Download - Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

Transcript
Page 1: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

04/20/23

Neutrinos in Cosmology (I)

Sergio Pastor (IFIC Valencia)Universidad de Buenos Aires

Febrero 2009

ν

Page 2: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

Neutrinos in Cosmology

1st lecture

Introduction: neutrinos and the History of the Universe

Page 3: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

This is a neutrino!

Page 4: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

T~MeVt~sec

Primordial

Nucleosynthesis

Decoupled neutrinos(Cosmic Neutrino

Background or CNB)

Neutrinos coupled by weak

interactions

Page 5: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

At least 2

species are

NR today

Relativistic neutrinos

T~

m

Neutrino cosmology is interesting because Relic neutrinos are very abundant:

• The CNB contributes to radiation at early times and to matter at late times (info on the number of neutrinos and their masses)

• Cosmological observables can be used to test non-standard neutrino properties

Page 6: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

04/20/23

Relic neutrinos influence several cosmological epochs

T < eVT ~ MeV

Formation of Large Scale Structures

LSS

Cosmic Microwave Background

CMB

Primordial

Nucleosynthesis

BBN

No flavour sensitivity Neff & mννevs νμ,τ Neff

Page 7: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

Basics of cosmology: background evolution

Introduction: neutrinos and the History of the Universe

Relic neutrino production and decoupling

Neutrinos in Cosmology

Neutrinos and Primordial Nucleosynthesis

1st lecture

Page 8: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

Neutrinos in Cosmology

Massive neutrinos as Dark Matter

Effects of neutrino masses on cosmological observables

Bounds on mν from CMB, LSS and other data

Bounds on the radiation content (Nν)

Future sensitivities on mν and Nν from cosmology

2nd lecture

Page 9: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

Suggested References

BooksModern Cosmology, S. Dodelson (Academic Press, 2003)

The Early Universe, E. Kolb & M. Turner (Addison-Wesley, 1990)

Kinetic theory in the expanding Universe, Bernstein (Cambridge U., 1988)

Recent reviewsNeutrino Cosmology, A.D. Dolgov,

Phys. Rep. 370 (2002) 333-535 [hep-ph/0202122]

Massive neutrinos and cosmology, J. Lesgourgues & SP, Phys. Rep. 429 (2006) 307-379 [astro-ph/0603494]

Primordial Neutrinos, S. HannestadAnn. Rev. Nucl. Part. Sci. 56 (2006) 137-161 [hep-ph/0602058]

Primordial Nucleosynthesis: from precision cosmology to fundamental physicsF. Iocco et al, arXiv:0809.0631

Page 10: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

Eqs in the SM of Cosmology

22222

2

2222 sin

1θdφrdθr

kr

dra(t)dtdxdxgds νμ

μν

gGTRgRG 82

1

The FLRW Model describes the evolution of the isotropic and homogeneous expanding Universe

a(t) is the scale factor and k=-1,0,+1 the curvature

Einstein eqs

Energy-momentum tensor of a perfect fluid

pguupT )(

Page 11: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

Eqs in the SM of Cosmology

)(3.

ppHdt

d

Eq of state p=αρ ρ = const a -3(1+α)

Radiation α=1/3 Matter α=0 Cosmological constant α=-1 ρR~1/a4 ρM~1/a3 ρΛ~const

2

2.

2

3

8)(

a

kG

a

atH

00 component

(Friedmann eq)

H(t) is the Hubble parameterρ=ρM+ρR+ρΛ

1)( 22

atH

k

ρcrit=3H2/8πG is the critical density

Ω= ρ/ρcrit

Page 12: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

Evolution of the Universe

)3(3

4..

pG

a

a

accélération

accélération

décélération lente

décélération rqpide

accélération

accélération

décélération lente

décélération rqpide

inflation radiation matière énergie noire

acceleration

acceleration

slow deceleration

fast deceleration

inflation RD (radiation domination) MD (matter domination) dark energy domination

)3(3

4..

