Download - Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Transcript
Page 1: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Mugur Alexandru Acu

SUBCLASSES OF α-CONVEX FUNCTIONS

”Lucian Blaga” University Publishing House

2008

Page 2: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

2

Page 3: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Preface

The concept of α-convex functions was introduced in

1969, by the great romanian mathematician Petru T.

Mocanu, with the aim of making a continuously con-

nection between the notions of starlike functions and

convex functions. Taking account of the importance de-

rived from this connection, the study of variously sub-

classes of α-convex functions become a pursuit for many

mathematicians from all over the world.

The present book contain results of the author (with

complete proofs), and connected results of other math-

ematicians (without proofs for efficiency reasons), re-

garding some subclasses of α-convex convex functions,

and it is addressed to researchers in the field of Geo-

3

Page 4: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

metric Functions Theory, students in mathematics and

other researchers or students in connected fields such is

engineering (fluids mechanics).

4

Page 5: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Contents

Preface 3

1 Preliminaries 7

1.1 Univalent functions . . . . . . . . . . . . 7

1.2 Starlike functions . . . . . . . . . . . . . 15

1.3 Convex functions . . . . . . . . . . . . . 21

1.4 α-convex functions . . . . . . . . . . . . 26

1.5 Differential subordinations.

Admissible functions method . . . . . . . 31

1.6 Briot-Bouquet differential subordinations 42

2 Uniformly starlike and

uniformly convex functions 45

5

Page 6: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

2.1 Uniformly starlike functions . . . . . . . 45

2.2 Uniformly convex functions . . . . . . . 49

3 Subclasses of α-convex functions 66

3.1 The subclasses UM(α) and UMα . . . . 66

3.2 The subclass UDn,α(β, γ) . . . . . . . . . 68

3.3 The subclasses UMα(q) and UDn,α(q) . . 75

3.4 The subclass Mλ,α(q) . . . . . . . . . . . 83

3.5 The subclass MLn,α(q) . . . . . . . . . . 94

3.6 The subclass MLβ,α(q) . . . . . . . . . . 110

Bibliography 122

6

Page 7: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Chapter 1

Preliminaries

1.1 Univalent functions

Definition 1.1.1 A holomorphic (or meromorphic) func-

tion which is injective in a domain D, is called univalent

in D.

We denote with Hu(D) the set of all univalent func-

tions in a domain D. In the case D = U

= z ∈ C : |z| < 1, we will denote with Hu(U) the

class of holomorphic and univalent in U . The class of

all holomorphic functions in a domain D will be denoted

with H(D).

7

Page 8: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Examples

1.1.1) If f ∈ Hu(D), g ∈ Hu(E) and f(D) ⊂ E

then g f ∈ Hu(D).

1.1.2) The Koebe function f(z) = z(1−z)2 , z ∈ U

is univalent in U .

Theorem 1.1.1 [25] If f ∈ Hu(D), then f ′(z) 6= 0 for

all z ∈ D.

We remark that for the function f(z) = ez we have

f ′(z) 6= 0 for all z ∈ C, but ez = ez+2πi show to us that

this function it is not univalent. From Theorem 1.1.1 we

deduce that the univalent functions are also conformal

mappings.

We denote with

H [a, n] = f ∈ H(U) : f(z) = a + anzn + .... ,

A = f ∈ H(U); f(0) = f ′(0)− 1 = 0(1.1)

and with

S = f ∈ A; f it is univalent .(1.2)

8

Page 9: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

We remark that a function f ∈ A will have the fol-

lowing series expansion in the unit disk U :

f(z) = z + a2z2 + ... + anz

n + ... =(1.3)

= z +∞∑

j=2

ajzj , z ∈ U,

and S = A ∩ Hu(U) = f ∈ Hu(U); f with the series

expansion (1.3) .We can use the unit disc and the above normalization

conditions, because them are not restrictions, such it is

easy to see from the next Theorem:

Theorem 1.1.2 (Riemann′s Theorem)[25] Let D ⊆C, D 6= C a simple-connected domain, w0 ∈ D and α ∈(−π, π). Then will exist a unique function ϕ ∈ Hu(D)

such that ϕ(U) = D, ϕ(0) = w0 and arg ϕ′(0) = α.

To study in the same time with the class S the mero-

morphic and univalent functions, will be considered the

class∑

of the meromorphic and univalent in U− = C\Ufunctions, having ∞ unique pole and the Laurent series

9

Page 10: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

expansion:

ϕ(ζ) = ζ + α0 +α1

ζ+

α2

ζ2 + ... +αn

ζn+ ..., |ζ| > 1.

A function ϕ from∑

will verify the normalization

conditions ϕ(∞) = ∞ and ϕ′(∞) = 1. We will also

denote by

E(ϕ) = C\ϕ(U−).

This set it is a continuum in C and contain at least one

point. The coefficient α0 from the above series expansion

is given by

α0 =1

2π∫

0

ϕ(peiθ)dθ, p > 1.

We will also use in this book the following notation

∑0

= ϕ ∈∑

; ϕ(ζ) 6= 0, ζ ∈ U−.

Remark 1.1.1 Let f ∈ S, f(z) = z + a2z2 + .... Then,

the function

g(z) = f

(1

z

)=

1

z−1 + a2z−2 + ...=

z

1 + a2z−1 + ...

10

Page 11: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

= z − a2 +a3

z+ ... ∈

and g(z) 6= 0 for all z ∈ U−, because f ∈ S has no poles.

Conversely, if g ∈ ∑,

g(z) = z + b0 +b1

z+ ...

and c ∈ C∞\g(U−), then the function

f(z) =1

g(1

z

)− c

=z

1 + (b0 − c)z + ...= z + (c− b0)z

2 + ... ∈ S

This mean that we have a bijection between S and∑

0.

Theorem 1.1.3 (Gronwall - Bieberbach) [24], [16]

Let g be a functions with the Laurent series

g(z) = z +∞∑

n=0

bnz−n, z ∈ U−.(1.4)

Then g ∈ ∑, then the area

E(g) = π

(1−

∞∑n=1

n|bn|2)≥ 0,

11

Page 12: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

and thus∞∑

n=1

n|bn|2 ≤ 1.

The equality take place for the function

gθ(z) = z +eiθ

z, θ ∈ R.

The above Theorem it′s the starting point for the next

results.

Consequence 1.1.1 Let g ∈ ∑having the form (1.4).

Then |b1| ≤ 1, and the equality take place if and only if

g(z) = z + b0 + e2iθ/z, where b0 ∈ C and θ ∈ R.

Consequence 1.1.2 Let f ∈ S having the form (1.3).

Then

|a3 − a22| ≤ 1.

More, if f it′s a odd functions, then |a3| ≤ 1, and |a3| =1 if and only if

f(z) =z

1 + e2iθz2 , θ ∈ R.

Theorem 1.1.4 [17] If f ∈ S and

f(z) = z + a2z2 + ..., z ∈ U,

12

Page 13: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

then |a2| ≤ 2 and |a2| = 2 if and only if f = Kθ; where

Kθ(z) =z

(1− eiθz)2 = z +∞∑

n=2

ne(n−1)iθzn, z ∈ U,

θ ∈ R.

It′s easy to see that the domain Kθ(U) is the complex

plane except a radii with the origin in the point −14e−iθ.

From the Theorem 1.1.4 it is easy to obtain the fol-

lowing result:

Theorem 1.1.5 (Koebe-Bieberbach)[17]

If f ∈ S and w0 6∈ f(U), then |w0| ≥ 1/4 and

|w0| = 1/4 if and only if f = Kθ, where θ is give by

w0 = −e−iθ/4.

The Theorem (1.1.5) has the following geometric in-

terpretation: the disk U(0; 1/4) it′s the disk, centered in

the origin, with the maximum radii such that to be cov-

ered by the image f(U) of the unit disk for all functions

f ∈ S :

U(0; 1/4) =⋂

f∈S

f(U).

13

Page 14: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

We call U(0; 1/4) the Koebe disk of the class S, and

1/4 will be named the Koebe constant of the class S.

Theorem 1.1.6 (Covering and distortion

Theorem)[17] If z ∈ U is a fixed point and r = |z|,then for all f ∈ S the following inequalities holds:

r

(1 + r)2 ≤ |f(z)| ≤ r

(1− r)2(1.5)

1− r

(1 + r)3 ≤ |f ′(z)| ≤ 1 + r

(1− r)3(1.6)

1− r

1 + r≤

∣∣∣∣zf ′(z)

f(z)

∣∣∣∣ ≤1 + r

1− r.(1.7)

The above inequalities are sharp and the equalities

holds if and only if f = Kθ, for a proper value of the

parameter θ.

Remark 1.1.2 Let r1 = r(1+r)2 and r2 = r

(1−r)2 . Then

the geometric interpretations of the inequalities (1.5)

are:

U(0, r1) =⋂

f∈S

f(U(0, r))

U(0, r2) =⋃

f∈S

f(U(0, r))

14

Page 15: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

From (1.5) it is easy to see that S is a compact class

of analytic functions.

Theorem 1.1.7 (Bieberbach)[17] If f ∈ S and f(z) =

z+a2z2+ ..., z ∈ U , then |an| ≤ n, n ≥ 2 . The extremal

functions are Kθ, θ ∈ R.

The above Theorem was proved, by using the Loewner

(see [45]) method, in 1984 by the mathematician Louis

de Branges (see [20]).

1.2 Starlike functions

Let f a analytic function in U , f(0) = 0 and

f(z) 6= 0, z 6= 0. We will denote by Cr the image of the

circle z ∈ C : |z| = r, 0 < r < 1, thro′ the function f .

Definition 1.2.1 We say that Cr it is a starlike curve

in respect to the origin (or briefly, starlike) if the angle

ϕ = ϕ(r, θ) = arg f(reiθ) between the radius of f(z), z =

reiθ and the real positive axis, is a increasing function

15

Page 16: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

on θ, when θ increase from 0 to 2π. This condition can

be express by the following inequality

∂ϕ

∂θ=

∂θarg f(z) > 0, z = reiθ, θ ∈ (0, 2π)(1.8)

We say that f it is starlike function onto the circle

|z| = r if Cr it is a starlike curve.

Because f(z) 6= 0, for all z 6= 0 we obtain

Logf(z) = log |f(z)|+ i arg f(z),

where z = reiθ. By differentiating with respect to θ and

using the following equality

∂z

∂θ=

∂reiθ

∂θ= rieiθ = iz,

we obtain

izf ′(z)

f(z)=

∂θlog |f(z)|+ i

∂θarg f(z)

From the above we obtain

∂θarg f(z) = Re

zf ′(z)

f(z), z = reiθ(1.9)

The condition (1.8) can be write in the following form

Rezf ′(z)

f(z)> 0, for |z| = r(1.10)

16

Page 17: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

which express the necessary and sufficiently condition

such that a function f to be starlike onto the circle z ∈C : |z| = r.

Because zf ′(z)f(z) is a harmonic function and the above

condition hold for |z| = r, we can conclude that the

above condition will hold also for |z| ≤ r. From the

above, we conclude that from f starlike function onto

the circle z ∈ C : |z| = r, we obtain that f will

be starlike onto every circle z ∈ C : |z| = r′, where

0 < r′ < r.

Definition 1.2.2 We define the radii of starlikeness for

the function f by

r∗(f) = sup

r; Re

zf ′(z)

f(z)> 0, |z| ≤ r

.(1.11)

If r∗(f) ≥ 1 we will say that f is a starlike function onto

the unit disk U (or briefly, starlike)

Remark 1.2.1 1) The equality Rezf ′(z)

f(z)= 0 can not

hold for z ∈ U , because the function f will reduce to

a constant.

17

Page 18: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

2) The condition Rezf ′(z)

f(z)> 0, z ∈ U , do not assure

that the function f will be univalent in the unit disk.

If we impose the additional condition f ′(0) 6= 0, then

the condition Rezf ′(z)

f(z)> 0 will assure that the func-

tion f will be univalent in the unit disk and f(U)

it is a starlike domain (with respect to the origin),

namely, the segment [0, w] ∈ f(U) for all w ∈ f(U).

Theorem 1.2.1 [43] Let f be a analytic function in U ,

with f(0) = 0. Then f is univalent in U , and f(U) is a

starlike domain (with respect to the origin) if and only

if f ′(0) 6= 0 and

Rezf ′(z)

f(z)> 0, for all z ∈ U(1.12)

Definition 1.2.3 Let denote by S∗ the class of func-

tions analytic in U, with f(0) = 0, f ′(0) = 1 and which

are starlike (with respect to the origin) in U , namely

S∗ = f ∈ H(U); f(0) = f ′(0)− 1 = 0,

Rezf ′(z)

f(z)> 0, z ∈ U.

18

Page 19: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Remark 1.2.2 By using the subordination, the class S∗

may be defined: if f(z) = z + a2z2 + ..., z ∈ U , then

f ∈ S∗ if and only ifzf ′(z)

f(z)≺ 1 + z

1− z, z ∈ U .

