Download - NMR spectroscopy in characterization of organic solids ... · PDF fileNMR spectroscopy in characterization of organic solids - overview (1) SiH 3 H H H Si H3 H H H H H 180° 25° Si

Transcript
Page 1: NMR spectroscopy in characterization of organic solids ... · PDF fileNMR spectroscopy in characterization of organic solids - overview (1) SiH 3 H H H Si H3 H H H H H 180° 25° Si

NMR spectroscopy in characterization of organic solids -

overview

(1)(1)

SiH3

H

H

H

H

H

SiH3

H

H

H

H

H180°

25°

Si

θθθθ ppm

30405060 ppm

20

0

τ2

13C:

t1

t2

1H:

τ1

x -x x -x x -x

Lecture 1. NMR spectroscopy in characterization of organic solids - overview

Basic principles

First NMR signals

Sample rotation

Cross-polarization2D spectroscopy

NMR crystallography and polymer systems

Lecture 2. Dynamics of multicomponent polymer systems

Principles of 1H-1H wide-line separation experiments

Determination of size of domains: motional averaging and spin diffusion

Location of external water molecules

Measurements of 1H-13C dipolar spectra

Models of segmental motions – motional amplitudesDomain-selective experiments for polymer nanocomposites

Lecture 3. Structure of multicomponent polymer systems

2D spectroscopy

Spin-diffusion and multiple-pulse decoupling

Morphology of polymer blends and networks

Measurements of interatomic distances

NMR crystallography – refinement of 3D structure

Lecture 4. Structure of aluminosilicate materials

Amorphous aluminosilicate inorganic polymers (AIP) – synthesis

Primary structural data about Al/Si materials – 29Si a 27Al MAS NMR

Amorphous-crystalline phase transition of AIPs

How to get structural parameters

Multiple-quantum experiments

Location of water molecules

Schedule

NMR spectroscopy in chemistry, biology and medicine

NMR spectroscopy

PhysicsPhysicsPhysicsPhysics

ChemistryChemistryChemistryChemistry

BiologyBiologyBiologyBiology

MedicineMedicineMedicineMedicine

40404040----50505050thththth

60606060----70707070thththth

80808080----90909090thththth

presentpresentpresentpresent

Structure and dynamics

Dawn of the Universe and NMR

“Planck Epoch” – 10-43-10-345s: 1032-1027K

“Grand Unification Epoch” – 10-35-10-12 s: 1027-1015K – formation of quarks

“Electroweak Epoch” – 10-12-10-6 s: 1015-1013K – formation of electrons and pozitrons

“Hadron Epoch” – 10-6-1s: 1013-1010K – quarks combine to form protons and neutrons

“Lepton Epoch” – 1s – 3 min: 1010-109K – formation of protons

“Epoch of Nucleosynthesis” – 3 min – 400 000 years: 109-3000 K – formation of heavier nuclei

time

The Big Bang –time 0 sSpin predicted by W. Pauli in 1924 as the

4-th quantum number

1945 – Nobel Prize

α – 1/137

Basic principles – spin precession

Rotating gyroscope

in gravity field

Spin precession in magnetic field

∆E = hν = ω0/2π

Spin precession in magnetic field 11.9T

1H: 500 MHz

13C:125 MHz

15N: 50 MHz

Energy levels – sensitivity

16 spins@ 100 MHz 64 spins @ 400 MHz

135 spins @ 900 MHz

The difference for 1 000 000 spins is:

Increasing difference at energy levels with increasing intensity of

magnetic field

)MHz400.......(000064.1/ / == ∆ kTEeNN βα

2,3 T

9,3 T

21 T

Page 2: NMR spectroscopy in characterization of organic solids ... · PDF fileNMR spectroscopy in characterization of organic solids - overview (1) SiH 3 H H H Si H3 H H H H H 180° 25° Si

300 MHz

7,02 T

600 MHz

14,04 T950 MHz

22,23 T1 Mil €

0,2 Mil €

How to generate strong magnetic field

6-7 Mil €

13

0 c

m

25

0 c

m

40

0 c

m

History – measurements of magnetic moment 1938

Isidor Isaac Rabi1898-1988

1944 – Nobel Prize

RADAR technology

Rabi II, Zacharias JR, Millman S, Kusch P.

A new method of measuring nuclear magnetic moment.Phys Rev 1938; 53: 318.

History – first NMR signals 1946-51

Bloch’s laboratory

Felix Bloch

1905-1983

1952 – Nobel Prize

Edward M. Purcell1912-1997

Bloch, F.; Hansen, W. W.; Packard, M. The nuclear induction experimentPhysical Review (1946), 70 474-85.