pG

a

a

a(t)~t1/2 a(t)~t2/3 a(t)~eHt

Page 13: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

04/20/23

Evolution of the background densities: 1 MeV → now

3 neutrino species

with different masses

Page 14: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

04/20/23

Evolution of the background densities: 1 MeV → now

photons

neutrinos

cdm

baryons

Λ

m3=0.05 eV

m2=0.009 eV

m1≈ 0 eV

Ωi= ρi/ρcrit

Page 15: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

Equilibrium thermodynami

cs

Particles in equilibriumwhen T are high and interactions effective

T~1/a(t)

Distribution function of particle momenta in equilibrium

Thermodynamical variables

VARIABLERELATIVISTIC

NON REL.BOSE FERMI

Page 16: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

T~MeVt~sec

Primordial

Nucleosynthesis

Neutrinos coupled by weak

interactions(in equilibrium)

1e1

T)(p,f p/T

Page 17: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

-αα

βαβα

βαβα

ee

ee

νν

νν

νννν

νννν

Tν = Te = Tγ

1 MeV < T < mμ

Neutrinos in Equilibrium

Page 18: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

Neutrino decoupling

As the Universe expands, particle densities are diluted and temperatures fall. Weak interactions become ineffective to keep neutrinos in good thermal contact with the e.m. plasma

Rate of weak processes ~ Hubble expansion rate

MeV T M

πρT G

M

πρ n , HσΓ ν

decp

RF

p

Rww 1

3

8

3

8v

252

22

Rough, but quite accurate estimate of the decoupling temperature

Since νe have both CC and NC interactions with e±

Tdec(νe) ~ 2 MeVTdec(νμ,τ) ~ 3 MeV

Page 19: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

T~MeVt~sec

Free-streaming neutrinos

(decoupled)Cosmic Neutrino

Background

Neutrinos coupled by weak

interactions(in equilibrium)

Neutrinos keep the energy spectrum of a relativistic

fermion with eq form

1e1

T)(p,f p/T

Page 20: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

At T~me, electron-positron pairs annihilate

heating photons but not the decoupled neutrinos

γγ -ee

Neutrino and Photon (CMB) temperatures

1e1

T)(p,fp/T

1/3

411

T

T

ν

γ

Page 21: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

At T~me, electron-positron pairs annihilate

heating photons but not the decoupled neutrinos

γγ -ee

Neutrino and Photon (CMB) temperatures

1e1

T)(p,fp/T

1/3

411

T

T

ν

γ

Photon temp falls

slower than 1/a(t)

Page 22: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

• Number density

• Energy density

323

3

11

3(6

11

3

2 CMBγννν Tπ

)ζn)(p,Tf

π)(

pdn

nm

T

)(p,Tfπ)(

pdmp

i

ii

CMB

νν

43/42

3

322

11

4

120

7

2

Massless

Massive mν>>T

Neutrinos decoupled at T~MeV, keeping a spectrum as that of a relativistic species 1e

1T)(p,f p/T

The Cosmic Neutrino Background

Page 23: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

The Cosmic Neutrino Background

• Number density

• Energy density

323

3

11

3(6

11

3

2 CMBγννν Tπ

)ζn)(p,Tf

π)(

pdn

nm

T

)(p,Tfπ)(

pdmp

i

ii

CMB

νν

43/42

3

322

11

4

120

7

2

Massless

Massive

mν>>T

Neutrinos decoupled at T~MeV, keeping a spectrum as that of a relativistic species 1e

1T)(p,f p/T

At present 112 per flavour cm )( -3

Contribution to the energy density of the Universe

eV 94.1

mh Ω i

i2

ν

52 101.7h Ω ν

Page 24: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

At T<me, the radiation content of the Universe is

Relativistic particles in the Universe

311

4

8

71

158

73

15

3/44

24

2

r TT

Page 25: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

At T<me, the radiation content of the Universe is

Effective number of relativistic neutrino speciesTraditional parametrization of the energy densitystored in relativistic particles

Relativistic particles in the Universe

data) (LEP 008.0984.2 N# of flavour neutrinos:

Page 26: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

• Extra radiation can be:

scalars, pseudoscalars, sterile neutrinos (totally or partially thermalized, bulk), neutrinos in very low-energy reheating scenarios, relativistic decay products of heavy particles…

• Particular case: relic neutrino asymmetries

Constraints from BBN and from CMB+LSS

Extra relativistic particles

Page 27: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

At T<me, the radiation content of the Universe is

Effective number of relativistic neutrino speciesTraditional parametrization of the energy densitystored in relativistic particles