Because the Koebe function Kθ(z) =z

(1 + eiθz)2 , θ ∈R is starlike (for a proper value of the parameter θ), we

conclude that the distortion theorem for the class S hold

also for the class S∗:

Theorem 1.2.2 [43] If f ∈ S∗, then the following in-

equalities are sharp:

r

(1 + r)2 ≤ |f(z)| ≤ r

(1− r)2(1.13)

1− r

(1 + r)3 ≤ |f ′(z)| ≤ 1 + r

(1− r)3(1.14)

1− r

1 + r≤

∣∣∣∣zf ′(z)

f(z)

∣∣∣∣ ≤1 + r

1− r(1.15)

where z ∈ U, |z| = r, and the extremal function is the

Koebe function f = Kθ (for a proper value of the pa-

rameter θ).

From the above theorem, we conclude that the class

S∗ is a compact set.

19

Page 20: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Let

M [a, b] = µ : [a, b] → R+,(1.16)

where µ it is a increasing function

onto [a, b] ,

b∫

a

dµ(t) = µ(b)− µ(a) = 1

Theorem 1.2.3 [43] The function f(z) = z + a2z2 +

..., z ∈ U belong to the class S∗ if and only if there exist

a function µ ∈ M [0, 2π] such that

f(z) = z exp

−2

2π∫

0

log(1− ze−it)dµ(t)

, z ∈ U.

Two important subclasses of the class S∗ are the sub-

class of starlike functions of order α(0 ≤ α < 1), denoted

by S∗(α) and the subclass of strongly starlike of order

α(0 < α ≤ 1), denoted by S∗[α].

Definition 1.2.4 The function f ∈ A is called starlike

of order α, 0 ≤ α < 1, if the following inequality hold

Rezf ′(z)

f(z)> α, z ∈ U.(1.17)

We denote this class by S∗(α).

20

Page 21: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Definition 1.2.5 The function f ∈ A is called

strongly starlike of order α, 0 < α ≤ 1 if the following

inequality hold∣∣∣∣arg

zf ′(z)

f(z)

∣∣∣∣ < απ

2, z ∈ U.(1.18)

We denote this class by S∗[α].

It is easy to see that S∗(0) = S∗ and S∗[1] = S∗.

1.3 Convex functions

Let f a analytic function in U , with f ′(z) 6= 0, for all

0 < |z| < 1. Let Cr be the image of the circle z ∈ C :

|z| = r, 0 < r < 1, by using the function f .

Definition 1.3.1 The curve Cr is called convex if the

angle

ψ(r, θ) =π

2+ arg zf ′(z), z = reiθ

between the tangent, into the point f(z), to the curve

Cr and the real positive axis, is a increasing function on

θ ∈ [0, 2π] .

21

Page 22: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Definition 1.3.2 The function f is called convex onto

the circle |z| = r if Cr is a convex curve.

The function f is convex onto the circle z ∈ C :

|z| = r if and only if

Re

1 +

zf ′′(z)

f ′(z)

> 0, |z| = r.(1.19)

From the above we obtain that for f convex onto the

circle

z ∈ C : |z| = r, we have f convex onto every circle

z ∈ C : |z| = r′, where 0 < r′ < r.

Definition 1.3.3 We define the radii of convexity for

the function f by

rc(f) =(1.20)

sup

r; Re

zf ′′(z)

f ′(z)+ 1

> 0, |z| ≤ r

.

If rc(f) ≥ 1, we will say that the function f is convex

in the unit disk U (or briefly, convex), and f will verify

the condition

Re

1 +

zf ′′(z)

f ′(z)

> 0, |z| < 1.(1.21)

22

Page 23: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

The condition(1.21) imply f ′(z) 6= 0, for all

0 < |z| < 1.

Remark 1.3.1 The condition Re

1 +

zf ′′(z)

f ′(z)

> 0, z ∈

U do not assure that the function f is univalent in the

unit disk U (for example the function f(z) = z2 verify

the above condition, but it is not univalent in U).

Theorem 1.3.1 [43] Let f be a analytic function in U .

the function f is univalent in U , and f(U) is a convex

domain, if and only if f ′(0) 6= 0 and

Re

1 +

zf ′′(z)

f ′(z)

> 0, for all z ∈ U(1.22)

Definition 1.3.4 We will denote by Sc (or by K) the

class of all analytic functions in U, with f(0) = 0,

f ′(0) = 1 and which are convex in U , namely

Sc = f ∈ H(U); f(0) = f ′(0)− 1 = 0,

Re

1 +

zf ′′(z)

f ′(z)

> 0, z ∈ U

and Sc ⊂ S.

23

Page 24: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

The connection between the classes S∗ and Sc is es-

tablish by the following theorem:

Theorem 1.3.2 [13] Let f ∈ A and g(z) = zf ′(z).

Then f ∈ Sc if and only if g ∈ S∗.

Let consider the integral operator IA : A → A, f =

IA(g), g ∈ A, where

f(z) =

z∫

0

g(t)

tdt, z ∈ U.(1.23)

The integral operator IA is called Alexander′s opera-

tor. By using this operator, the above theorem can be

express in the following form: Sc = IA(S∗), and IA is a

bijection between the classes S∗ and Sc.

Between the classes S∗ and Sc can also be establish

the following connection:

Theorem 1.3.3 (Marx and Strohhacker)[37], [52]

If f ∈ A, then

Re

1 +

zf ′′(z)

f ′(z)

> 0, z ∈ U(1.24)

24

Page 25: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

⇒ Rezf ′(z)

f(z)>

1

2, z ∈ U

We conclude that Sc ⊂ S∗(1/2).

Theorem 1.3.4 [43] If f(z) = z + a2z2 + a3z

3 + ...

belong to the class Sc, then |an| ≤ 1, for all n ≥ 2. The

equality hold if and only if the function f have the form

f(z) = z1 + eiτz

, τ ∈ R, z ∈ U .

Theorem 1.3.5 [43] If f ∈ Sc, then the following in-

equalities are sharp:

r

1 + r≤ |f(z)| ≤ r

1− r(1.25)

1

(1 + r)2 ≤ |f ′(z)| 1

(1− r)2(1.26)

where z ∈ U, |z| = r. The equalities holds for the func-

tion f(z) =z

1 + eiτz, τ ∈ R, z ∈ U , where τ is properly

choose.

From (1.25) we conclude that the class Sc is a compact

set.

25

Page 26: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Remark 1.3.2 Letting r → 1 in (1.25) we find that the

Koebe constant for the class Sc is 1/2.

Definition 1.3.5 We say that the function f ∈ A is

convex of order α, 0 ≤ α, < 1, if the following inequality

hold

Re

1 +

zf ′′(z)

f ′(z)

> α, z ∈ U(1.27)

We denote by Sc(α) the class of all this functions.

1.4 α-convex functions

Let f be a analytic function in U , with f(0) = 0,

f(z)f ′(z)z 6= 0, and let α be a fixed real number.

Let χ(r, θ) = (1− α)ϕ(r, θ) + αψ(r, θ).

Definition 1.4.1 The curve Cr is called α-convex if the

function χ(r, θ) is a increasing function on the parame-

ter θ, where θ ∈ [0, 2π], namely

∂χ(r, θ)

∂θ=(1.28)

(1− α)∂ϕ(r, θ)

∂θ+ α

∂ψ(r, θ)

∂θ> 0,

26

Page 27: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

where θ ∈ [0, 2π].

The function f is called α-convex onto the circle

z ∈ C; |z| = r if Cr is a α-convex curve.

The function f is α-convex onto the circle

z ∈ C; |z| = r if and only if

ReJ(α, f ; z) > 0, |z| = r,(1.29)

where

J(α, f ; z) =(1.30)

(1− α)zf ′(z)

f(z)+ α

(1 +

zf ′′(z)

f ′(z)

).

Taking into the account the properties of the har-

monic functions, from f is a α-convex function onto the

circle z ∈ C; |z| = r, we conclude that F is a α-

convex function onto every circle z ∈ C; |z| = r′,where 0 < r′ < r.

Definition 1.4.2 We define the radii of α-convexity for

the function f by

rα(f) = supr; ReJ(α, f ; z) > 0, |z| ≤ r.27

Page 28: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

If rα(f) ≥ 1 we say that the function f is α-convex in

the unit disk U , and f will verify the following condition

ReJ(α, f ; z) > 0, z ∈ U.(1.31)

Definition 1.4.3 Let denote by Mα the class of analytic

functions in U , with f(0) = 0, f ′(0) = 1 and which are

α-convex in U , namely

Mα = f ∈ H(U), f(0) = f ′(0)− 1 = 0,

ReJ(α, f ; z) > 0, z ∈ U

We remark that M0 = S∗ and M1 = Sc.

Remark 1.4.1 1. By taking p(z) = zf ′(z)f(z) we obtain

J(α, f ; z) = p(z) + αzp′(z)

p(z),

and thus (1.31) can be write in the following form

Re

[p(z) + α

zp′(z)

p(z)

]> 0, z ∈ U(1.32)

or

p(z) + αzp′(z)

p(z)≺ 1 + z

1− z.(1.33)

28

Page 29: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

2. If the condition (1.32) hold, then p(z) =zf ′(z)

f(z)is

analytic in U and p(z) 6= 0, z ∈ U . We con-

clude that the conditionf(z)f ′(z)

z6= 0, z ∈ U will

also hold.

Theorem 1.4.1 [43] For α, β ∈ R with

0 ≤ β/α ≤ 1, we have Mα ⊂ Mβ.

Corollarly 1.4.1 For all α ∈ [0, 1], we have

Sc ⊂ Mα ⊂ S∗.

Theorem 1.4.2 [43] If α > 0, then f ∈ Mα if and only

if F ∈ S∗, where

F (z) = f(z) =

[zf ′(z)

f(z)

.

From the above theorem it is easy to obtain the fol-

lowing result:

Theorem 1.4.3 [43] If α > 0, then f ∈ Mα if and only

if there exist a function F ∈ S∗ such that

f(z) =

1

α

z∫

0

F 1/α(ζ)

ζdζ

α

, z ∈ U.(1.34)

29

Page 30: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Definition 1.4.4 A function f ∈ Mα is called α-convex

of order γ, 0 ≤ γ < 1, if

ReJ(α, f ; z) > γ, z ∈ U.(1.35)

We denote by Mα(γ) the class of all this functions.

Concerning the radii of α-convexity for the class S, in

1972 V.V. Cernikov give the following result:

Theorem 1.4.4 [19] If coth 1 − 1 = 0.313... ≤ α ≤ 1,

then rα(S) = 1 + α−√

α(α + 2) .

In 1974 S.S. Miller, P.T. Mocanu and M.O. Reade,

prove in [42] that the above result hold also for α > 1.

Theorem 1.4.5 [42] The radii of α-convexity for the

class S∗ is

rα(S∗) =

1 + α−√

α(α + 2), α ≥ 0√2−√−α

2 +√−α

, −3 < α < 0

−(1 + α)−√

α(α + 2), α ≤ −3.

30

Page 31: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

1.5 Differential subordinations.

Admissible functions method

Definition 1.5.1 Let f and g be analytic functions in

U . We say that the function f is subordinate to the

function g, if there exist a function w, which is analytic

in U, w(0) = 0, |w(z)| < 1, z ∈ U , such that

f(z) = g(w(z)), (∀)z ∈ U.

We denote by ≺ the subordination relation.

Theorem 1.5.1 [43] Let f be a analytic function in U

and g be a analytic and univalent function in U . Then

f ≺ g if and only if f(0) = g(0) and f(U) ⊆ g(U).

1.4.2 Subordination′s Principle Let f be a an-

alytic function in U and g be a analytic and univalent

function in U . Then f(0) = g(0) and f(U) ⊆ g(U) im-

plies f(Ur) ⊆ g(Ur), r ∈ (0, 1]. The equality f(Ur) =

g(Ur) hold for r < 1 if and only if f(U) = g(U), or

f(z) = g(eiθz), z ∈ U, θ ∈ R.

31

Page 32: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

The differential subordinations method (also called

admissible functions method) was introduced by the P.T.

Mocanu and S.S. Miller in [38] and [39].

Let Ω , ∆ ∈ C, p be a analytic function in U, with

p(0) = a, and let ψ(r, s, t; z) : C3 × U → C.

Let consider the following implication:

(1.36)

ψ(p(z), zp′(z), z2p′′(z); z) |z ∈ U ⊂ Ω ⇒ p(U) ⊂ ∆.

Concerning the above implication we can consider the

following three problems:

• Problem 1. We know the sets Ω and ∆, and we

want to find conditions on the function ψ such that

the implication (1.36) hold. A function ψ, which

is a solution of the above problem, it is called a

admissible function.

• Problem 2. We know the set Ω and the function

ψ, and we want to find the set ∆ such that the

32

Page 33: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

implication (1.36) hold. If it is possible, we want to

find the smallest ∆, which is a solution of the above

problem.

• Problem 3. We know the set ∆ and the function

ψ, and we want to find the set Ω such that the impli-

cation (1.36) hold. If it is possible, we want to find

the greatest set Ω such that the implication (1.36)

hold.

If ∆ is a simple-connected domain, with a ∈ ∆ and

∆ 6= C, then there exist a conformal mapping q from

U to ∆ and such that q(0) = a. In this conditions the

implication (1.36) can be write in the following form:

(1.37)

ψ(p(z), zp′(z), z2p′′(z); z) | z ∈ U ⊂ Ω ⇒p(z) ≺ q(z).

