Download - (on behalf of the ATLAS collaboration)tt +jets in ATLAS Spyros Argyropoulos (on behalf of the ATLAS collaboration) Jet Vetoes and Multiplicity Observables 19-21 September 2016, Durham

Transcript
Page 1: (on behalf of the ATLAS collaboration)tt +jets in ATLAS Spyros Argyropoulos (on behalf of the ATLAS collaboration) Jet Vetoes and Multiplicity Observables 19-21 September 2016, Durham

tt +jets in ATLAS

Spyros Argyropoulos (on behalf of the ATLAS collaboration)

Jet Vetoes and Multiplicity Observables19-21 September 2016, Durham

Page 2: (on behalf of the ATLAS collaboration)tt +jets in ATLAS Spyros Argyropoulos (on behalf of the ATLAS collaboration) Jet Vetoes and Multiplicity Observables 19-21 September 2016, Durham

Motivation

2

LHC is a top factory:

√s σtt [pb] L [fb-1] Number of top events

7 TeV (2011) 174 4.6 0.8 M

8 TeV (2012) 248 20.3 5 M

13 TeV (2015) 816 3.2 2.6 M

⇒ precision measurements, understand top modeling(differential cross-section, additional jets production, heavy flavor, ...)

⇒ reduce systematic uncertainties in precision measurements (MC tuning)

⇒ control top background in other measurements/searches (ttH, SUSY, ...)

*Czakon, Fiedler, Mitov [PRL 110, 252004]

*

Page 3: (on behalf of the ATLAS collaboration)tt +jets in ATLAS Spyros Argyropoulos (on behalf of the ATLAS collaboration) Jet Vetoes and Multiplicity Observables 19-21 September 2016, Durham

Some examples from measurements...

3

Top mass

Spin correlation

arXiv: 1407.4314 , 1412.4742

• ISR jets can be mis-identified as jet from top decay

• FSR affects kinematics of top decay products

• modeling of QCD radiation: one of the dominant uncertainties: 30% of total systematic

t

tθl-

l+

b

θl+

l-

• extra radiation affecting the angle between leptons, jets

• 30-40% of total systematic

Page 4: (on behalf of the ATLAS collaboration)tt +jets in ATLAS Spyros Argyropoulos (on behalf of the ATLAS collaboration) Jet Vetoes and Multiplicity Observables 19-21 September 2016, Durham

Some examples from searches...

4

SUSY

• signature based searches: leptons + jets + MET (same as top production)

• tt+jets is the dominant background for many of the SUSY searches

ttH(bb)

• ttbb modeling one of the main challenges of this search - also the dominant systematic

Page 5: (on behalf of the ATLAS collaboration)tt +jets in ATLAS Spyros Argyropoulos (on behalf of the ATLAS collaboration) Jet Vetoes and Multiplicity Observables 19-21 September 2016, Durham

Overview

5

Measure jets produced in association with at top-antitop pair

Measurements

• multiplicity and pT spectrum of additional jet activity (ISR, FSR) in top events

• gap fraction

• tt + heavy flavor

Tuning

• “global”• top-specific

Page 6: (on behalf of the ATLAS collaboration)tt +jets in ATLAS Spyros Argyropoulos (on behalf of the ATLAS collaboration) Jet Vetoes and Multiplicity Observables 19-21 September 2016, Durham

The measurements: generalities

Page 7: (on behalf of the ATLAS collaboration)tt +jets in ATLAS Spyros Argyropoulos (on behalf of the ATLAS collaboration) Jet Vetoes and Multiplicity Observables 19-21 September 2016, Durham

Even

ts

1

10

210

) [GeV]t(tT

p0 100 200 300 400 500 600

[G

eV]

TLe

adin

g je

t p

0

100

200

300

400

500

600ATLASSimulation

= 7 TeVs

ALPGEN+HERWIG

Jet multiplicity & pT spectrum

7

JHEP 01(2015)020

• jet multiplicity, pT spectrum ⇒ check predictions of NLO, multi-leg generators and PS

• probe ME+PS matching and merging schemes

• leading jet pT spectrum strongly correlated with pT(tt) ⇒ complementary to differential cross-section measurement

