Download - Origin of Resonances in Chiral Dynamicstetsuo.hyodo/old/publication/...6 Double-pole structure in chiral dynamics Pole of the scattering amplitude : resonance KN scattering and the

Transcript
  • 12009, Oct. 12thsupported by Global Center of Excellence Program“Nanoscience and Quantum Physics”

    Origin of Resonances in Chiral Dynamics

    Tokyo Institute of TechnologyaTetsuo Hyodoa

  • 2

    Contents

    KN scattering and the Λ(1405) resonance

    Introduction to chiral dynamicsStructure/origin of the Λ(1405) resonance

    Summary

    Contents

    ・Dynamical or CDD pole (quark state) ?・Nc Behavior and quark structure・Electromagnetic properties

    ・Isospin interference and πΣ spectrum・Double-pole Λ(1405) and πΣ spectrum

  • 3

    Physics of the Λ(1405)

    mass : 1406.5 ± 4.0 MeV, width : 50 ± 2 MeVdecay mode: 100%

    (PDG)

    “naive” quark model : p-wave ~1600 MeV?

    N. Isgur, G. Karl, PRD18, 4187 (1978)

    Coupled channel multi-scattering

    R.H. Dalitz, T.C. Wong,G. Rajasekaran, PR153, 1617 (1967)

    MB

    KN scattering and the Λ(1405) resonance

    KN interaction below thresholdT. Hyodo, W. Weise, PRC 77, 035204 (2008)

    --> KN potential, kaonic nucleiKN

    KN scatt.?

    energyπΣ

    Λ(1405)A. Dote, T. Hyodo, W. Weise, NPA804, 197 (2008); PRC 79, 014003 (2009)

  • 4

    “Mass” of the Λ(1405)

    PDG

    R.H. Dalitz, and A. Deloff, J. Phys G17, 289 (1991)Analysis of the Hemingwayʼs data by phenomenological model with I=0 to extract mass and width.

    Spectrum is not purely in I=0, but with some contamination.Analysis is valid only when |TΛ∗ |! |T I=0,1non-resonant|

    (they knew the isospin interference and discussed it)

    KN scattering and the Λ(1405) resonance

  • 5

    Isospin interference in πΣ spectrumTo select I=0 component, it is needed to observe all three πΣ charged states (π0Σ0, π±Σ∓) simultaneously.

    KN scattering and the Λ(1405) resonance

    The isospin interference is observed experimentally!The interference is strong enough to change the spectrum (peak position, width, size of cross section, etc.)!

    CLAS, K. Moriya@HYP-X (2009)

    γp→ K+Λ(1405)

  • 6

    Double-pole structure in chiral dynamicsPole of the scattering amplitude : resonance

    KN scattering and the Λ(1405) resonance

    Tij(√

    s) ∼ gigj√s−MR + iΓR/2

    1360

    1380

    1400

    1420

    1440

    -20

    -40

    -60

    -80

    0.5

    1.0

    1.5

    0.5

    1.0

    1.5

    !(1405)

    Re[z]Im[z]

    |T|

    T. Hyodo, W. Weise, Phys. Rev. C 77, 035204 (2008)

    Origin of the two poles change πΣ spectraD. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meissner, Nucl. Phys. A 723, 205 (2003)

  • 7

    Interference and change of the πΣ spectrumKN scattering and the Λ(1405) resonance

    Schematic decomposition of πΣ amplitudeTπΣ ∼ T (Λ∗) + Tnon-resonant(I = 0) + Tnon-resonant(I = 1)

    Spectral change in π+Σ-, π-Σ+, π0Σ0

  • 8

    Chiral symmetry breaking in hadron physics

    Consequence of chiral symmetry breaking in hadron physics

    Chiral symmetry and its breaking

    Underlying QCD observed hadron phenomenaSU(3)R ⊗ SU(3)L → SU(3)V

    - constraints on the interaction of NG boson-hadron low energy theorems

  • 9

    s-wave low energy interactionLow energy NG boson (Ad)- target hadron (T) scattering

    Projection onto s-wave : Weinberg-Tomozawa termY. Tomozawa, Nuovo Cim. 46A, 707 (1966); S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)

    Cα,T = 〈2FT · FAd〉 = C2(T ) − C2(α) + 3

    Group theoretical structure of the target and flavor SU(3) symmetry determines the sign and strength of the interaction

    Cij =∑

    α

    Cα,T

    (8 T α

    IMi , YMi ITi , YTi I, Y

    )(8 T α

    IMj , YMj ITj , YTj I, Y

    )

    Low energy theorem: leading order term in ChPT

    Introduction to chiral dynamics

    Vij = −Cij4f2

    (ωi + ωj) energy of π (derivative coupling)

    decay constant of π (gV=1)

  • 10

    Scattering amplitude and unitarityUnitarity of S-matrix : Optical theorem

    Im [T−1(s)] =ρ(s)2

    phase space of two-body state

    General amplitude by dispersion relation

    T−1(√

    s) =∑

    i

    Ri√s−Wi

    + ã(s0) +s− s0

    ∫ ∞

    s+ds′

    ρ(s′)(s′ − s)(s′ − s0)

    Scattering amplitude

    V? chiral expansion of T, (conceptual) matching with ChPTT (1) = V (1), T (2) = V (2), T (3) = V (3) − V (1)GV (1), ...