If Ω it is also a simple connected domain and Ω 6= C,

then there exist a conformal mapping h from U to Ω

and such that h(0) = ψ(a, 0, 0; 0).

33

Page 34: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

More, if ψ(p(z), zp′(z), z2p′′(z); z) is a analytic func-

tion in U , then the implication (1.36) can be write in

the following form:

ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z) ⇒(1.38)

p(z) ≺ q(z).

From the above we derive the following definitions:

Definition 1.5.2 Let ψ : C3 × U → C and h be a uni-

valent function in U . If p is a analytic function in U

which satisfy the following differential subordination:

ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z),(1.39)

then p is called a solution of the differential subordina-

tion.

Definition 1.5.3 A univalent function q is called a dom-

inant of the differential subordination (1.39) if p ≺ q, for

every p which satisfy (1.39).

Definition 1.5.4 A dominant q which satisfy q ≺ q for

every dominant q of the differential subordination (1.39)

34

Page 35: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

is called the best dominant of the differential subordina-

tion (1.39). We remark that the best dominant it is

unique except a rotation of U .

If Ω and ∆ are sample connected domains, the above

three problems can be write in the following forms:

Problem 1′. Let consider the univalent functions h

and q. We want to find the class of admissible functions

ψ[h, q] such that the differential subordination (1.38)

hold.

Problem 2′. Let consider the differential subordi-

nation (1.38). We want to find the dominant q of this

subordination. If it is possible, we want to find the best

dominant.

Problem 3′. Let consider the class ψ and the domi-

nant q. We want to find the greater class of functions h

such that the differential subordination (1.38) hold.

Fundamental lemmas:

For z0 = r0eiθ0, 0 < r0 < 1, we will denote by Ur0

=

35

Page 36: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

z ∈ C; |z| < r0 the disk with the center into the origin

and with the radii r0, U r0=

z ∈ C; |z| ≤ r0.

Lemma 1.5.1 Let z0 ∈ U , r0 = |z0| and f(z) = anzn+

+an+1zn+1 + ... a continuous function into U r0

and an-

alytic onto Ur0∪ z0 with f(z) 6≡ 0 and n ≥ 1. If

|f(z0)| = max|f(z)|; z ∈ U r0(1.40)

then there exist a number m ≥ n ≥ 1 such that

(i)z0f

′(z0)

f(z0)= m, and

(ii) Re

1 +

z0f′′(z0)

f ′(z0)

≥ m.

A particular version (z0 = f(z0) = 1) of the first item

of the above lemma was considered in 1925 like a open

problem by K. Loewner. The form presented above, was

considered in 1971 by I.S. Jack.

Definition 1.5.5 Let Q be the class of all analytical and

injective functions q defined onto U\E(q), where

E(q) =

ζ ∈ ∂U ; lim

z→ζq(z) = ∞

,

36

Page 37: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

and q′(ζ) 6= 0 for every ζ ∈ ∂U\E(q).

Lemma 1.5.2 Let q ∈ Q cu q(0) = a and p(z) = a +

pnzn + ... be a analytic function in U , with p(z) 6≡ a and

n ≥ 1. If there exist z0 ∈ U and ζ0 ∈ ∂U\E(q) such that

p(z0) = q(ζ0) and p(Ur0) ⊂ q(U), where r0 = |z0|, then

there exist a number m ≥ n such that:

(i) z0p′(z0) = mζ0q

′(ζ0) and

(ii) Re

z0p

′′(z0)

p′(z0)+ 1

≥ mRe

ζ0q

′′(ζ0)

q′(ζ0)+ 1

.

Lemma 1.5.3 Let q ∈ Q, with q(0) = a, and let p(z) =

a + pnzn + ... be a analytic function in U with p(z) 6≡ a

and n ≥ 1. If p 6≺ q then there exist z0 = r0eiθ0 ∈ U and

ζ0 ∈ ∂U\E(q) and a number m ≥ n ≥ 1 such that

(i) p(Ur0) ⊂ q(U),

(ii) p(z0) = q(ζ0),

(iii) z0p′(z0) = mζ0q

′(ζ0) and

(iv) Re

z0p

′′(z0)

p′(z0)+ 1

≥ Re

ζ0q

′′(ζ0)

q′(ζ0)+ 1

.

Definition 1.5.6 Let Ω be a set from C, q ∈ Q and n ∈N. The class of admissible functions ψn[Ω, q] contain all

37

Page 38: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

the functions ψ : C3×U → C which satisfy the following

admissibility condition care

ψ(r, s, t; z) 6∈ Ω for r = q(ζ), s = mζq′(ζ),

Re[

ts + 1

] ≥ mRe[

ζq′′(ζ)q′(ζ) + 1

],

z ∈ U, ζ ∈ ∂U\E(q) and m ≥ n.

(1.41)

We will also use the following notation ψ1[Ω, q] =

ψ[Ω, q].

For Ω a sample connected domain, Ω 6= C and h be

a conformal mapping from U to Ω, we will denote the

class of admissible functions by ψn[h, q].

If ψ : C2 × U → C, then the admissibility condition

(1.41) become

ψ(q(ζ),mζq′(ζ); z) 6∈ Ω,

where z ∈ U, ζ ∈ ∂U\E(q) and m ≥ n.

If Ω ⊂ Ω, then ψn(Ω, q) ⊂ ψn(Ω, q) and

ψn[Ω, q] ⊂ ψn+1[Ω, q].

Theorem 1.5.2 [43] Let ψ ∈ ψn[Ω, q], with q(0) = a.

If p(z) = a+pnzn+... is a analytic function in U , which

38

Page 39: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

satisfy the following condition

ψ(p(z), zp′(z), z2p′′(z); z) ∈ Ω, z ∈ U ,(1.42)

then p ≺ q.

Corollarly 1.5.1 Let Ω ⊂ C and q a univalent function

in U with q(0) = a. Also, let ψ ∈ ψn[Ω, qρ], ρ ∈ (0, 1),

where qρ(z) = q(ρz).

If p(z) = a+pnzn + ... is a analytic function in U , which

satisfy the following condition

ψ(p(z), zp′(z), z2p′′(z); z) ∈ Ω, z ∈ U ,

then p ≺ q.

Let consider Ω 6= C a sample connected domain.

Theorem 1.5.3 [43] Let ψ ∈ ψn[h, q] with q(0) = a

and ψ(a, 0, 0; 0) = = h(0). If p(z) = a + pnzn + ... and

ψ(p(z), zp′(z), z2p′′(z); z) is analytic in U and satisfy the

following condition

ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z) ,(1.43)

then p ≺ q.

39

Page 40: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Corollarly 1.5.2 Let h , q be two univalent functions

in U and q(0) = a. Also, let ψ : C3 × U → C, with

ψ(a, 0, 0; 0) = h(0), which satisfy one from the following

conditions:

(i) ψ ∈ ψn[h, qρ], for a number ρ ∈ (0, 1)

(ii) there exist a number ρ0 ∈ (0, 1) such that ψ ∈ψn[hρ, qρ] for every ρ ∈ (ρ0, 1), where qρ(z) = q(ρz) and

hρ(z) = h(ρz)

If p(z) = a + pnzn + ..., ψ(p(z), zp′(z), z2p′′(z); z) is

analytic in U and

ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z),

then p ≺ q.

The following theorems will refer to the best dominant

of the differential subordination (1.43):

Theorem 1.5.4 [43] Let h be a univalent function in

U and ψ : C3×U → C. Let assume that the differential

equation

ψ(p(z), zp′, z2p′′(z); z) = h(z)(1.44)

40

Page 41: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

has a solution q which satisfy one from the following

conditions:

(i) q ∈ Q and ψ ∈ ψ[h, q] or

(ii) q is univalent in U and ψ ∈ ψ[h, qρ], for a number

ρ ∈ (0, 1) or

(iii) q is univalent in U and there exist a number

ρ0 ∈ (0, 1) such that ψ ∈ ψn[hρ, qρ] for every ρ ∈ (ρ0, 1).

If p(z) = q(0) + p1z + ..., ψ(p(z), zp′, z2p′′(z); z) is

analytic in U , and p satisfy the condition (1.43), then

p ≺ q and q is the best dominant.

Theorem 1.5.5 [43] Let ψ ∈ ψn[Ω, q] and f a analytic

function in U with f(U) ⊂ Ω. If the differential equation

ψ(p(z), zp′, z2p′′(z); z) = f(z)

has a solution p(z) which is analytic in U , with p(0) =

q(0), then p ≺ q.

41

Page 42: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

1.6 Briot-Bouquet differential subordinations

Definition 1.6.1 Let β and γ be two complex numbers,

h a univalent function in U and p(z) = h(0)+p1z + ... a

analytic function in U which satisfy the subordination:

p(z) +zp′(z)

βp(z) + γ≺ h(z).(1.45)

This first order differential subordination is called a

Briot-Bouquet differential subordination.

By using the differential subordinations method, in

[40] and [41], are obtained many usefully result regarding

the Briot-Bouquet differential subordinations or regard-

ing generalizations of Briot-Bouquet differential subor-

dinations.

Theorem 1.6.1 [40], [41] Let h be a convex function

in U such that Re[βh(z) + γ] > 0, z ∈ U . If p is a

analytic function in U , with p(0) = h(0), and p satisfy

the Briot-Bouquet differential subordination (1.45), then

p ≺ h.

42

Page 43: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Theorem 1.6.2 [40], [41] Let h be a convex function

in U and assume that the differential equation

q(z) +zq′(z)

βq(z) + γ= h(z), q(0) = h(0)(1.46)

has a univalent solution which satisfy the subordination

q ≺ h. If p is a analytic function in U and satisfy

the Briot-Bouquet differential subordination (1.45), then

p ≺ q ≺ h and q is the best dominant.

Remark 1.6.1 By using the previously result, the proof

of the Marx and Strohacker Theorem′s (1.3.3) become a

sample verification (with h(z) =

(1 + z)/(1− z), q(z) = 1/(1− z), β = 1 and γ = 0).

Theorem 1.6.3 [40], [41] Let h be a convex function

in U such that Re[βh(z) + γ] > 0, z ∈ U and assume

that the differential equation

q(z) +zq′(z)

βq(z) + γ= h(z), q(0) = h(0)

has a univalent solution q. If p is a analytic function

in U which satisfy the Briot-Bouquet differential sub-

43

Page 44: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

ordination (1.45), then p ≺ q ≺ h and q is the best

dominant.

Theorem 1.6.4 [40], [41] Let q be a convex function

in U and j : U → C with Re[j(z)] > 0.

If p ∈ H(U), which satisfy the subordination

p(z) + j(z) · zp′(z) ≺ q(z), then p ≺ q.

44

Page 45: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Chapter 2

Uniformly starlike and

uniformly convex functions

2.1 Uniformly starlike functions

The notion of uniformly starlike function was introduced

in 1991 by A.W. Goodman (see [22]) and was inspired

by the following open problem:

Pinchuk′s problem. Let f ∈ S∗ and let γ be a

circle contained in U with the center ζ also in U . It is

f(γ) a closed starlike curve with respect to f(ζ)?

Because the above problem has a negative answer,

45

Page 46: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

A.W. Goodman consider a more ”strongly” condition in

the definition of the uniformly starlike functions:

Definition 2.1.1 A function f is called uniformly star-

like in U if f ∈ S∗ and for any circular arc γ from U ,

with the center ζ also in U , the arc f(γ) is starlike with

respect to f(ζ). We denote by US∗ the class of all this

functions.

In [22] Goodman prove that for the arc γ = z(t), we

have the arc f(γ) starlike with respect to ω0, if and only

if

Im

[f ′(z)

f(z)− ω0· dz

dt

]≥ 0,(2.1)

for z onto γ. For γ = Cr = z ∈ C; |z| = r and ω0 = 0

it is easy to see that we obtain the condition (1.10).

For z = ζ + reit we have z′(t) = i(z − ζ), and we

obtain:

Theorem 2.1.1 [22] Let f ∈ S. Then f ∈ US∗ if and

only if

Ref(z)− f(ζ)

(z − ζ)f ′(z)> 0,(2.2)

46

Page 47: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

for any (z, ζ) from U × U .

Theorem 2.1.2 [22] The function

f1(z) =z

1− Az= z +

∞∑n=2

An−1zn, z ∈ U(2.3)

belong to the class US∗ if and only if |A| ≤ 1√

2 '0, 7071.

Theorem 2.1.3 [22] If

f2(z) = z + Azn, n ≥ 1, z ∈ U(2.4)

and |A| ≤ √2/(2n), then f2 belong to the class US∗.

Remark 2.1.1 If f ∈ US∗, then for ζ = −z we obtain

Re2zf ′(z)

f(z)− f(−z)≥ 0, z ∈ U.(2.5)

A function f ∈ A which verify the condition (2.5) it

is called a starlike function with respect to symmetric

points. This class of functions was introduced by Sak-

aguci in [49].