Page 8: (on behalf of the ATLAS collaboration)tt +jets in ATLAS Spyros Argyropoulos (on behalf of the ATLAS collaboration) Jet Vetoes and Multiplicity Observables 19-21 September 2016, Durham

Gap fraction

8

• measure ratio of events without extra jets in different rapidity intervals

• sensitive to parton shower paremeters, ME+PS matching, αs

• differential in: jet veto scale Q, rapidity • ratio ⇒ cancellation of uncertainties

φ

y0 0.8 1.5 2.1-0.8-1.5-2.1

b-jet

lepton extra jet

f(Q0) =σ(Q0)

σ=

σ(no jet with pT > Q0)

σ

Page 9: (on behalf of the ATLAS collaboration)tt +jets in ATLAS Spyros Argyropoulos (on behalf of the ATLAS collaboration) Jet Vetoes and Multiplicity Observables 19-21 September 2016, Durham

Channels

9

single lepton channel:• signature: 2 b-jets from top decay + 2

extra jets from W decay (4 jets @ LO)• single isolated lepton + MET• higher statistics, lower background

than all-hadronic• additional jets can’t be unambiguously

defined (no reconstruction of top candidate)

di-lepton channel:• signature: 2 b-jets from top decay

(2 jets @ LO)• two isolated leptons + MET• low background• additional jets can be identified

without top reconstructioneμ channel:• highest purity

Page 10: (on behalf of the ATLAS collaboration)tt +jets in ATLAS Spyros Argyropoulos (on behalf of the ATLAS collaboration) Jet Vetoes and Multiplicity Observables 19-21 September 2016, Durham

Reconstruction & event selections

10

single lepton channel:• mT(W) > 35 GeV• MET > 30 GeV

di-lepton channel:• opposite sign leptons• |mll-mZ| > 10 GeV , mll > 15 (40) GeV

Common object selection• electrons: ΕΤ > 25 GeV, |η| < 2.47 excluding 1.37 < |η| < 1.52• muons: pT > 25 GeV, |η| < 2.5• jets: anti-kT R=0.4, pt > 25 GeV, |η| < 2.5• lepton-jet isolation: ΔR > 0.4

• b-tagging:• multi-variate tagger using information from impact parameter, secondary

vertex reconstruction and b-decay topology• different training for 7, 8, 13 TeV

Channel-specific event selection

Page 11: (on behalf of the ATLAS collaboration)tt +jets in ATLAS Spyros Argyropoulos (on behalf of the ATLAS collaboration) Jet Vetoes and Multiplicity Observables 19-21 September 2016, Durham

Fiducial volume definition

11

Goal• define a reference phase space that is close to

the region where the detector functions with high efficiency

• minimize extrapolations which cannot be experimentally constrained

Definition• use stable particles (lifetime > 30 ps)• leptons: not coming from hadron decays, dressed with photons within a cone

of ΔR=0.1• same pT and η cuts for all objects as the ones used for reconstruction (for

electrons one extrapolates over 1.37 < |η| < 1.52)• b-tagging: ghost association of B hadrons with pT > 5 GeV with jets

Definitions developed after series of workshops involving top and SM groups as well as theorists

part reco

Page 12: (on behalf of the ATLAS collaboration)tt +jets in ATLAS Spyros Argyropoulos (on behalf of the ATLAS collaboration) Jet Vetoes and Multiplicity Observables 19-21 September 2016, Durham

Unfolding

12

• extract particle-level spectrum from measured reco-level • for pT unfolding reco-jets are matched (ΔR < 0.35) to

particle jets after ordering in pT or b-tagging score• correct for detector effects:• pass part & not reco: fpart!reco

• pass reco & not part: freco!part

• acceptance effects (b-tag, trigger, lepton): faccpt

• migration across bins: M, fmisassign

part reco

N ipart = f i

part!reco ·�

j

Mpart,ireco,j · f

jmisassign · f

jreco!part · f

jaccpt · (N j

reco −N jbgnd)

Page 13: (on behalf of the ATLAS collaboration)tt +jets in ATLAS Spyros Argyropoulos (on behalf of the ATLAS collaboration) Jet Vetoes and Multiplicity Observables 19-21 September 2016, Durham