Arnold, J.T., S.S. Dharmatti, and M.E. Packard,J. Chem. Phys., 1951. 19: p. 507.

Andrew E.R., Bradbury A., Eadges R.G.

NMR spectra from a Crystal Rotated at High Speed, Nature (1958); 182: 1659.

Lowe, I.J.

Free Induction Decays in Rotating Solids, Phys. Rev. Lett. (1959); 2: 285.

I.J. Lowe1313CC

1313CC

1313CC

B0

σσσσ11 σσσσ22

σσσσ22

History – magic angle spinning 1958

Static sample

200 150 100 50 ppm 200 150 100 50 ppm

Rotating sample. 12 kHz

Powder averaging

Magic angle spinning

Bohdan Schneider

Danica Doskocilova

History – MAS and proton NMR signals (1970)

ωωωωr

B0

54.7°

0 kHz

0.5 kHz

2.0 kHz

3.0 kHz

12 kHz

Incr

easi

ng fr

eque

ncy

of M

AS

27 kHz

15 kHz

10 kHz

5 kHz

0 kHz

13C CP/MAS NMR 1H MAS NMR

Line narrowing under MAS: 13C vs. 1H

Page 3: NMR spectroscopy in characterization of organic solids ... · PDF fileNMR spectroscopy in characterization of organic solids - overview (1) SiH 3 H H H Si H3 H H H H H 180° 25° Si

Erwin. L. Hahn

*1921

History – Hahn’s experiments (1950-1962)

Hartmann S.R., Hahn E.L. Nuclear Double Resonance in Rotating Frame, Phys. Rev. (1962); 128: 2042.

Hahn, E. L.,

Free nuclear induction, Physics Today, Nov. (1953), pp. 4-9.

Hahn, E. L.,Spin echoes, Phys. Rev., 80, 580-594 (1950).

( )ClClKK

SI

BB 11

11 0

γγωω

==−=∆

39K:

35Cl:

CP90°±±±±y

+x

+x

Cross polarizationFID

90°±±±±y

Spin echo

90°±±±±y 180°±±±±y

t t

What happens in magnetic field

Spins out of magnetic field

No phase coherence in the precession of spins

No macroscopic magnetization

zz

B0

z

B0

z

No phase coherence in the precession of spins

Spins in magnetic field

Longitudinal magnetization

B0

z

Phase coherence

B0

z

Phase coherence

z

Phase coherence

Spins after a pulse

Transverse magnetization

Phase coherence of spin precession is created

Richard R. Ernst*1933

1991 – Nobel Prize

Free Induction DecayFID

Fourier J.B.J.

Theorie analytique da la chaleur, Firmin Didot, pere et fils, Paris. (1822).

Jean Baptiste Joseph Fourier

1768-1830

( ) ( )∫∞

∞−

−= tietfdtF ωω .

Noise waves

Sheet of music

History – Pulsed NMR (1966, 1985 …….1822)

Caravatti P., Neuenschwander P., Ernst R.R.Characterization of Heterogeneous Polymer Blends by 2D 1H Spin Diffusion Spectroscopy, Macromolecules (1985); 18: 119.

2D Spectra

Ernst R.R., Anderson W.A.

Application of FT Spectroscopy to Magnetic resonance, Rev.Sci.Instr. (1966); 37: 93.

1D Spectra

1H NMR

13C NMR (no decouplingc)

CH2

CH2

CH

CH

1H NMR

13C NMR (no decouplingc)

CH2

CH2

CH

CH

Alex Pines

*1945 ( )CCHH

SI

BB 11

11 0

γγωω

==−=∆

Adamantane

1H:

13C:

CP90°±±±±y

+x

+x

Pines A., Gibby M.G., Waugh J.S. Proton-Enhanced Nuclear Induction Spectroscopy. A Method for High Resolution NMR of Dilute Spins in Solids, J. Chem. Phys. (1972); 56: 1776.

Sensitivity enhancement

1) Transverse magnetization is created in 1H spin system.

2) Then 1H magnetization is spin-locked.3) Hartmann-Hahn matching condition is

established.4) 13C transverse magnetization is

created. 5) Repetition period depends on the

relaxation of 1H spins (short).

History – cross-polarization (1972)

1H:

13C:

CP90°±±±±y

+x

+x

J. Schaefer

Schaefer J., Stejskal E.O.J.13C NMR of Polymers Spinning at Magic Angle, J. Am. Chem. Soc. (1976); 98: 1031.