Theorem 2.1.4 [22] If f ∈ US∗ and |z| = r < 1, then:

r

1 + 2r≤ |f(z)| ≤ −r + 2 ln

1

1− r.(2.6)

47

Page 48: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Theorem 2.1.5 [22] Let f ∈ S, f(z) = z +∞∑

n=2anz

n. If

∞∑n=2

n|an| ≤√

2/2,(2.7)

then f ∈ US∗.

Definition 2.1.2 A function f ∈ S is called uniformly

starlike of order α, α ∈ [0, 1) if

Ref(z)− f(ζ)

(z − ζ)f ′(z)≥ α,(2.8)

for any (z, ζ) from U × U . We denote by US∗(α) the

class of all this functions. We remark that US∗(0) =

US∗.

We also remark that the uniformly starlikeness of or-

der α do not imply the starlikeness of order α. Indeed, if

we consider ζ = 0 in the uniformly starlikeness of order

α, with α ∈ (0, 1], it follow that Re f(z)zf ′(z) ≥ α, z ∈ U ,

or equivalently, zf ′(z)f(z) take all values in the disc centered

in 12α and with the radius 1

2α . From the above do not

follow that Rezf ′(z)f(z) ≥ α, z ∈ U .

48

Page 49: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Theorem 2.1.6 [32] Let f1(z) = z1−Az =

z +∞∑

n=2An−1zn, z ∈ U and α ∈ [0, 1).

If |A| ≤ 1− α√2(α2 + 1)

,(2.9)

then f1 ∈ US∗(α).

Theorem 2.1.7 [32] Let f ∈ S, f(z) = z +∞∑

n=2anz

n

and α ∈ [0, 1). If∞∑

n=2

√2(α2 + 1)

1− αn|an| ≤ 1,(2.10)

then f ∈ US∗(α).

2.2 Uniformly convex functions

The notion of uniformly convex function was introduced

by A.W. Goodman in 1991 (see [23]) through analogy

with the notion of uniformly starlike function.

Definition 2.2.1 A function f is called uniformly con-

vex in U if f ∈ Sc and for any circular arc γ from U ,

with the center ζ also in U , the arc f(γ) is convex. We

denote by UCV or USc the class of all this functions.

49

Page 50: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

For Γ(t) = f(γ) and γ = z(t), then f(γ) is convex if

and only if

Im

[z′′(t)z′(t)

+f ′′(z)

f ′(z)z′(t)

]≥ 0,(2.11)

for any z onto Γ.

We remark that for γ = Cr = z ∈ C; |z| = r we

obtain the condition (1.19).

If for the circular arc γ with the center ζ we consider

z = ζ + reit, then z′(t) = i(z− ζ), z′′(t) = −(z− ζ), and

from (2.11) we obtain:

Theorem 2.2.1 [23] Let f ∈ S. Then f ∈ USc if and

only if

1 + Re

[f ′′(z)

f ′(z)(z − ζ)

]≥ 0,(2.12)

for any (z, ζ) from U × U .

Theorem 2.2.2 [23] The function

f1(z) =z

1− Az= z +

∞∑n=2

An−1zn, z ∈ U

belong to the class USc if and only if |A| ≤ 1/3.

50

Page 51: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Theorem 2.2.3 [23] The function

f2(z) = z − Az2, z ∈ U

belong to the class USc if and only if |A| ≤ 1/6.

Theorem 2.2.4 [23] Let f ∈ S, f(z) = z +∞∑

n=2anz

n. If

∞∑n=2

n(n− 1)|an| ≤ 1

3,(2.13)

then f ∈ USc and the constant 1/3 can not be replaced

with a greater one.

Theorem 2.2.5 [23] If f ∈ USc, f(z) = z +∞∑

n=2

anzn,

then

|an| ≤ 1

n, n ≥ 2 .

F. Ronning introduce in [46] the class SP which is

important because it can be used to translate the results

obtained from this class, directly to the class USc.

Definition 2.2.2 SP = F ∈ S∗|F (z) = zf ′(z),

f ∈ USc.51

Page 52: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Ma and Minda (see [31]) ,and independently, Ronning

(see [46]) gives a characterization, which use only one

variable, for the uniformly convex functions:

Theorem 2.2.6 [31], [46] Let f ∈ S. Then

f ∈ USc if and only if:

Re

1 +

zf ′′(z)

f ′(z)

>

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ , z ∈ U(2.14)

For g(z) = zf ′(z) we obtain:

Corollarly 2.2.1 [46] A function g ∈ S belong to the

class SP if and only if

Rezg′(z)

g(z)>

∣∣∣∣zg′(z)

g(z)− 1

∣∣∣∣ , z ∈ U.(2.15)

From the geometric interpretation of the relation (2.15),

we deduce that the class SP is the class of all the func-

tion g ∈ S for which zg′(z)/g(z), z ∈ U take all the

values into the parabolic domain

Ω = ω : |ω − 1| < Reω =(2.16)

ω = u + iv; v2 < 2u− 1.

52

Page 53: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Theorem 2.2.7 [46] g(z) = z+anzn belong to the class

SP if and only if

|an| ≤ 1

2n− 1.(2.17)

Corollarly 2.2.2 f(z) = z + bnzn belong to the class

USc if and only if

|bn| ≤ 1

n(2n− 1).(2.18)

Definition 2.2.3 [47] We will denote by SP (α, β),

α > 0, β ∈ [0, 1) the class of all the functions f ∈ S

which verify the condition:

(2.19)∣∣∣∣zf ′(z)

f(z)− (α + β)

∣∣∣∣ ≤ Rezf ′(z)

f(z)+ α− β, z ∈ U.

Geometric interpretation: f ∈ SP (α, β) if and only if

zf ′(z)/f(z), z ∈ U , take all the values into the parabolic

domain

(2.20)

Ωα,β = ω : |ω − (α + β)| ≤ Reω + α− β =

53

Page 54: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

ω = u + iv : v2 ≤ 4α(u− β).

Stankiewicz and Wisniowska introduce in [51], rela-

tive to a hyperbolic domain, the following new class of

functions:

Definition 2.2.4 We say that the function f ∈ S belong

to the class SH(α) if∣∣∣∣zf ′(z)

f(z)− 2α

(√2− 1

)∣∣∣∣ < Re

√2zf ′(z)

f(z)

+

2α(√

2− 1)

, z ∈ U , α > 0 .

Remark 2.2.1 For the function f ∈ SH(α) the expres-

sionzf ′(z)

f(z)take all values into the interior of the posi-

tive branch of the hyperbola v2 = 4αu + u2 , u > 0, and

the function Hα, with Hα(0) = 1 and H ′α(0) > 0, which

is univalent and maps U into the above domain, is given

by

Hα(z) = (1 + 2α)

√1 + bz

1− bz− 2α

where

b = b(α) =1 + 4α− 4α2

(1 + 2α)2 .

54

Page 55: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Definition 2.2.5 We say that a function f ∈ S is uni-

formly convex of type α, α ≥ 0 if:

Re

1 +

zf ′′(z)

f ′(z)

≥ α

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ , z ∈ U.(2.21)

We denote by USc(α) (or k − UCV ) the class of all

this functions.

Remark 2.2.2 The class USc(α) was introduced by Kanas

and Wisniowska in [27] by using the following definition:

Let 0 ≤ k < ∞. We say that a function f ∈ S is

k-uniformly convex in U if the image of any circle arc

γ contained in U , with the center ζ (|ζ| ≤ k), is convex.

We denote by k − UCV the class of all this functions.

We remark that USc(1) = USc and USc(0) = Sc.

By this remark we obtain a continuously connection be-

tween convexity and uniformly convexity.

The geometric interpretation of the definition 2.2.5:

f ∈ USc(α) if and only if 1 + zf ′′(z)/f ′(z) take all the

values into the domain Dα, where Dα is:

55

Page 56: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

i) the elliptic region:(u− α2

α2−1

)2

α2−1

)2 +v2

(1√

α2−1

)2 < 1, for α > 1

ii) the parabolic region:

v2 < 2u− 1, for α = 1

iii) the hyperbolic region:(u + α2

1−α2

)2

1−α2

)2 − v2

(1√

1−α2

)2 > 1, and u > 0,

for 0 < α < 1

iv) the half-plane u > 0, for α = 0.

56

Page 57: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

We also remark that USc(α) ⊂ Sc(

αα+1

).

Theorem 2.2.8 [27] Let f ∈ S, f(z) = z+∞∑

j=2ajz

j and

α ≥ 0. If∞∑

j=2

j(j − 1)|aj| ≤ 1

α + 2(2.22)

then f ∈ USc(α). The constant 1/(α + 2) can not be

replaced be a greater one.

Remark 2.2.3 Inspired by the class USc(α) Kanas and

Wisniowska introduce, in [29], the class α−ST by using

the following definition:

α− ST := f ∈ S : f(z) = zg′(z) , g ∈ USc(α) ,

α ≥ 0 , z ∈ U.

In [53] the authors introduced the class of uniformly

convex of order γ functions by using the following defi-

nition:

Definition 2.2.6 We say that a function f ∈ S is uni-

formly convex of order γ ∈ [−1, 1) if

(2.23)

57

Page 58: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Re

1 +

zf ′′(z)

f ′(z)

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ + γ, z ∈ U.

We denote by USc[γ] the class of all this functions.

The following subclasses are introduce by using the

Salagean differential operator (see [50]):

Dn : A → A , n ∈ N and D0f(z) = f(z)(2.24)

D1f(z) = Df(z) = zf ′(z) , Dnf(z) = D(Dn−1f(z)

)

In 1999 I. Magdas (see [33]), and independently, S.

Kanas and T. Yaguchi (see [30]) introduce the class of

n-uniformly starlike of type α functions:

Definition 2.2.7 We say that a function f ∈ A is n-

uniformly starlike of type α, α ≥ 0 and n ∈ N if:

Re

Dn+1f(z)

Dnf(z)

≥ α

∣∣∣∣Dn+1f(z)

Dnf(z)− 1

∣∣∣∣ ,(2.25)

for all z ∈ U .

we denote by USn(α) the class of all this functions.

We remark that US0(1) = SP, US1(1) = USc, US1(α) =

USc(α), where USc(α) is the class defined by (2.21).

58

Page 59: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Geometric interpretation of the relation (2.25): f ∈USn(α) if and only if Dn+1f(z)/Dnf(z) take all values in

the domain Dα, where Dα is a elliptic region for α > 1,

a parabolic region for α = 1, a hyperbolic region for

0 < α < 1, respectively the half-plan u > 0 for α = 0

(see also the Definition (2.2.5)).

From the above we remark that ReDn+1f(z)Dnf(z) > α

α+1 .

We have USn(α) ⊂ Sn

α+1 , 1) ⊂ S∗, and so we con-

clude that the functions from USn(α) are univalent.

Remark 2.2.4 In [30], S. Kanas and T. Yaguchi, the

above mentioned functions are denominate (k, n)-uniformly

convex functions and the class of all functions is denoted

by (k, n)− UCV .

In the same paper, the authors introduced also the

class (k, n)− ST by the following definition:

For f ∈ S, k ∈ [0,∞) and n ∈ N, we say that f

belong to the class (k, n)− ST if

Re

(Dnf(z)

f(z)

)> k

∣∣∣∣Dnf(z)

f(z)− 1

∣∣∣∣ , z ∈ U .

59

Page 60: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

I. Magdas introduce in [34] the uniformly convex of

type α and order γ functions and the n-uniformly star-

like of order γ and type α functions:

Definition 2.2.8 We say that a function f ∈ A is uni-

formly convex of type α and order γ, α ≥ 0, γ ∈ [−1, 1),

α + γ ≥ 0 if:

Re

1 +

zf ′′(z)

f ′(z)

≥ α

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ + γ,(2.26)

for all z ∈ U .

We denote by USc(α, γ) the class of all this functions.

We remark that USc(α, 0) = USc(α) and USc(1, γ) =

USc[γ].

Geometric interpretation of the relation (2.26):

f ∈ USc(α, γ) if and only if 1 + zf ′′(z)f ′(z) take all values in

the domain Dα,γ, where Dα,γ is:

i) a elliptic region:(u− α2−γ

α2−1

)2

[α(1−γ)α2−1

]2 +v2

(1−γ√α2−1

)2 < 1, for α > 1;

60

Page 61: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

ii) a parabolic region:

v2 < 2(1− γ)u− (1− γ2), for α = 1;

iii) a hyperbolic region:(u− γ−α2

1−α2

)2

[α(1−γ)1−α2

]2 +v2

(1−γ√1−α2

)2 > 1 and u > 0, for 0 < α < 1;

iv) the half-plane u > γ, for α = 0

We have Re

1 + zf ′′(z)f ′(z)

> α+γ

α+1 .

We also remark that USc(α, γ) ⊂ Sc(

α+γα+1

).

Definition 2.2.9 We say that a function f ∈ A is n-

uniformly starlike of order γ and type α, where

61

Page 62: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

α ≥ 0, γ ∈ [−1, 1), α + γ ≥ 0 and n ∈ N if

ReDn+1f(z)

Dnf(z)≥ α

∣∣∣∣Dn+1f(z)

Dnf(z)− 1

∣∣∣∣ + γ,(2.27)

for all z ∈ U .

We denote by USn(α, γ) the class of all this functions.