The measurements: specifics

Page 14: (on behalf of the ATLAS collaboration)tt +jets in ATLAS Spyros Argyropoulos (on behalf of the ATLAS collaboration) Jet Vetoes and Multiplicity Observables 19-21 September 2016, Durham

Jet multiplicity @ 8 TeV - di-lepton eμ

14

arXiv:1606.09490Goal:• repeat previous jet multiplicity, pT and gap fraction

measurements utilizing εμ top-cross-section measurement (Eur.Phys.J. C74 (2014) 3109)

Interlude about the eμ top cross-section measurement:• most precise measurement of the top cross-section• uncertainty slightly smaller than NNLO+NNLL prediction

N1 = L · σtt̄ · �eµ · 2�b(1− Cb�b) +Nbg1

N2 = L · σtt̄ · �eµ · Cb · �b2 +Nbg2

• based on in-situ measurement of b-tagging efficiency to reduce uncertainties

• Events with at least 2 b-jets have very high signal purity: > 96%

Page 15: (on behalf of the ATLAS collaboration)tt +jets in ATLAS Spyros Argyropoulos (on behalf of the ATLAS collaboration) Jet Vetoes and Multiplicity Observables 19-21 September 2016, Durham

Jet multiplicity @ 8 TeV - di-lepton eμ

15

arXiv:1606.09490

> 25 GeVT

pextra jetsN

0 1 2 3 4 5

Frac

tion

of e

vent

s

0

0.1

0.2

0.3

0.4

0.5

0.6

Data 2012!Powheg+PY6 hdamp=

tPowheg+PY6 hdamp=mtPowheg+PY8 hdamp=m

MC@NLO+HW!Powheg+HW hdamp=

Total uncertainty

ATLAS-1=8 TeV, 20.3 fbs

t| < 4.5, t"|

> 25 GeVT

pextra jetsN0 1 2 3 4 5

MC/

Data

0.5

1

1.5

2!Powheg+PY6 hdamp=

tPowheg+PY6 hdamp=m

tPowheg+PY8 hdamp=m MC@NLO+HW

!Powheg+HW hdamp=

> 25 GeVT

pextra jetsN0 1 2 3 4 5

MC/

Data

0.5

1

1.5

2 Alpgen+HW Alpgen+PY MadGraph+PY

> 25 GeVT

pextra jetsN0 1 2 3 4 5

MC/

Data

1

2

3AcerMC+PY6 RadHi AcerMC+PY6 RadLoAlpgen+PY6 RadHi Alpgen+PY6 RadLo

down2MadGraph+PY6 q up2MadGraph+PY6 q

#

• uncertainty significantly reduced with respect to 7 TeV measurement

• measurement compared against wider variety of MC predictions

• same features as 7 TeV measurement• MC@NLO+Herwig doesn’t describe the high

jet multiplicity tail• data prefer lower values of αs

Page 16: (on behalf of the ATLAS collaboration)tt +jets in ATLAS Spyros Argyropoulos (on behalf of the ATLAS collaboration) Jet Vetoes and Multiplicity Observables 19-21 September 2016, Durham

[GeV]T

Jet p

30 40 50 60 70 80 90 100

/ G

eVje

ts N

even

ts(1

/N

)

-410

-310

-210

Data 2012!Powheg+PY6 hdamp=

tPowheg+PY6 hdamp=mtPowheg+PY8 hdamp=m

MC@NLO+HW!Powheg+HW hdamp=

Total uncertainty

ATLAS-1=8 TeV, 20.3 fbs

t| < 4.5, t"| ordered extra jet

T4th p

[GeV]T

Jet p30 40 50 60 70 80 90 100

MC/

Data

1

2

!Powheg+PY6 hdamp=t

Powheg+PY6 hdamp=mt

Powheg+PY8 hdamp=m MC@NLO+HW!Powheg+HW hdamp=

[GeV]T

Jet p30 40 50 60 70 80 90 100

MC/

Data

1

2Alpgen+HW Alpgen+PY MadGraph+PY

[GeV]T

Jet p30 40 50 60 70 80 90 100

MC/

Data

1

2

3

4 AcerMC+PY6 RadHi AcerMC+PY6 RadLoAlpgen+PY6 RadHi Alpgen+PY6 RadLo

down2MadGraph+PY6 q up2MadGraph+PY6 q

Jet multiplicity @ 8 TeV - di-lepton eμ

16

arXiv:1606.09490

[GeV]T

Jet p

50 100 150 200 250 300 350 400 450 500

/ G

eVje

ts N

even

ts(1

/N

)