Neff is not exactly 3 for standard neutrinos

Relativistic particles in the Universe

data) (LEP 008.0984.2 N# of flavour neutrinos:

Page 28: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

But, since Tdec(ν) is close to me, neutrinos share a small part of the entropy release

At T~me, e+e- pairs annihilate heating photonsγγ -ee

Non-instantaneous neutrino decoupling

fν=fFD(p,Tν)[1+δf(p)]

Page 29: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

Momentum-dependent Boltzmann equation

9-dim Phase Space ProcessPi conservation

Statistical Factor

),(),( 111

tpItpfdp

dHp

dt

dcoll

+ evolution of total energy density:

Page 30: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

νe

ν,

δf x10

1e

pp/T

2

Page 31: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

Neff

Instantaneous decoupling

1.40102 3

SM+3ν mixing(θ13=0)

1.3978 3.046

0/TT fin

Mangano et al, NPB 729 (2005) 221

Non-instantaneous neutrino decoupling

Dolgov, Hansen & Semikoz, NPB 503 (1997) 426Mangano et al, PLB 534 (2002) 8

Page 32: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

Changes in CNB quantities

• Contribution of neutrinos to total energy density today (3 degenerate masses)

• Present neutrino number density

c

3m0

94.12h2 eV2 2eV 20

14.93

3

h

m

n 335.7 cm-3

n 339.3 cm-3

Page 33: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

Neff varying the neutrino decoupling temperatureNeff varying the neutrino decoupling temperature

Page 34: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

T~MeVt~sec

Primordial

Nucleosynthesis

Decoupled neutrinos(Cosmic Neutrino

Background or CNB)

Neutrinos coupled by weak

interactions

Page 35: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

Produced elements: D, 3He, 4He, 7Li and

small abundances of others

BBN: Creation of light

elements

Theoretical inputs:

Page 36: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

Range of temperatures: from 0.8 to 0.01 MeV

BBN: Creation of light elements

n/p freezing and neutron decay

Phase I: 0.8-0.1 MeVn-p reactions

Page 37: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

BBN: Creation of light elements

0.03 MeV

0.07 MeV

Phase II: 0.1-0.01 MeVFormation of light nuclei starting from D

Photodesintegrationprevents earlier formation for temperatures closer to nuclear binding energies

Page 38: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

BBN: Measurement of Primordial abundances

Difficult task: search in astrophysical systems with chemical evolution as small as possible

Deuterium: destroyed in stars. Any observed abundance of D is a lower limit to the primordial abundance. Data from high-z, low metallicity QSO absorption line systems

Helium-3: produced and destroyed in stars (complicated evolution)Data from solar system and galaxies but not used in BBN analysis

Helium-4: primordial abundance increased by H burning in stars. Data from low metallicity, extragalatic HII regions

Lithium-7: destroyed in stars, produced in cosmic ray reactions.Data from oldest, most metal-poor stars in the Galaxy

Page 39: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

Fields & Sarkar PDG 2006

BBN: Predictions vs Observations

after WMAP5ΩBh2=0.02265±0.00059

Page 40: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

Effect of neutrinos on BBN 1. Neff fixes the expansion rate during BBN

(Neff)>0 4He

Burles, Nollett & Turner 1999

2p3M

8π H

3.4 3.2

3.0

2. Direct effect of electron neutrinos and antineutrinos on the n-p reactions

Page 41: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

BBN: allowed ranges for Neff

Mangano et al, JCAP 0703 (2007) 006

Using 4He + D data (95% CL)

1.41.2 eff 3.1N

2B10

B10 h274Ω

10

/nnη

γ

Page 42: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

Exercises: try to calculate…

• The present number density of massive/massless neutrinosn

in cm-3

• The present energy density of massive/massless neutrinos

and find the limits on the total neutrino mass from

and m

0

• The final ratio T/Tusing the conservation of entropy density before/after e± annihilations

• The decoupling temperature of relic neutrinos using

• The evolution of b,cdm)with the expansion for (3,0,0), (1,1,1) and (0.05,0.009,0) [masses in eV]

• The value of Neff if neutrinos decouple at Tdec in [5,0.2] MeV

Page 43: Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.

End of 1st lecture