We remark that

US1(α, γ) = USc(α, γ), US0(α, γ) = S∗(γ),

US0(1, γ) = SP

(1− γ

2,

1 + γ

2

)and USn(α, 0) = USn(α).

Geometric interpretation of the relation (2.27):

f ∈ USn(α, γ) if and only if Dn+1f(z)/Dnf(z) take all

values in the domain Dα,γ, where Dα,γ was defined at

the geometric interpretation of the definition of the class

USc(α, γ).

We remember that for the functions f ∈ USn(α, γ)

we have

ReDn+1f(z)/Dnf(z)

> (α + γ)/(α + 1),

and thus

USn(α, γ) ⊂ Sn

(α + γ

1 + α

)⊂ S∗.

62

Page 63: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

This mean that the functions from USn(α, γ) are univa-

lent.

Definition 2.2.10 Let f, g ∈ A; f(z) = z+∞∑

j=2ajz

j, z ∈

U and g(z) = z+∞∑

j=2bjz

j, z ∈ U . We will denote by f ∗gthe convolution (or Hadamard) product of the functions

f and g, defined by

(f ∗ g)(z) = z +∞∑

j=2

ajbjzj, z ∈ U.(2.28)

Definition 2.2.11 [48] We define the Ruscheweyh op-

erator Rn : A → A, n ∈ N , z ∈ U , by:

Rnf(z) =z

(1− z)n+1 ∗ f(z) =z(zn−1f(z))(n)

n!.(2.29)

Remark 2.2.5 1. If f ∈ A, f(z) = z+∞∑

j=2ajz

j, z ∈ U ,

then

Rnf(z) = z +∞∑

j=2

Cnn+j−1ajz

j, z ∈ U.(2.30)

2. We remark that the inequality

ReRn+1f(z)

Rnf(z)>

1

2, z ∈ U(2.31)

63

Page 64: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

become for n = 1 the convexity condition.

We will denote by Kn the class of all functions f ∈ A

which satisfy (2.31).

By using the Ruscheweyh operator, in [35], a new

subclass of o uniformly convex functions is defined by:

Definition 2.2.12 Let n ∈ N. We say that the function

f ∈ A belong to the class UKn(δ), δ ∈ [−1, 1), if:

ReRn+1f(z)

Rnf(z)≥

∣∣∣∣Rn+1f(z)

Rnf(z)− 1

∣∣∣∣ + δ,(2.32)

for all z ∈ U .

Geometric interpretation: f ∈ UKn(δ), if and only if

Rn+1f(z)/Rnf(z) take all values in the domain

Ω 1−δ2 , 1+δ

2

not= Ωδ bounded by the parabola:

v2 = 2(1− δ)u− (1− δ2).(2.33)

The corresponding Caratheodory function is

Qδ(z) = 1 +2(1− δ)

π2

(log

1 +√

z

1−√z

)2

, z ∈ U.(2.34)

64

Page 65: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

We remark that the function Qδ is convex and satisfy

ReQδ(z) >1 + δ

2. We conclude that, f ∈ UKn(δ) if and

only if Rn+1f(z)Rnf(z) ≺ Qδ(z).

We remark that for n = 0 we have UK0(δ) =

SP(1−δ

2 , 1+δ2

), and for n = 1 and δ = 1/2, we have

UK1(1/2) = USc.

65

Page 66: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Chapter 3

Subclasses of α-convex

functions

3.1 The subclasses UM(α) and UMα

In [26] S. Kanas define the following subclass of α-uniformly

convex functions:

Definition 3.1.1 Let α ∈ [0, 1]. We say that a univa-

lent function f is called α-uniformly convex if the image

of every circle arc Γz contained in U and with the center

ζ ∈ U , is a α-convex curve (see Definition 1.4.1) with

respect to f(ζ). We denote by UM(α) the class of all

66

Page 67: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

this functions. We remark that UM(α) ⊂ Mα, where

Mα is the class of α-convex functions (see section 1.4)

Theorem 3.1.1 [26] Let α ∈ [0, 1] and f be a univalent

function. Then, f is a α-uniformly convex function if

and only if

Re

(1− α)

(z − ζ)f ′(z)

f(z)− f(ζ)

(1 +

(z − ζ)f ′′(z)

f ′(z)

)> 0 , z, ζ ∈ U .

Theorem 3.1.2 [26] If f is a α-uniformly convex func-

tion and 0 ≤ β < α, then f is also a β-uniformly convex

function, or briefly UM(α) ⊂ UM(β).

In [36] I. Magdas introduce the following subclass of

α-uniformly convex functions:

Definition 3.1.2 Let f ∈ A. We say that f is α-

uniform convex function, α ∈ [0, 1] if

Re

(1− α)

zf ′(z)

f(z)+ α

(1 +

zf ′′(z)

f ′(z)

)

≥∣∣∣∣(1− α)

(zf ′(z)

f(z)− 1

)+ α

zf ′′(z)

f ′(z)

∣∣∣∣ , z ∈ U.

67

Page 68: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

We denote this class with UMα.

Remark 3.1.1 Geometric interpretation: f ∈ UMα if

and only if

J(α, f ; z) = (1− α)zf ′(z)

f(z)+ α

(1 +

zf ′′(z)

f ′(z)

)

takes all values in the parabolic region Ω = w : |w−1| ≤Re w = w = u + iv ; v2 ≤ 2u − 1. We have UM0 =

SP (see definition 2.2.2). Also, we have UMα ⊂ Mα,

where Mα is the class of α-convex functions.

3.2 The subclass UDn,α(β, γ)

The results included in this section are obtained in [1].

Definition 3.2.1 Let α ∈ [0, 1] and n ∈ N. We say

that f ∈ A is in the class UDn,α(β, γ) , β ≥ 0 , γ ∈[−1, 1) , β + γ ≥ 0, if

Re

[(1− α)

Dn+1f(z)

Dnf(z)+ α

Dn+2f(z)

Dn+1f(z)

]

≥ β

∣∣∣∣(1− α)Dn+1f(z)

Dnf(z)+ α

Dn+2f(z)

Dn+1f(z)− 1

∣∣∣∣ + γ ,

68

Page 69: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

where Dn is the differential operator defined by (2.24).

Remark 3.2.1 We have UDn,0(β, γ) = USn(β, γ) ⊂ S∗

,UD0,α(1, 0) = UMα and UD0,1(β, γ) = USc(β, γ) ⊂Sc

(β + γ

β + 1

), where USn(β, γ) is the class given in the

definition 2.2.9, UMα is the class of α-uniformly convex

functions defined in the previously section, USc(β, γ) is

the class of the uniformly convex functions of type β and

order γ (see definition 2.2.8) and Sc(δ) is the class of

convex functions of order δ (see definition1.3.5).

Remark 3.2.2 Geometric interpretation:

f ∈ UDn,α(β, γ) if and only if

Jn(α, f ; z) = (1− α)Dn+1f(z)

Dnf(z)+ α

Dn+2f(z)

Dn+1f(z)

takes all values in the convex domain Dβ,γ, where Dβ,γ is

defined at the geometric interpretation of the definition

2.2.8.

Theorem 3.2.1 For all α, α′ ∈ [0, 1] with α < α′, we

have UDn,α′(β, γ) ⊂ UDn,α(β, γ).

69

Page 70: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Proof. From f ∈ UDn,α′(β, γ) we have

Re

[(1− α′)

Dn+1f(z)

Dnf(z)+ α′

Dn+2f(z)

Dn+1f(z)

]

≥ β

∣∣∣∣(1− α′)Dn+1f(z)

Dnf(z)+ α′

Dn+2f(z)

Dn+1f(z)− 1

∣∣∣∣ + γ .

With the notationsDn+1f(z)

Dnf(z)= p(z), where p(z) =

1 + p1z + · · ·, we have

zp′(z) = z

(Dn+1f(z)

)′ ·Dnf(z)−Dn+1f(z) · (Dnf(z))′

(Dnf(z))2

=Dn+2f(z)

Dnf(z)−

(Dn+1f(z)

Dnf(z)

)2

,

zp′(z)

p(z)=

Dn+2f(z)

Dn+1f(z)− Dn+1f(z)

Dnf(z),

and thus we obtain

Jn(α′, f ; z) = p(z) + α′ · zp

′(z)

p(z).

Now we have that p(z) + α′ · zp′(z)

p(z)takes all values in

the convex domain Dβ,γ which is included in right half

plane.

If we consider h ∈ Hu(U), with h(0) = 1, which maps

the unit disc U into the convex domain Dβ,γ, we have

70

Page 71: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Reh(z) > 0 and from hypothesis α′ > 0. From here

follows that Re1

α′· h(z) > 0. In this conditions from

Theorem 1.6.1 , with δ = 0 we obtain p(z) ≺ h(z), or

p(z) take all values in Dβ,γ.

If we consider the function g : [0, α′] → C,

g(u) = p(z) + u · zp′(z)

p(z), with g(0) = p(z) ∈ Dβ,γ and

g(α′) ∈ Dβ,γ. Since the geometric image of g(α) is on the

segment obtained by the union of the geometric image

of g(0) and g(α′), we have g(α) ∈ Dβ,γ, or

p(z) + α · zp′(z)

p(z)∈ Dβ,γ .

Thus Jn(α, f ; z) takes all values in Dβ,γ, or f ∈ UDn,α(β, γ).

Remark 3.2.3 From Theorem 3.2.1 we have UDn,α(β, γ)

⊂ UDn,0(β, γ) for all α ∈ [0, 1], and from Remark 3.2.1

we obtain that the functions from the class UDn,α(β, γ)

are univalent.

71

Page 72: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Let consider the integral operator La : A → A defined

as (see [44]):

f(z) = LaF (z) =1 + a

za

z∫

0

F (t)·ta−1dt, a ∈ C, Re a ≥ 0.

(3.1)

Remark 3.2.4 If we take a = 1, 2, 3, ... in the above

definition, we obtain the Bernardi integral operator (see

[15]).

Theorem 3.2.2 If F (z) ∈ UDn,α(β, γ) then f(z) =

La(F )(z) ∈ USn(β, γ), where La is the integral opera-

tor defined by (3.1) and the class USn(β, γ) is given in

the definition 2.2.9.

Proof. From (3.1) we have

(1 + a)F (z) = af(z) + zf ′(z)

By means of the application of the linear operator Dn+1

we obtain

(1 + a)Dn+1F (z) = aDn+1f(z) + Dn+1(zf ′(z))

72

Page 73: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

or

(1 + a)Dn+1F (z) = aDn+1f(z) + Dn+2f(z) .

Thus:

Dn+1F (z)

DnF (z)=

Dn+2f(z) + aDn+1f(z)

Dn+1f(z) + aDnf(z)

=

Dn+2f(z)

Dn+1f(z)· D

n+1f(z)

Dnf(z)+ a · D

n+1f(z)

Dnf(z)

Dn+1f(z)

Dnf(z)+ a

.

With the notationDn+1f(z)

Dnf(z)= p(z) where p(z) = 1+

p1z + ..., we have:

zp′(z) = z ·(

Dn+1f(z)

Dnf(z)

)′

=z(Dn+1f(z)

)′ ·Dnf(z)−Dn+1f(z) · z (Dnf(z))′

(Dnf(z))2

=Dn+2f(z) ·Dnf(z)− (

Dn+1f(z))2

(Dnf(z))2

and

1

p(z)· zp′(z) =

Dn+2f(z)

Dn+1f(z)− Dn+1f(z)

Dnf(z)=

Dn+2f(z)

Dn+1f(z)− p(z) .

73

Page 74: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

It follows:

Dn+2f(z)

Dn+1f(z)= p(z) +

1

p(z)· zp′(z) .

Thus we obtain:

Dn+1F (z)

DnF (z)=

p(z) ·(zp′(z) · 1

p(z) + p(z))

+ a · p(z)

p(z) + a

= p(z) +1

p(z) + a· zp′(z) .

If we denoteDn+1F (z)

DnF (z)= q(z), with q(0) = 1, and

we consider h ∈ Hu(U), with h(0) = 1, which maps the

unit disc U into the convex domain Dβ,γ, we have from

F (z) ∈ UDn,α(β, γ) (see Remark 3.2.2):

q(z) + α · zq′(z)

q(z)≺ h(z) .

From Theorem 1.6.1 , with δ = 0 we obtain q(z) ≺ h(z),

or

p(z) +1

p(z) + a· zp′(z) ≺ h(z) .

Using the hypothesis and the construction of the func-

tion h(z) we obtain from Theorem 1.6.1 p(z) ≺ h(z) or

74

Page 75: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

f(z) ∈ USn(β, γ) (see the geometric interpretation of

the definition 2.2.9).

Remark 3.2.5 From Theorem 3.2.2 with α = 0 we ob-

tain the Theorem 3.1 from [7] which assert that the in-

tegral operator La, defined by (3.1), preserve the class

USn(β, γ).

3.3 The subclasses UMα(q) and UDn,α(q)

In the beginning of this section we will recall some re-

sults due to D. Blezu (see [18]):

Definition 3.3.1 The function f ∈ A is n-starlike with

respect to convex domain included in right half plane D if

the differential expressionDn+1f(z)

Dnf(z)takes values in the

domain D, where Dn is the differential operator defined

by (2.24).