-410

-310

-210

Data 2012!Powheg+PY6 hdamp=

tPowheg+PY6 hdamp=mtPowheg+PY8 hdamp=m

MC@NLO+HW!Powheg+HW hdamp=

Total uncertainty

ATLAS-1=8 TeV, 20.3 fbs

t| < 4.5, t"| ordered extra jet

T1st p

[GeV]T

Jet p50 100 150 200 250 300 350 400 450 500

MC/

Data

0.5

1

1.5

2 !Powheg+PY6 hdamp=t

Powheg+PY6 hdamp=mt

Powheg+PY8 hdamp=m MC@NLO+HW!Powheg+HW hdamp=

[GeV]T

Jet p50 100 150 200 250 300 350 400 450 500

MC/

Data

0.5

1

1.5

2Alpgen+HW Alpgen+PY MadGraph+PY

[GeV]T

Jet p50 100 150 200 250 300 350 400 450 500

MC/

Data

1

2

3 AcerMC+PY6 RadHi AcerMC+PY6 RadLoAlpgen+PY6 RadHi Alpgen+PY6 RadLo

down2MadGraph+PY6 q up2MadGraph+PY6 q

• features seen in jet multiplicity spectrum can be explained by looking at the pT spectra

• setting with radiation damping (hdamp=mtop) preferred over setting with no damping

Page 17: (on behalf of the ATLAS collaboration)tt +jets in ATLAS Spyros Argyropoulos (on behalf of the ATLAS collaboration) Jet Vetoes and Multiplicity Observables 19-21 September 2016, Durham

Gap fraction @ 8 TeV - di-lepton eμ

17

arXiv:1606.09490

• MCs in better agreement with data in the forward region in the 8 TeV measurement

• more precise jet calibration in the forward region

[GeV]0Q20 40 60 80 100 120 140 160 180 200

Theo

ry /

Dat

a0.98

1

1.0220 40 60 80 100 120 140 160 180 200

Gap

frac

tion

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Data + stat.

Syst. + stat.

MC@NLO

ERWIG+HOWHEGP

YTHIA+POWHEGP

HERPAS

ERWIG+HLPGENA

|y| < 2.1≤veto region: 1.5

-1 L dt = 2.05 fb∫ATLAS

[GeV]0Q

50100150200250300

par

tga

pf

0.8

0.85

0.9

0.95

1

Graph

-1=8 TeV, 20.3 fbsATLAS

veto region: 1.5 < |y| < 2.1

2012 Data!Powheg+PY6 hdamp=

tPowheg+PY6 hdamp=m

tPowheg+PY8 hdamp=mMC@NLO+HW

!Powheg+HW hdamp=Total uncertainty

Graph

50 100 150 200 250 300

MC/

Data

1

1.02

h_ratio050!Powheg+PY6 hdamp=t

Powheg+PY6 hdamp=m tPowheg+PY8 hdamp=mMC@NLO+HW

!Powheg+HW hdamp=

h_ratio050

50 100 150 200 250 300

MC/

Data

0.99

1

1.01

h_ratio440

Alpgen+HW Alpgen+PY MadGraph+PY

h_ratio440

[GeV]0Q50 100 150 200 250 300

MC/

Data

0.96

0.98

1

1.02

1.04 h_ratio209AcerMC+PY RadHi Alpgen+PY RadHi

down2MadGraph+PY q

AcerMC+PY RadLoAlpgen+PY RadLo

up2MadGraph+PY q

h_ratio209

8 TeV 7 TeV

Too little radiation

Too much radiation

EPJ C72 (2012) 2043

Page 18: (on behalf of the ATLAS collaboration)tt +jets in ATLAS Spyros Argyropoulos (on behalf of the ATLAS collaboration) Jet Vetoes and Multiplicity Observables 19-21 September 2016, Durham

Jet multiplicity @ 13 TeV - di-lepton ee+eμ+μμ

18

Number of additional jets

0 1 2 3 4

jet

d N!