History – cross-polarization & MAS (1976)

Sensitivity enhancement combined with MAS

1) Sample rotates at magic angle to remove chemical shift anisotropy broadening

2) Transverse magnetization is created in 1H spin system.

3) Then 1H magnetization is spin-locked.4) Hartmann-Hahn matching condition is

established.5) 13C transverse magnetization is

created. 6) Repetition period depends on the

relaxation of 1H spins (short).

304050 ppm253035 ppm

Polyethylene

amorphous

monoclinic

orthorombic

Polypropylene

CH2

CH

CH3

all-trans

conformation

gauche-trans

conformation

Typical solid-state NMR spectra of polymers

Page 4: NMR spectroscopy in characterization of organic solids ... · PDF fileNMR spectroscopy in characterization of organic solids - overview (1) SiH 3 H H H Si H3 H H H H H 180° 25° Si

50100150 ppm150 100 50 ppm

Ar

CH2

Ar

CH2

CH

CH3

Polystyrene

CH

Polymethylstyrene

Typical solid-state NMR spectra of polymers

150 100 50 ppm 150 100 50 ppm

Elastin Simvastatin

crystalline

Typical ss NMR spectra amorphs and crystals

amorphous

Two-dimensional NMR spectroscopy(1971)

24

531110 9

22

90°±±±±y

2D COSY NMR

90°±±±±y

t

1t

2

Transfer of magnetization through bonding electrons

Jean Luis Charles Jeener*1931

L:ecture on Summer School, Basko Polje, Yugoslavi, 1971Twodimensional NMR, COSY

Aue W.P., Bartholdi E., Ernst R.R.

2D Spectroscopy. Application to NMR, J. Chem. Phys. (1976); 64: 229.

Kurt Wüthrich

*1938

2002 – Nobel Prize

Allen D. Kline, Werner Braun and Kurt Wüthrich,

Studies by 1H nuclear magnetic resonance and distance geometry of the

solution conformation of the α-amylase inhibitor Tendamistat. J MOL BIOL 189 (2): 377-382 MAY 20 1986

TENDEMISTAT

3D structure of proteins (1986)

2D correlation experiments in solid state – 1985

Caravatti P., Neuenschwander P., Ernst R.R.Characterization of Heterogeneous Polymer Blends by 2D 1H Spin Diffusion Spectroscopy, Macromolecules. (1985); 18: 119.

Morphology of polymer blends

Non-miscible

Miscible

Relayed coherence transfer1H-1H correlation of chemical shifts

1H1H1H1H1H1H1H1H1H1H

1H1H

1H1H

1H:

90°54° 54°90°

( )2n ( )2n

Mixing

100-300µµµµsBR24 BR24

2D 1H MAS NMR pulse sequence

Schmidt-Rohr K., Clauss J., Spiess H.W.Correlation of Structure and Mobility and Morphology by 2D Wideline-Separation NMR, Macromolecules. (1992); 25: 3273.

Hans W. Spiess*1933

RG Griffin

Separation experiments (1987 …….1995)

Griffin R.G.Measurement of Heteronuclear Bond Distances in Polycrystalline Solids by Solid-State NMR, J.Am.Chem.Soc. (1987); 109: 4163.

2D 1H-13C WISE

Acquisition

TPPMCP

t2

1H:

13C:

90°

t1

2D 1H-15N SLF NMR

Page 5: NMR spectroscopy in characterization of organic solids ... · PDF fileNMR spectroscopy in characterization of organic solids - overview (1) SiH 3 H H H Si H3 H H H H H 180° 25° Si

Meier B.H. et al., Correlation of Structural Elements and Infectivity of theHET-s prion, Nature (2005); 435(9): 844.

Beat.H. Meier

*1954

2D 13C-13C DREAM NMR PrPC PrPSc

3D structure of prion proteins (2005) NMR crystallography

XRD ss-NMR

Elena B. et al. J. Am. Chem. Soc. (2006); 128, 9555.Reutzel-Edens S. et al. Crystal Growth & Design 3, 897 (2003)

Elena B. et al.Solid-state 1H NMR crystallography, J. Am. Chem. Soc. (2005); 127(25), 9140.

( )0d

dMMK

M −−=t λλ π

γµ)(4

220

nij

ij r

Ak ∑

= h

∑−=i

aii kk

( ) ( ) ( )0,exp, tt zSDSD MKM ττ −= ( ) ( ) azSDSD MKP ττ −= exp

n … Functional dependence on internuclear distance ( )∑

−=2

22

i

ii tcalc

σχ

Elena B. et al.Molecular Structure Determination in Powders by NMR Crystallography from Proton Spin Diffusion, J. Am. Chem. Soc. (2006); 128, 9555.