If we consider q(z) an univalent function with

q(0) = 1, Re q(z) > 0, q′(0) > 0 which maps the unit

75

Page 76: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

disc U into the convex domain D we have:

Dn+1f(z)

Dnf(z)≺ q(z).

We note by S∗n(q) the set of all these functions.

The following results are obtained in [2].

Let q(z) be an univalent function with q(0) = 1,

q′(0) > 0, which maps the unit disc U into a convex

domain included in right half plane D.

Definition 3.3.2 Let f ∈ A and α ∈ [0, 1]. We say that

f is α-uniform convex function with respect to D, if

J(α, f ; z) = (1− α)zf ′(z)

f(z)+ α

(1 +

zf ′′(z)

f ′(z)

)≺ q(z).

We denote this class with UMα(q).

Remark 3.3.1 Geometric interpretation: f ∈ UMα(q)

if and only if J(α, f ; z) take all values in the convex

domain included in right half plan D.

Remark 3.3.2 We have UMα(q) ⊂ Mα, where Mα is

the well know class of α-convex function. If we take

D = Ω (see Remark 3.1.1) we obtain the class UMα.

76

Page 77: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Remark 3.3.3 From the above definition it easily re-

sults that q1(z) ≺ q2(z) implies UMα(q1) ⊂ UMα(q2).

Theorem 3.3.1 For all α, α′ ∈ [0, 1] with α < α′ we

have UMα′(q) ⊂ UMα(q).

Proof. From f ∈ UMα′(q) we have

J(α′, f ; z) = (1− α)zf ′(z)

f(z)+ α

(1 +

zf ′′(z)

f ′(z)

)≺ q(z),

(3.2)

where q(z) is univalent in U with q(0) = 1, q′(0) > 0, and

maps the unit disc U into the convex domain included

in right half plane D.

With notationzf ′(z)

f(z)= p(z), where p(z) = 1+p1z+...

we have:

J(α′, f ; z) = p(z) + α′ · zp′(z)

p(z).

From (3.2) we have p(z) + α′ · zp′(z)

p(z)≺ q(z) with

p(0) = q(0) and Re q(z) > 0, z ∈ U .

In this conditions from Theorem 1.6.1, with δ = 0, we

obtain p(z) ≺ q(z), or p(z) take all values in D.

77

Page 78: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

If we consider the function g : [0, α′] → C,

g(u) = p(z) + u · zp′(z)

p(z), with g(0) = p(z) ∈ D and

g(α′) = J(α′, f ; z) ∈ D. Since the geometric image

of g(α) is on the segment obtained by the union of the

geometric image of g(0) and g(α′), we have g(α) ∈ D or

p(z) + αzp′(z)

p(z)∈ D.

Thus J(α, f ; z) take all values in D, or

J(α, f ; z) ≺ q(z). This means f ∈ UMα(q).

Theorem 3.3.2 If F (z) ∈ UMα(q) then

f(z) = La(F )(z) ∈ S∗0(q), where La is the integral oper-

ator defined by (3.1) and α ∈ [0, 1].

Proof. From (3.1) we have

(1 + a)F (z) = af(z) + zf ′(z).

With notationzf ′(z)

f(z)= p(z), where p(z) = 1+p1z+...

we have

zF ′(z)

F (z)= p(z) +

zp′(z)

p(z) + a.

78

Page 79: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

If we denotezF ′(z)

F (z)= h(z), with h(0) = 1, we have

from F (z) ∈ UMα(q) (see Definition 3.3.2):

h(z) + α · zh′(z)

h(z)≺ q(z),

where q(z) is univalent un U with q(0) = 1, q′(z) > 0 and

maps the unit disc U into the convex domain included

in right half plane D.

From Theorem 1.6.1 we obtain h(z) ≺ q(z) or

p(z) +zp′(z)

p(z) + a≺ q(z).

Using the hypothesis and the construction of the func-

tion q(z) we obtain from Theorem 1.6.1zf ′(z)

f(z)= p(z) ≺ q(z) or f(z) ∈ S∗0(q) ⊂ S∗.

Definition 3.3.3 Let f ∈ A, α ∈ [0, 1] and n ∈ N.

We say that f is α − n-uniformly convex function with

respect to D if

Jn(α, f ; z) = (1− α)Dn+1f(z)

Dnf(z)+ α

Dn+2f(z)

Dn+1f(z)≺ q(z),

where Dn is the differential operator defined by (2.24).

We denote this class with UDn,α(q).

79

Page 80: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Remark 3.3.4 Geometric interpretation: f ∈ UDn,α(q)

if and only if Jn(α, f ; z) take all values in the convex do-

main included in right half plane D.

Remark 3.3.5 We have UD0,α(q) = UMα(q) and if in

the above definition we consider D = Dβ,γ (see Remark

3.2.2) we obtain the class UDn,α(β, γ).

Remark 3.3.6 It is easy to see that q1(z) ≺ q2(z) im-

plies UDn,α(q1) ⊂ UDn,α(q2).

Theorem 3.3.3 For all α, α′ ∈ [0, 1] with α < α′ we

have UDn,α′(q) ⊂ UDn,α(q).

Proof. From f ∈ UDn,α′(q) we have:

Jn(α′, f ; z) = (1−α)

Dn+1f(z)

Dnf(z)+ α

Dn+2f(z)

Dn+1f(z)≺ q(z),

(3.3)

where q(z) is univalent in U with q(0) = 1, q′(0) > 0, and

maps the unit disc U into the convex domain included

in right half plane D.

80

Page 81: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

With notationDn+1f(z)

Dnf(z)= p(z), where

p(z) = 1 + p1z + ... we have

Jn(α′, f ; z) = p(z) + α′ · zp

′(z)

p(z).

From (3.3) we have p(z) + α′ · zp′(z)

p(z)≺ q(z) with

p(0) = q(0) and Re q(z) > 0, z ∈ U . In this condition

from Theorem 1.6.1 we obtain p(z) ≺ q(z), or p(z) take

all values in D.

If we consider the function g : [0, α′] → C,

g(u) = p(z) + u · zp′(z)

p(z), with g(0) = p(z) ∈ D and

g(α′) = Jn(α′, f ; z) ∈ D, it easy to see that

g(α) = p(z) + αzp′(z)

p(z)∈ D.

Thus we have Jn(α, f ; z) ≺ q(z) or f ∈ UDn,α(q).

Theorem 3.3.4 If F (z) ∈ UDn,α(q) then

f(z) = La(F )(z) ∈ S∗n(q), where La is the integral oper-

ator defined by (3.1).

Proof. From (3.1) we have

(1 + a)F (z) = af(z) + zf ′(z). By means of the applica-

81

Page 82: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

tion of the linear operator Dn+1 we obtain:

(1 + a)Dn+1F (z) = aDn+1f(z) + Dn+1(zf ′(z))

or

(1 + a)Dn+1F (z) = aDn+1f(z) + Dn+2f(z).

With notationDn+1f(z)

Dnf(z)= p(z), where

p(z) = 1 + p1z + ..., we have:

Dn+1F (z)

DnF (z)= p(z) +

1

p(z) + a· zp′(z).

If we denoteDn+1F (z)

DnF (z)= h(z), with h(0) = 1, we

have from F ∈ UDn,α(q):

h(z) + αzh′(z)

h(x)≺ q(z),

where q(z) is univalent in U with q(0) = 1, q′(0) > 0, and

maps the unit disc U into the convex domain included

in right half plane D.

From Theorem 1.6.1 we obtain h(z) ≺ q(z) or

p(z) +zp′(z)

p(z) + a≺ q(z).

Using the hypothesis we obtain from Theorem 1.6.1

p(z) ≺ q(z) or f(z) ∈ S∗n(q).

82

Page 83: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Remark 3.3.7 If we consider D = Dβ,γ in Theorem

3.3.3 and Theorem 3.3.4 we obtain the main results from

the previously section and if we take D = Dβ,γ and α = 0

in Theorem 3.3.4 we obtain the Theorem 3.1 from [7].

3.4 The subclass Mλ,α(q)

For the main results from this section we need to recall

here the following definitions and theorems:

Definition 3.4.1 [3] Let λ ∈ R , λ ≥ 0 and

f(z) = z +∞∑

j=2

ajzj. We define the generalized Salagean

operator by Dλ : A → A

Dλf(z) = z +∞∑

j=2

jλajzj .

Remark 3.4.1 [3] It is easy to observe that the general-

ized Salagean operator defined above is a linear operator.

Also, we observe that for λ ∈ N we obtain the Salagean

differential operator.

83

Page 84: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Definition 3.4.2 [3] Let q(z) ∈ Hu(U), with q(0) = 1

and q(U) = D, where D is a convex domain contained in

the right half plane. We say that a function f(z) ∈ A is

a λ-q-starlike function ifDλ+1f(z)

Dλf(z)≺ q(z). We denote

this class by S∗λ(q).

Definition 3.4.3 [8] Let q(z) ∈ Hu(U), with q(0) = 1

and q(U) = D, where D is a convex domain contained

in the right half plane. We say that a function f(z) ∈ A

is a λ-q-convex function ifDλ+2f(z)

Dλ+1f(z)≺ q(z). We denote

this class by Scλ(q).

The main results of this section are obtained in [4].

Definition 3.4.4 Let α ∈ [0, 1], q(z) ∈ Hu(U), with

q(0) = 1 and q(U) = D, where D is a convex domain

contained in the right half plane. We say that a function

f(z) ∈ A is a λ-q-α-convex function if

Jλ(α, f ; z) = (1− α)Dλ+1f(z)

Dλf(z)+ α

Dλ+2f(z)

Dλ+1f(z)≺ q(z) .

We denote this class with Mλ,α(q).

84

Page 85: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Remark 3.4.2 Geometric interpretation: f(z) ∈ Mλ,α(q)

if and only if Jλ(α, f ; z) take all values in the convex do-

main D contained in the right half-plane.

Remark 3.4.3 It is easy to observe that if we choose

different function q(z) we obtain variously classes of

α-convex functions, such as (for example), for λ = 0,

the class of α-convex functions, the class of α-uniform

convex functions with respect to a convex domain (see

the previously section), and, for λ = n ∈ N, the class

UDn,α(β, γ), β ≥ 0, γ ∈ [−1, 1), β + γ ≥ 0 (see the sec-

tion 3.2), the class of α-n-uniformly convex functions

with respect to a convex domain (see the previously sec-

tion).

Remark 3.4.4 We have Mλ,0(q) = S∗λ(q) and

Mλ,1(q) = Scλ(q).

Remark 3.4.5 For q1(z) ≺ q2(z) we have

Mλ,α(q1) ⊂ Mλ,α(q2) .

From the above we obtain Mλ,α(q) ⊂ Mλ,α

(1 + z

1− z

).

85

Page 86: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Theorem 3.4.1 Let λ ∈ R , λ ≥ 0.

For all α, α′ ∈ [0, 1], with α < α′ we have

Mλ,α′(q) ⊂ Mλ,α(q) .

Proof. From f(z) ∈ Mλ,α′(q) we have

Jλ(α′, f ; z) = (1− α′)

Dλ+1f(z)

Dλf(z)+ α′

Dλ+2f(z)

Dλ+1f(z)≺ q(z) ,

(3.4)

where q(z) is univalent in U with q(0) = 1 and maps the

unit disc U into the convex domain D contained in the

right half-plane.

With notation

p(z) =Dλ+1f(z)

Dλf(z),

where

p(z) = 1 + p1z + . . . ,

we have

p(z) + α′ · zp′(z)

p(z)

=Dλ+1f(z)

Dλf(z)+ α′

Dλf(z)

Dλ+1f(z)

86

Page 87: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

·z(Dλ+1f(z)

)′Dλf(z)−Dλ+1f(z)

(Dλf(z)

)′

(Dλf(z))2

=Dλ+1f(z)

Dλf(z)+ α′

Dλf(z)

Dλ+1f(z)

(z(Dλ+1f(z)

)′Dλf(z)

−Dλ+1f(z)

Dλf(z)· z

(Dλf(z)

)′Dλf(z)

)

=Dλ+1f(z)

Dλf(z)+ α′ · Dλf(z)

Dλ+1f(z)

z

(z +

∞∑j=2

jλ+1ajzj

)′

Dλf(z)

−Dλ+1f(z)

Dλf(z)·z

(z +

∞∑

j=2

jλajzj

)′

Dλf(z)

=Dλ+1f(z)

Dλf(z)+ α′ · Dλf(z)

Dλ+1f(z)

z

(1 +

∞∑j=2

j(jλ+1aj)zj−1

)

Dλf(z)

87

Page 88: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

−Dλ+1f(z)

Dλf(z)·z

(1 +

∞∑j=2

j(jλaj)zj−1

)

Dλf(z)

=Dλ+1f(z)

Dλf(z)+ α′ · Dλf(z)

Dλ+1f(z)

z +∞∑

j=2

jλ+2ajzj

Dλf(z)

−Dλ+1f(z)

Dλf(z)·z +

∞∑j=2

jλ+1ajzj

Dλf(z)

=Dλ+1f(z)

Dλf(z)+ α′ · Dλf(z)

Dλ+1f(z)

(Dλ+2f(z)

Dλf(z)− Dλ+1f(z)

Dλf(z)

·Dλ+1f(z)

Dλf(z)

)

=Dλ+1f(z)

Dλf(z)+ α′ · D

λ+2f(z)

Dλ+1f(z)− α′ · D

λ+1f(z)

Dλf(z)

=Dλ+1f(z)

Dλf(z)(1− α′) + α′ · D

λ+2f(z)

Dλ+1f(z)= Jλ(α

′, f ; z)

88

Page 89: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

From (3.4) we have

p(z) +zp′(z)1

α′· p(z)

≺ q(z) ,

with p(0) = q(0), Re q(z) > 0 , z ∈ U , and α′ > 0. In

this conditions from Theorem 1.6.1 we obtain

p(z) ≺ q(z) or p(z) take all values in D.

