, the partial derivative may be substituted into the expression for the expansion coefficient and simplified,

α = 1V

∂V∂T$

% &

'

( ) P

= 1V⋅nRP

$

% &

'

( ) = P

nRT⋅nRP

$

% &

'

( )

α = 1T

8. The van der Waals equation for a real gas is defined as

P + aVm

2

"

# $

%

& ' Vm − b( ) = RT , where

Vm is the

molar volume, R is the gas constant, and a and b are van der Waals constants. For the van der Waals equation, determine

a.)

∂ P∂T#

$ %

&

' ( Vm

In order to evaluate the partial derivative, we must first solve the van der Waals equation for P,

P + aVm

2

"

# $

%

& ' Vm − b( ) = RT

P + aVm

2 = RTVm − b

P = RTVm − b

− aVm

2 .

Using that expression, the partial derivative may be evaluated,

∂ P∂T#

$ %

&

' ( Vm

= RVm − b

.

Page 11: Problem Set 1 Solutions - Illinois State University 360/Homework...Chemistry 360 Dr. Jean M. Standard Problem Set 1 Solutions 1. Determine the first derivatives of each of the following

11

8. continued

b.)

∂ P∂Vm

#

$ %

&

' ( T

.

In order to evaluate this partial derivative, the van der Waals equation must again be solved for P. Using the same expression obtained in part (a),

P = RTVm − b

− aVm

2 ,

the partial derivative may be evaluated,

∂ P∂Vm

#

$ %

&

' ( T

= − RTVm − b( )2 + 2a

Vm3 .