    Amplitude T : consistent with chiral symmetry + unitarity

    Ri, Wi, a : to be determined by chiral interaction

    Identify dispersion integral = loop function G, the rest = V-1

    T (√

    s) =1

    V −1(√

    s)−G(√

    s; a)

    Introduction to chiral dynamics

  • 11

    Description of hadron-NG boson scatteringOverview of chiral dynamics

    Y. Tomozawa, Nuovo Cim. 46A, 707 (1966); S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)

    - Interaction

  • 12

    T. Hyodo, S.I. Nam, D. Jido, A. Hosaka, PRC68, 018201 (2003); PTP 112, 73 (2004)

    200

    150

    100

    50

    0

    !T [

    mb]

    300200100

    K-p

    70

    60

    50

    40

    30

    20

    10

    0300200100

    "0#

    200

    150

    100

    50

    0300200100

    "+$%

    60

    50

    40

    30

    20

    10

    0

    !T [

    mb]

    300200100Plab [MeV/c]

    K0n

    60

    50

    40

    30

    20

    10

    0300200100

    Plab [MeV/c]

    "0$0

    80

    60

    40

    20

    0300200100

    Plab [MeV/c]

    "%$+

    KN scattering : comparison with data

    14401420140013801360s [MeV]

    !" m

    ass d

    istrib

    utio

    n

    γ Rc Rn

    exp. 2.36 0.664 0.189

    theo. 1.80 0.624 0.225

    Total cross section of K-p scattering Branching ratio

    πΣ spectrum

    Good agreement with data above, at, and below KN thresholdΛ(1405) mass, width, couplings : prediction of the model

    Λ(1405)

    Introduction to chiral dynamics

  • 13

    Dynamical state and CDD poleResonances in two-body scattering- Knowledge of interaction (potential)- Experimental data (cross section, phase shift,...)

    (b) CDD pole: elementary, independent, ...

    (a) dynamical state: molecule, quasi-bound, ...

    L. Castillejo, R.H. Dalitz, F.J. Dyson, Phys. Rev. 101, 453 (1956)

    Resonances in chiral dynamics -> (a) dynamical?

    Structure/origin of the Λ(1405) resonance

    MB

    ... in the present case : meson-baryon molecule

    ... in the present case : three-quark state

  • 14

    CDD pole contribution in chiral unitary approachAmplitude in chiral unitary model

    V : interaction kernelG : loop integral

    We point out that the loop function G can contain the CDD pole contribution.

    Λ(1405) in KN scattering --> mostly dynamical

    T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008).

    N(1535) in πN scattering --> dynamical + CDD pole

    !"#

    !$#

    !%#

    !

    #'()*)+,

    -./

    0$1#0$##011#01##0%1#0%##021#3-)*)+,-./

    *0!4)5)!60%#17

    *84)5)8601217

    *&!4)5)!60%#17

    T =1

    V −1 −G

    We propose “natural renormalization scheme” to exclude CDD pole contribution in G (subtraction constant).

    Known CDD pole contribution : those in V

    Structure/origin of the Λ(1405) resonance

  • 15

    Nc scaling in the modelNc : number of color in QCDHadron effective theory / quark structureThe Nc behavior is known from the general argument. non-qqq structure of the Λ(1405)

    Structure/origin of the Λ(1405) resonance

  • 16

    Attaching photon to resonance--> em properties : rms, form factors,...

    Electromagnetic properties

    T. Sekihara, T. Hyodo, D. Jido, in preparation

    --> form factor F(Q2), density distribution ρ(r)Computation at finite Q2 is now underway

    Λ(1405) has spatially large size. c.f. neutron: -0.12 [fm2]

    T. Sekihara, T. Hyodo, D. Jido, Phys. Lett. B669, 133-138 (2008)

    Evaluated mean squared radii :|〈r2〉E| = 0.33 [fm2]

    --> support the meson-baryon picture

    Structure/origin of the Λ(1405) resonance

  • 17

    Summary : Λ(1405) and chiral dynamics

    Spectrum of the Λ(1405) is affected by isospin interference. Precise data from J-lab/J-PARC will be crucial for the hadron/nuclear physics.

    Chiral dynamics: chiral interaction + coupled-channel unitarity

    Internal structure of resonances can be investigated in several ways.

    We discuss the physics of the Λ(1405) and its description by chiral dynamics.

    => successful description of KN scattering + the Λ(1405) resonance

    Summary

  • 18

    Dynamical or CDD?

    Analysis of Nc scaling

    Electromagnetic properties

    The structure of the Λ(1405) is studied:Summary : Structure of Λ(1405)

    => dominance of the MB components

    => non-qqq structure

    => large e.m. sizeT. Sekihara, T. Hyodo, D. Jido

    T. Hyodo, D. Jido, A. Hosaka

    T. Hyodo, D. Jido, L. Roca

    Summary

  • 19

    Dynamical or CDD?

    Analysis of Nc scaling

    Electromagnetic properties

    Independent analyses consistently support the meson-baryon molecule picture for the Λ(1405)

    The structure of the Λ(1405) is studied:

    MB

    Summary : Structure of Λ(1405)

    => dominance of the MB components

    => non-qqq structure

    => large e.m. sizeT. Sekihara, T. Hyodo, D. Jido

    T. Hyodo, D. Jido, A. Hosaka

    T. Hyodo, D. Jido, L. Roca

    Summary