If we consider the function g : [0, α′] → C,

g(u) = p(z) + u · zp′(z)

p(z),

with g(0) = p(z) ∈ D and g(α′) = Jλ(α′, f ; z) ∈ D, it

easy to see that

g(α) = p(z) + α · zp′(z)

p(z)∈ D , 0 ≤ α < α′ .

Thus we have

Jλ(α, f ; z) ≺ q(z)

or

f(z) ∈ Mλ,α(q) .

Remark 3.4.6 From the above theorem we have, for ev-

ery α ∈ [0, 1], that Mλ,α(q) ⊂ S∗λ(q).

89

Page 90: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Remark 3.4.7 If we consider λ = 0 we obtain the The-

orem 3.3.1 from the section 3.3. Also, for λ = n ∈ N,

we obtain the Theorem 3.3.3 from the previously section.

Remark 3.4.8 If we consider D = Dβ,γ (see the geo-

metric interpretation of the definition 2.2.8) in the above

theorem we obtain the Theorem 3.2.1 from the section

3.2.

Theorem 3.4.2 If F (z) ∈ Mλ,α(q) then

f(z) = LaF (z) ∈ S∗λ(q), where La is the integral operator

defined by (3.1).

Proof. From (3.1) we have

(1 + a)F (z) = af(z) + zf ′(z)

and, by using the linear operator Dλ+1, we obtain

(1 + a)Dλ+1F (z) = aDλ+1f(z) + Dλ+1 (zf ′(z))

= aDλ+1f(z) + Dλ+1

(z +

∞∑

j=2

jajzj

)

= aDλ+1f(z) + z +∞∑

j=2

jλ+1(jaj)zj

90

Page 91: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

= aDλ+1f(z) + Dλ+2f(z)

or

(1 + a)Dλ+1F (z) = aDλ+1f(z) + Dλ+2f(z) .

Similarly, we obtain

(1 + a)DλF (z) = aDλf(z) + Dλ+1f(z) .

Then

Dλ+1F (z)

DλF (z)=

Dλ+2f(z)

Dλ+1f(z)· D

λ+1f(z)

Dλf(z)+ a · D

λ+1f(z)

Dλf(z)

Dλ+1f(z)

Dλf(z)+ a

.

With notation

Dλ+1f(z)

Dλf(z)= p(z) , p(0) = 1 ,

we obtain

Dλ+1F (z)

DλF (z)=

Dλ+2f(z)

Dλ+1f(z)· p(z) + a · p(z)

p(z) + a(3.5)

We have

Dλ+2f(z)

Dλ+1f(z)=

Dλ+2f(z)

Dλf(z)· Dλf(z)

Dλ+1f(z)=

1

p(z)· D

λ+2f(z)

Dλf(z)(3.6)

91

Page 92: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Also, we have

Dλ+2f(z)

Dλf(z)=

z +∞∑

j=2

jλ+2ajzj

z +∞∑

j=2

jλajzj

and

zp′(z) =z(Dλ+1f(z)

)′Dλf(z)

− Dλ+1f(z)

Dλf(z)· z

(Dλf(z)

)′Dλf(z)

=

=

z +∞∑

j=2

jλ+2ajzj

z +∞∑

j=2

jλajzj

− p(z) ·z +

∞∑j=2

jλ+1ajzj

z +∞∑

j=2

jλajzj

=

=Dλ+2f(z)

Dλf(z)− p(z) · D

λ+1f(z)

Dλf(z).

Thus

zp′(z) =Dλ+2f(z)

Dλf(z)− p(z)2

orDλ+2f(z)

Dλf(z)= p(z)2 + zp′(z) .

From (3.6) we obtain

Dλ+2f(z)

Dλ+1f(z)=

1

p(z)

[p(z)2 + zp′(z)

]= p(z) +

zp′(z)

p(z).

92

Page 93: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

From (3.5) we obtain

Dλ+1F (z)

DλF (z)=

(p(z) +

zp′(z)

p(z)

)· p(z) + a · p(z)

p(z) + a

= p(z) +zp′(z)

p(z) + a

If we denote

Dλ+1F (z)

DλF (z)= h(z) , with h(0) = 1 ,

we have from F (z) ∈ Mλ,α(q) (see the proof of the above

theorem):

Jλ(α, F ; z) = h(z) + α · zh′(z)

h(z)≺ q(z) .

Using the hypothesis we obtain from Theorem 1.6.1

h(z) ≺ q(z)

or

p(z) +zp′(z)

p(z) + a≺ q(z) .

By using the Theorem 1.6.1 and the hypothesis we have

p(z) ≺ q(z)

93

Page 94: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

orDλ+1f(z)

Dλf(z)≺ q(z) .

This means that f(z) ∈ S∗λ(q) .

Remark 3.4.9 If we consider λ = 0 we obtain the The-

orem 3.3.2 from previously section. Also, for λ = n ∈ N,

we obtain the Theorem 3.3.4 from the section 3.3.

Remark 3.4.10 If we consider D = Dβ,γ (see remark

3.4.8) in the above theorem we obtain the Theorem 3.2.2

from the section 3.2.

3.5 The subclass MLn,α(q)

In the first part of this section we will introduce some

usefully definitions and remarks:

Definition 3.5.1 [14] Let n ∈ N and λ ≥ 0. We denote

with Dnλ the operator defined by

Dnλ : A → A ,

D0λf(z) = f(z) , D1

λf(z) = (1−λ)f(z)+λzf ′(z) = Dλf(z) ,

94

Page 95: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Dnλf(z) = Dλ

(Dn−1

λ f(z))

.

Remark 3.5.1 [14] We observe that Dnλ is a linear op-

erator and for f(z) = z +∞∑

j=2

ajzj we have

Dnλf(z) = z +

∞∑

j=2

(1 + (j − 1)λ)n ajzj .

Also, it is easy to observe that if we consider λ = 1 in

the above definition we obtain the Salagean differential

operator (see (2.24)).

Definition 3.5.2 [9] Let q(z) ∈ Hu(U), with

q(0) = 1 and q(U) = D, where D is a convex domain

contained in the right half plane, n ∈ N and λ ≥ 0. We

say that a function f(z) ∈ A is in the class SL∗n(q) ifDn+1

λ f(z)

Dnλf(z)

≺ q(z) , z ∈ U .

Remark 3.5.2 Geometric interpretation: f(z) ∈ SL∗n(q)

if and only ifDn+1

λ f(z)

Dnλf(z)

take all values in the convex do-

main D contained in the right half-plane.

95

Page 96: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Definition 3.5.3 [10] Let q(z) ∈ Hu(U), with q(0) =

1 and q(U) = D, where D is a convex domain con-

tained in the right half plane, n ∈ N and λ ≥ 0. We

say that a function f(z) ∈ A is in the class SLcn(q) if

Dn+2λ f(z)

Dn+1λ f(z)

≺ q(z) , z ∈ U .

Remark 3.5.3 Geometric interpretation: f(z) ∈ SLcn(q)

if and only ifDn+2

λ f(z)

Dn+1λ f(z)

take all values in the convex do-

main D contained in the right half-plane.

The main results of this section are obtained in [5].

Definition 3.5.4 Let q(z) ∈ Hu(U), with q(0) = 1,

q(U) = D, where D is a convex domain contained in

the right half plane, n ∈ N, λ ≥ 0 and α ∈ [0, 1]. We

say that a function f(z) ∈ A is in the class MLn,α(q) if

Jn,λ(α, f ; z) = (1− α)Dn+1

λ f(z)

Dnλf(z)

+ αDn+2

λ f(z)

Dn+1λ f(z)

≺ q(z)

, z ∈ U .

Remark 3.5.4 Geometric interpretation:

f(z) ∈ MLn,α(q) if and only if Jn,λ(α, f : z) take all

96

Page 97: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

values in the convex domain D contained in the right

half-plane.

Remark 3.5.5 It is easy to observe that if we choose

different function q(z) we obtain variously classes of α-

convex functions, such as (for example), for λ = 1 and

n = 0, the class of α-convex functions, the class of α-

uniform convex functions with respect to a convex do-

main (see the section 3.3), and, for λ = 1, the class

UDn,α(β, γ), β ≥ 0, γ ∈ [−1, 1), β + γ ≥ 0 (see the sec-

tion 3.2), the class of α-n-uniformly convex functions

with respect to a convex domain (see the section 3.3).

Remark 3.5.6 We have MLn,0(q) = SL∗n(q) and

MLn,1(q) = SLcn(q).

Remark 3.5.7 For q1(z) ≺ q2(z) we have

MLn,α(q1) ⊂ MLn,α(q2) . From the above we obtain

MLn,α(q) ⊂ MLn,α

(1 + z

1− z

).

Theorem 3.5.1 For all α, α′ ∈ [0, 1], with α < α′, we

have MLn,α′(q) ⊂ MLn,α(q) .

97

Page 98: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Proof. From f(z) ∈ MLn,α′(q) we have

Jn,λ(α′, f ; z) = (1− α′)

Dn+1λ f(z)

Dnλf(z)

+ α′Dn+2

λ f(z)

Dn+1λ f(z)

≺ q(z) ,

(3.7)

where q(z) is univalent in U with q(0) = 1 and maps the

unit disc U into the convex domain D contained in the

right half-plane.

With notation

p(z) =Dn+1

λ f(z)

Dnλf(z)

,

where

p(z) = 1 + p1z + . . . and f(z) = z +∞∑

j=2

ajzj

we have

p(z) + α′ · λ · zp′(z)

p(z)

=Dn+1

λ f(z)

Dnλf(z)

+ α′λDn

λf(z)

Dn+1λ f(z)

·z(Dn+1

λ f(z))′

Dnλf(z)−Dn+1

λ f(z) (Dnλf(z))′

(Dnλf(z))2

=Dn+1

λ f(z)

Dnλf(z)

+ α′λDn

λf(z)

Dn+1λ f(z)

(z

(Dn+1

λ f(z))′

Dnλf(z)

98

Page 99: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

−Dn+1λ f(z)

Dnλf(z)

· z (Dnλf(z))′

Dnλf(z)

)

=Dn+1

λ f(z)

Dnλf(z)

+ α′λ

· Dnλf(z)

Dn+1λ f(z)

z

(z +

∞∑j=2

(1 + (j − 1)λ)n+1 ajzj

)′

Dnλf(z)

−Dn+1λ f(z)

Dnλf(z)

·z

(z +

∞∑

j=2

(1 + (j − 1)λ)n ajzj

)′

Dnλf(z)

=Dn+1

λ f(z)

Dnλf(z)

+ α′λ

· Dnλf(z)

Dn+1λ f(z)

z

(1 +

∞∑j=2

j (1 + (j − 1)λ)n+1 ajzj−1

)

Dnλf(z)

99

Page 100: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

−Dn+1λ f(z)

Dnλf(z)

·z

(1 +

∞∑j=2

j (1 + (j − 1)λ)n ajzj−1

)

Dnλf(z)

or

p(z) + α′ · λ · zp′(z)

p(z)=

Dn+1λ f(z)

Dnλf(z)

+ α′λ(3.8)

· Dnλf(z)

Dn+1λ f(z)

z +∞∑

j=2

j (1 + (j − 1)λ)n+1 ajzj

Dnλf(z)

−Dn+1λ f(z)

Dnλf(z)

·z +

∞∑j=2

j (1 + (j − 1)λ)n ajzj

Dnλf(z)

We have

z +∞∑

j=2

j (1 + (j − 1)λ)n+1 ajzj

= z +∞∑

j=2

((j − 1) + 1) (1 + (j − 1)λ)n+1 ajzj

100

Page 101: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

= z +∞∑

j=2

(1 + (j − 1)λ)n+1 ajzj

+∞∑

j=2

(j − 1) (1 + (j − 1)λ)n+1 ajzj

= z + Dn+1λ f(z)− z +

∞∑j=2

(j − 1) (1 + (j − 1)λ)n+1 ajzj

= Dn+1λ f(z) +

1

λ

∞∑j=2

((j − 1)λ) (1 + (j − 1)λ)n+1 ajzj

= Dn+1λ f(z)

+1

λ

∞∑j=2

(1 + (j − 1)λ− 1) (1 + (j − 1)λ)n+1 ajzj

= Dn+1λ f(z)− 1

λ

∞∑j=2

(1 + (j − 1)λ)n+1 ajzj

+1

λ

∞∑j=2

(1 + (j − 1)λ)n+2 ajzj

= Dn+1λ f(z)− 1

λ

(Dn+1

λ f(z)− z)

+1

λ

(Dn+2

λ f(z)− z)

= Dn+1λ f(z)− 1

λDn+1

λ f(z) +z

λ+

1

λDn+2

λ f(z)− z

λ

101

Page 102: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

=λ− 1

λDn+1

λ f(z) +1

λDn+2

λ f(z)

=1

λ

((λ− 1)Dn+1

λ f(z) + Dn+2λ f(z)

).