d !1

3"10

2"10

1"10

1

-channelµePowheg+Pythia6Powheg+Herwig++aMCAtNLO+Herwig++Powheg+Pythia8Data

PreliminaryATLAS-113 TeV, 3.2 fb

25 GeV# T

add. jet p

Number of additional jets0 1 2 3 4

MC/

Data

0.60.8

11.21.4

Stat.Stat.+Syst

Number of additional jets

0 1 2 3 4

jet

d N!

d !1

3"10

2"10

1"10

1

-channelµePowheg+Pythia6Powheg+Pythia6 (radHi)Powheg+Pythia6 (radLo)Data

PreliminaryATLAS-113 TeV, 3.2 fb

25 GeV# T

add. jet p

Number of additional jets0 1 2 3 4

MC

/Dat

a

0.60.8

11.21.4

Stat.Stat.+Syst

• New generators tested (aMC@NLO) and more PS (Pythia8, Herwig++)• All generators in good agreement with data• higher radiation preferred for Powheg+Pythia6 setup

ATLAS-CONF-2015-065

Page 19: (on behalf of the ATLAS collaboration)tt +jets in ATLAS Spyros Argyropoulos (on behalf of the ATLAS collaboration) Jet Vetoes and Multiplicity Observables 19-21 September 2016, Durham

Jet multiplicity @ 13 TeV - di-lepton ee+eμ+μμ

19

New

• Plots to become available very soon

• Comparisons to state of the art generators including• Sherpa 2.2 and Powheg and MG5_aMC@NLO interfaced to • Pythia 8, Herwig++, Herwig7

• Powheg+Herwig7 produces too much extra radiation

• Powheg+Pythia8 too little radiation

• 13 TeV data is not described very well by previous tunes

TOPQ-2015-17

Page 20: (on behalf of the ATLAS collaboration)tt +jets in ATLAS Spyros Argyropoulos (on behalf of the ATLAS collaboration) Jet Vetoes and Multiplicity Observables 19-21 September 2016, Durham

ttbb @ 8 TeV

20

Eur. Phys. J. C (2016) 76:11

Why to measure ttbb:• dominant background for ttH(bb), H+

(tb), some SUSY searches• hard to calculate: multi-scale process, αs4

⇒ large uncertainties from scale choice• sensitive to modeling aspects which are

poorly constrained (g→bb)

Measurements:• 5 measurements: • tt+≥ 1b: single-lepton & di-lepton• tt+≥ 2b: di-lepton cut-and-count and fit• ttbb/ttjj

Page 21: (on behalf of the ATLAS collaboration)tt +jets in ATLAS Spyros Argyropoulos (on behalf of the ATLAS collaboration) Jet Vetoes and Multiplicity Observables 19-21 September 2016, Durham

ttbb @ 8 TeV

21

MV1c efficiency

Frac

tion

of e

vent

s

2!10

1!10

1

ttbttcttl

ATLAS Simulation-1= 8 TeV, 20.3 fbs

2 b" 5 j, "1 l,

1 0.8 0.7 0.6 0.5 0

MV1c efficiency0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Even

ts210

310

410

510

Datattbttcttl

Single topW+jetsZ+jetsDibosonNP & fakes

ATLAS-1= 8 TeV, 20.3 fbs

2 b! 5 j, !1 l, Pre-fit

MV1c efficiency

Dat

a/pr

ed.

0.81

1.2

1 0.8 0.7 0.6 0.5 0

MV1c efficiency0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Even

ts

210

310

410

510

Datattbttcttl

Single topW+jetsZ+jetsDibosonNP & fakes

ATLAS-1= 8 TeV, 20.3 fbs

2 b! 5 j, !1 l, Post-fit

MV1c efficiency

Dat

a/pr

ed.

0.81

1.2

1 0.8 0.7 0.6 0.5 0

Discriminate signal/bg using b-tag score

Fit data to MC signal/bg templates

Extract σ from best-fit value

Eur. Phys. J. C (2016) 76:11

Cut-and-count

Page 22: (on behalf of the ATLAS collaboration)tt +jets in ATLAS Spyros Argyropoulos (on behalf of the ATLAS collaboration) Jet Vetoes and Multiplicity Observables 19-21 September 2016, Durham

[%]ttjjfid! / ttbb

fid!1 1.5 2 2.5

ttbb dilepton

MadGraph+Pythia

Pythia8 (wgtq3)

Pythia8 (wgtq5)

Pythia8 (wgtq6, sgtq=0.25)

)tPowheg+Pythia6 (inclusive t

Measurement result

stat. syst. "stat.