Crystal structure refinement – 1H spin diffusion

ppm

150 100 50 ppm

15

10

5

ppm

150 100 50 ppm

15

10

5

Acquisition

Decoupling (TPPM)

t3

1H:

13C:

FSLG90±y

t1

x

O2= 0 ±lg 0 ±lg +lg -lg +lg - lg +lg +lg - lg +lg -lg +lg - lg 0 kHz

35±y

+x -x +x -x

LGPI

t2

+x -x +x -x +x -x +x -x

180±y

180±x 180±x

0 tr 2tr

rotor period

tf tf

FSLG FSLG

-x

+x

AMFSLGCP

+x +x +x

+x +x+x

-x

-x

-x

-x -x

-x

LGCP 800 µµµµs

dist. < 2.7 A

LGCP 100 µµµµs

dist. < 1 ALGCP

*inib malate13C-1H HETCOR NMR

*inib *inib*inib*inib

MAMAMA

Long-range intermolecular correlation contacts

Intramolecular correlation contacts

13C-1H HETCOR NMR

Crystal structure … – intermolecular contacts

Dipolar couplings and interatomic distances

Basic experimental approach

Extended 3D experiment

REDOR dephased 1H-13C FSLG-LGCP-HETCOR

Acquisition

Decoupling (TPPM)

t3

1H:

13C:

FSLG90±±±±y

t1

x

O2= 0 ±lg 0 ±lg +lg -lg +lg -lg +lg 0 kHz

35±±±±y

+x -x +x -x

LGCP

t2

+x -x +x -x +x -x +x -x

180±±±±y

180±±±±x 180±±±±xtf tf

FSLG FSLG

Yao X.L., et al. J. Magn. Reson. 149, 139 (2001)

ppm

10152025303540

6

4

2

tf = 34.4 ms

1H:

One-bond

Long-range

24 long-range pairs

Brus J. et al., Through-bonds and through-space solid-state NMR correlations at natural isotopic abundance: Signal assignment and structural study of simvastatin , JOURNAL OF PHYSICAL CHEMISTRY A (2004); 108: 3955.

Crystal structure … – interatomic distances Structural fragments of Metergoline II

Form II-o-m

-p’

16’’

ppm

120130140150160 ppm

10

5

30405060 ppm

ppm

10

5

ppm

10

5

0

19 4

9’1’10’’

10’3’

12’

17

0.1 ms

0.5 ms

3.0 ms

-i

11’

15’’

-p’’ 16’

2 13

3’’

12’’

14’’14’

21’’

21’

5’’5’ 7’’

7’6’’

6’8’’8’

9’’

1’’

NH-C19

NH-C17

H12’-C1’’

H12’’-C1’

H14’-C1’

H4-C3’’

H2-C3’

H10’(1’)-C3’

H21-Ci

H21-Ci

Ho-Ci

H21-C11(15)

H21-C19

H17-C19

H9-C11

H9-C11

11’’15’

H14-C15

Har-C8

H12-C19

NH-C1’’NH-C10’’

NH-C6’

NH-C21’

Har-C4

H12(Har)-C8’’

Har-C6’’

H21-C3’’H21-C16’

H4-C21(5)

H1’-C12’’

H1’-C13

H2-C21’’ H1’’(21)-C17

N

N

HCH3

H

H3C

HNH

O

O

1 2

3

4

5

6

789

1011

12

13

14 1516

1718

1920

21

i

mpo

N

NCH3

CH3

OO

NH

OO

NH

H1’

C13’’

H12’

C1’C4’

HAr

C17 H2’

C21’’

Refined structure

ss-NMR fragments

Husak M, Jegorov A, Brus J, et al., Metergoline II: structure solution from powder diffraction data with preferred orientation and from microcrystal , STRUCTURAL CHEMISTRY (2008); 19: 517.

Page 6: NMR spectroscopy in characterization of organic solids ... · PDF fileNMR spectroscopy in characterization of organic solids - overview (1) SiH 3 H H H Si H3 H H H H H 180° 25° Si

Solid-state NMR

and ………….

NMR crystallography

MAS – magic angle spinning Cross-polarization

Structure and dynamics of polymers Structure of proteins

+1

+3+2

0−1−2−3

t1 τ90°-sel.

+1

+3+2

0−1−2−3

t1 τ90°-sel.

MQ/MAS NMR – inorganic systems

1H:

13C:

CP90°±±±±y

+x

+x1H:

13C:

CP90°±±±±y

+x

+x

Summary