ATLAS-1=8 TeV, 20.3 fbs

[fb]ttbb dileptonfid!

5 10 15 20 25 30 35

ttbb dilepton

fit-basedcut-based

[fb]ttb dileptonfid!

20 40 60 80

ttb dilepton

[fb]ttb lepton-plus-jetsfid!

500 1000 1500

ttb lepton-plus-jets

aMC@NLO+Pythia8 (BDDP)

/4)T

aMC@NLO+Pythia8 (H

/2)T

Powhel+Pythia8 (H

MadGraph+Pythia

Pythia8 (wgtq3)

Pythia8 (wgtq5)

Pythia8 (wgtq6, sgtq=0.25)

)tPowheg+Pythia6 (inclusive t

Measurement results

stat. syst. "stat.

ATLAS-1=8 TeV, 20.3 fbs

ttbb @ 8 TeV

22

Eur. Phys. J. C (2016) 76:11

σttbb/σttjj [%]

• Measurements generally agree with predictions within uncertainties

• Data prefer slightly higher g→bb rates• Soft scales seem to perform better μBDDP = mtop1/2

(pT(b)pT(b))1/4

• Sensitivity to g→bb description: most extreme model disfavored

NLO+PS

merged LO+PSLO: different g→bb kernels

Page 23: (on behalf of the ATLAS collaboration)tt +jets in ATLAS Spyros Argyropoulos (on behalf of the ATLAS collaboration) Jet Vetoes and Multiplicity Observables 19-21 September 2016, Durham

Tunes and modeling studiesusing tt measurements

several public notes on different aspects of top modeling:• Top modeling at 13 TeV (ATL-PHYS-PUB-2016-004)• Tuning of MG5_aMC@NLO+Pythia8 (ATL-PHYS-PUB-2015-048)• Modeling of bottom and charged hadrons in top decays (ATL-PHYS-PUB-2014-008)• Study of measurements constraining QCD radiation in top events (ATL-PHYS-

PUB-2013-005) • Study of ttcc with MG5_aMC@NLO (ATL-PHYS-PUB-2016-011)• and many more

Page 24: (on behalf of the ATLAS collaboration)tt +jets in ATLAS Spyros Argyropoulos (on behalf of the ATLAS collaboration) Jet Vetoes and Multiplicity Observables 19-21 September 2016, Durham

A top-specific tune: ATTBAR

24

ATL-PHYS-PUB-2015-007

• 2 step tune:• Pythia 8 stand-alone (ATTBAR)• ATTBAR applied to NLO+PS (Powheg, MadGraph5_aMC@NLO) +

further tuning of matching parameters

• Starting points: • Monash [Skands, Carazza, Rojo, Eur.Phys.J. C74 (2014) no.8, 3024]

• 4C [Corke, Sjöstrand, JHEP 1103:032,2011]

• 7 TeV ATLAS data:• tt gap fraction, additional jet pT and multiplicity, jet shapes

Page 25: (on behalf of the ATLAS collaboration)tt +jets in ATLAS Spyros Argyropoulos (on behalf of the ATLAS collaboration) Jet Vetoes and Multiplicity Observables 19-21 September 2016, Durham

Parameters tuned

25

ATL-PHYS-PUB-2015-007

Parameters for ATTBAR tune

Parameters for NLO+PS tunes:

Rs = R ·h2damp

h2damp + p2T

• hdamp Powheg:

• starting scale of shower in MG5_aMC@NLO

Page 26: (on behalf of the ATLAS collaboration)tt +jets in ATLAS Spyros Argyropoulos (on behalf of the ATLAS collaboration) Jet Vetoes and Multiplicity Observables 19-21 September 2016, Durham

jetsN3 4 5 6 7 8

Sens

itivi

ty

0

0.2

0.4

0.6

0.8

1Professor interpolation 25 GeV≥jet

Tp

f, MG5aMCNLO

h, Powheg

[GeV]jetT

p100 200 300 400 500 600

Sens

itivi

ty

0.2−

0

0.2

0.4

0.6

0.8

1

1.2

1.4 Pythia8Professor interpolation

leading jet st1ISRT,damp

p ISRSα

FSRSα

FSRT,min

p

Sensitivity to tuned parameters

26

ATL-PHYS-PUB-2015-007

jetsN3 4 5 6 7 8

Sens

itivi

ty

0.5−

0

0.5

1

1.5

2

2.5

3 Pythia8Professor interpolation

25 GeV≥jetT

p

ISRT,damp

p ISRSα

FSRSα

FSRT,min

p

[GeV]0Q50 100 150 200 250 300

Sens

itivi

ty

0.6−

0.5−

0.4−

0.3−

0.2−

0.1−

00.10.2 Pythia8

Professor interpolation

jet veto region |y|<2.1

ISRT,damp

p ISRSα

FSRSα

FSRT,min

p

• Jet multiplicity and gap fraction mostly sensitive to αs choice for ISR (also sensitive to hdamp choice)

• Leading jet pT also sensitive to damping scale

Page 27: (on behalf of the ATLAS collaboration)tt +jets in ATLAS Spyros Argyropoulos (on behalf of the ATLAS collaboration) Jet Vetoes and Multiplicity Observables 19-21 September 2016, Durham

A more in-depth look: the ATTBAR tune

27

ATL-PHYS-PUB-2015-007

jetsN3 4 5 6 7 8

Pred

ictio

n/D

ata

1

2

25 GeV≥ jetT

pDataStatistical uncertaintyTotal uncertaintyPYTHIA8 MonashPYTHIA8 ATTBAR-ISR

ATLAS Preliminary-1 = 7 TeV, 4.6 fbs

• A top-specific tune can greatly improve the description of top observables

• After the tuning the LO and NLO+PS predictions agree with the measurements within errors

[GeV] 0Q50 100 150 200 250 300

Pred

ictio

n/D

ata

1

1.1

jet veto region |y| < 2.1DataStatistical uncertaintyTotal uncertaintyPYTHIA8 ATTBARPOWHEG+PY8 ATTBAR-POWHEGMG5aMCNLO+PY8 ATTBAR-MG5aMCNLO

ATLAS Preliminary-1 = 7 TeV, 2.1 fbs

[GeV] jetT

p30 40 50 60 70 100 200

Pred

ictio

n/D

ata

1

1.5

5th leading jetDataStatistical uncertaintyTotal uncertaintyPYTHIA8 ATTBARPOWHEG+PY8 ATTBAR-POWHEGMG5aMCNLO+PY8 ATTBAR-MG5aMCNLO

ATLAS Preliminary-1 = 7 TeV, 4.6 fbs

jetsN3 4 5 6 7 8

Pred

ictio

n/D

ata

1

1.5

25 GeV≥ jetT

pDataStatistical uncertaintyTotal uncertaintyPYTHIA8 ATTBARPOWHEG+PY8 ATTBAR-POWHEGMG5aMCNLO+PY8 ATTBAR-MG5aMCNLO

ATLAS Preliminary-1 = 7 TeV, 4.6 fbs

Page 28: (on behalf of the ATLAS collaboration)tt +jets in ATLAS Spyros Argyropoulos (on behalf of the ATLAS collaboration) Jet Vetoes and Multiplicity Observables 19-21 September 2016, Durham

The wild west: ttcc

28

ATL-PHYS-PUB-2016-011

• MG5_aMC@NLO with several functional forms for the renormalization/factorization scale

• Scale uncertainties 50-100%

• Generator predictions vary by a factor of 2 or more - beyond scale uncertainties

Page 29: (on behalf of the ATLAS collaboration)tt +jets in ATLAS Spyros Argyropoulos (on behalf of the ATLAS collaboration) Jet Vetoes and Multiplicity Observables 19-21 September 2016, Durham

Conclusion

29

• rich program of measurements including tt+X in ATLAS

• lots of top quarks ⇒ precision measurements

⇒ better understanding of top modeling ⇒ reduced systematics / better description of top bg

• synergy between experiment & theory (e.g. Top LHC WG)

Thank you for your attention!