Similarly we have

z +∞∑

j=2

j (1 + (j − 1)λ)n ajzj

=1

λ

((λ− 1)Dn

λf(z) + Dn+1λ f(z)

).

From (3.8) we obtain

p(z) + α′ · λ · zp′(z)

p(z)

=Dn+1

λ f(z)

Dnλf(z)

+ α′λDn

λf(z)

Dn+1λ f(z)

1

λ·(

(λ− 1)Dn+1

λ f(z)

Dnλf(z)

+Dn+2

λ f(z)

Dnλf(z)

− Dn+1λ f(z)

Dnλf(z)

(λ− 1)−(

Dn+1λ f(z)

Dnλf(z)

)2)

=Dn+1

λ f(z)

Dnλf(z)

+ α′Dn+2

λ f(z)

Dn+1λ f(z)

− α′Dn+1

λ f(z)

Dnλf(z)

=Dn+1

λ f(z)

Dnλf(z)

(1− α′) + α′Dn+2

λ f(z)

Dn+1λ f(z)

= Jn,λ(α′, f ; z)

From (3.7) we have

p(z) +zp′(z)1

α′λ· p(z)

≺ q(z) ,

102

Page 103: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

with p(0) = q(0), Re q(z) > 0 , z ∈ U , α′ > 0 and

λ ≥ 0. In this conditions from Theorem 1.6.1 we obtain

p(z) ≺ q(z) or p(z) take all values in D.

If we consider the function g : [0, α′] → C,

g(u) = p(z) + u · λzp′(z)

p(z),

with g(0) = p(z) ∈ D and g(α′) = Jn,λ(α′, f ; z) ∈ D, it

easy to see that

g(α) = p(z) + α · λzp′(z)

p(z)∈ D , 0 ≤ α < α′ .

Thus we have

Jn,λ(α, f ; z) ≺ q(z)

or

f(z) ∈ MLn,α(q) .

From the above theorem we have

Corollarly 3.5.1 For every n ∈ N and α ∈ [0, 1], we

103

Page 104: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

have

MLn,α(q) ⊂ MLn,0(q) = SL∗n(q) .

Remark 3.5.8 If we consider λ = 1 and n = 0 we

obtain the Theorem 3.3.1 from the section 3.3. Also, for

λ = 1 and n ∈ N, we obtain the Theorem 3.3.3 from the

same section.

Remark 3.5.9 If we consider λ = 1 and D = Dβ,γ (see

the geometric interpretation of the definition 2.2.8) in

the above theorem we obtain the Theorem 3.2.1 from the

section 3.2.

Theorem 3.5.2 Let n ∈ N, α ∈ [0, 1] and λ ≥ 1 . If

F (z) ∈ MLn,α(q) then f(z) = LaF (z) ∈ SL∗n(q), where

La is the integral operator defined by (2.24).

Proof. From (2.24) we have

(1 + a)F (z) = af(z) + zf ′(z)

104

Page 105: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

and, by using the linear operator Dn+1λ and if we consider

f(z) =∞∑

j=2

ajzj, we obtain

(1 + a)Dn+1λ F (z) = aDn+1

λ f(z) + Dn+1λ

(z +

∞∑

j=2

jajzj

)

= aDn+1λ f(z) + z +

∞∑j=2

(1 + (j − 1)λ)n+1 jajzj

We have (see the proof of the above theorem)

z +∞∑

j=2

j (1 + (j − 1)λ)n+1 ajzj(3.9)

=1

λ

((λ− 1)Dn+1

λ f(z) + Dn+2λ f(z)

)

Thus

(1 + a)Dn+1λ F (z) = aDn+1

λ f(z)

+1

λ

((λ− 1)Dn+1

λ f(z) + Dn+2λ f(z)

)

=

(a +

λ− 1

λ

)Dn+1

λ f(z) +1

λDn+2

λ f(z)

or

λ(1+a)Dn+1λ F (z) = ((a + 1)λ− 1) Dn+1

λ f(z)+Dn+2λ f(z) .

105

Page 106: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Similarly, we obtain

λ(1 + a)DnλF (z) = ((a + 1)λ− 1) Dn

λf(z) + Dn+1λ f(z) .

ThenDn+1

λ F (z)

DnλF (z)

=

Dn+2λ f(z)

Dn+1λ f(z)

· Dn+1λ f(z)

Dnλf(z)

+ ((a + 1)λ− 1) · Dn+1λ f(z)

Dnλf(z)

Dn+1λ f(z)

Dnλf(z)

+ ((a + 1)λ− 1)

.

With notation

Dn+1λ f(z)

Dnλf(z)

= p(z) , p(0) = 1 ,

we obtainDn+1

λ F (z)

DnλF (z)

(3.10)

=

Dn+2λ f(z)

Dn+1λ f(z)

· p(z) + ((a + 1)λ− 1) · p(z)

p(z) + ((a + 1)λ− 1)

Also, we obtain

Dn+2λ f(z)

Dn+1λ f(z)

=Dn+2

λ f(z)

Dnλf(z)

· Dnλf(z)

Dn+1λ f(z)

=1

p(z)· D

n+2λ f(z)

Dnλf(z)

(3.11)

106

Page 107: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

We have

Dn+2λ f(z)

Dnλf(z)

=

z +∞∑

j=2

(1 + (j − 1)λ)n+2 ajzj

z +∞∑

j=2

(1 + (j − 1)λ)n ajzj

and

zp′(z) =z(Dn+1

λ f(z))′

Dnλf(z)

− Dn+1λ f(z)

Dnλf(z)

· z (Dnλf(z))′

Dnλf(z)

=

z

(1 +

∞∑j=2

(1 + (j − 1)λ)n+1 jajzj−1

)

Dnλf(z)

−p(z) ·z

(1 +

∞∑

j=2

(1 + (j − 1)λ)n jajzj−1

)

Dnλf(z)

or

zp′(z) =

z +∞∑

j=2

j (1 + (j − 1)λ)n+1 ajzj

Dnλf(z)

(3.12)

−p(z) ·z +

∞∑

j=2

j (1 + (j − 1)λ)n ajzj

Dnλf(z)

.

107

Page 108: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

By using (3.9) and (3.12) we obtain

zp′(z) =1

λ

((λ− 1)Dn+1

λ f(z) + Dn+2λ f(z)

Dnλf(z)

−p(z)(λ− 1)Dn

λf(z) + Dn+1λ f(z)

Dnλf(z)

)

=1

λ

((λ− 1)p(z) +

Dn+2λ f(z)

Dnλf(z)

− p(z) ((λ− 1) + p(z))

)

=1

λ

(Dn+2

λ f(z)

Dnλf(z)

− p(z)2)

Thus

λzp′(z) =Dn+2

λ f(z)

Dnλf(z)

− p(z)2

orDn+2

λ f(z)

Dnλf(z)

= p(z)2 + λzp′(z) .

From (3.11) we obtain

Dn+2λ f(z)

Dn+1λ f(z)

=1

p(z)

(p(z)2 + λzp′(z)

).

Then, from (3.10), we obtain

Dn+1λ F (z)

DnλF (z)

=p(z)2 + λzp′(z) + ((a + 1)λ− 1) p(z)

p(z) + ((a + 1)λ− 1)

= p(z) + λzp′(z)

p(z) + ((a + 1)λ− 1),

108

Page 109: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

where a ∈ C, Rea ≥ 0 and λ ≥ 1 .

If we denoteDn+1

λ F (z)

DnλF (z)

= h(z), with h(0) = 1, we

have from F (z) ∈ MLn,α(q) (see the proof of the above

Theorem):

Jn,λ(α, F ; z) = h(z) + α · λ · zh′(z)

h(z)≺ q(z)

Using the hypothesis, from Theorem 1.6.1, we obtain

h(z) ≺ q(z)

or

p(z) + λzp′(z)

p(z) + ((a + 1)λ− 1)≺ q(z) .

By using the Theorem 1.6.1 and the hypothesis we

have

p(z) ≺ q(z)

orDn+1

λ f(z)

Dnλf(z)

≺ q(z) .

This means f(z) = LaF (z) ∈ SL∗n(q) .

Remark 3.5.10 If we consider λ = 1 and n = 0 we

obtain the Theorem 3.3.2 from the section 3.3. Also, for

109

Page 110: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

λ = 1 and n ∈ N, we obtain the Theorem 3.3.4 from the

same section.

Remark 3.5.11 If we consider λ = 1 and D = Dβ,γ

(see remark 3.4.6) in the above theorem we obtain the

Theorem 3.2.2 from the section 3.2.

3.6 The subclass MLβ,α(q)

For the main results of this section we will need the

following definitions and theorems:

Definition 3.6.1 [11] Let β, λ ∈ R, β ≥ 0, λ ≥ 0 and

f(z) = z+∞∑

j=2

ajzj. We denote by Dβ

λ the linear operator

defined by

Dβλ : A → A ,

Dβλf(z) = z +

∞∑j=2

(1 + (j − 1)λ)β ajzj .

Definition 3.6.2 [11] Let q(z) ∈ Hu(U), with q(0) = 1

and q(U) = D, where D is a convex domain contained

in the right half plane, β, λ ∈ R, β ≥ 0 and λ ≥ 0. We

110

Page 111: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

say that a function f(z) ∈ A is in the class SL∗β(q) if

Dβ+1λ f(z)

Dβλf(z)

≺ q(z) , z ∈ U .

Theorem 3.6.1 [11] Let β, λ ∈ R, β ≥ 0 and λ ≥ 1 . If

F (z) ∈ SL∗β(q) then f(z) = LaF (z) ∈ SL∗β(q), where La

is the integral operator defined by (3.1).

Definition 3.6.3 [12] Let q(z) ∈ Hu(U), with q(0) = 1

and q(U) = D, where D is a convex domain contained

in the right half plane, β, λ ∈ R, β ≥ 0 and λ ≥ 0. We

say that a function f(z) ∈ A is in the class SLcβ(q) if

Dβ+2λ f(z)

Dβ+1λ f(z)

≺ q(z) , z ∈ U .

Theorem 3.6.2 [12] Let β, λ ∈ R, β ≥ 0 and λ ≥ 1 . If

F (z) ∈ SLcβ(q) then f(z) = LaF (z) ∈ SLc

β(q), where La

is the integral operator defined by (3.1).

The main results of this section are obtained in [6].

Definition 3.6.4 Let q(z) ∈ Hu(U), with q(0) = 1,

q(U) = D, where D is a convex domain contained in

111

Page 112: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

the right half plane, β ≥ 0, λ ≥ 0 and α ∈ [0, 1]. We

say that a function f(z) ∈ A is in the class MLβ,α(q) if

Jβ,λ(α, f ; z) = (1− α)Dβ+1

λ f(z)

Dβλf(z)

+ αDβ+2

λ f(z)

Dβ+1λ f(z)

≺ q(z) ,

z ∈ U .

Remark 3.6.1 Geometric interpretation:

f(z) ∈ MLβ,α(q) if and only if Jβ,λ(α, f : z) take all

values in the convex domain D contained in the right

half-plane.

Remark 3.6.2 We have MLβ,0(q) = SL∗β(q) and

MLβ,1(q) = SLcβ(q).

Remark 3.6.3 It is easy to observe that if we choose

different function q(z) we obtain variously classes of

α-convex functions, such as (for example), for λ = 1

and β = 0, the class of α-convex functions, the class

of α-uniform convex functions with respect to a con-

vex domain (see the section 3.3), and, for λ = 1 and

β = n ∈ N, the class UDn,α(b, γ), b ≥ 0, γ ∈ [−1, 1),

112

Page 113: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

b+γ ≥ 0 (see the section 3.2), the class of α-n-uniformly

convex functions with respect to a convex domain (see

the section 3.3).

Remark 3.6.4 For q1(z) ≺ q2(z) we have

MLβ,α(q1) ⊂ MLβ,α(q2) . From the above we obtain

MLβ,α(q) ⊂ MLβ,α

(1 + z

1− z

).

Remark 3.6.5 It is easy to observe that for every

β ≥ 0, α ∈ [0, 1] and λ ≥ 0 we have id(z) ∈ MLβ,α(q),

where id(z) = z, z ∈ U .

Theorem 3.6.3 Let q(z) ∈ Hu(U), with q(0) = 1,

q(U) = D, where D is a convex domain contained in the

right half plane, β ≥ 0 and λ ≥ 0. For all α, α′ ∈ [0, 1],

with α < α′, we have MLβ,α′(q) ⊂ MLβ,α(q) .

Proof. From f(z) ∈ MLβ,α′(q) we have

Jβ,λ(α′, f ; z) = (1− α′)

Dβ+1λ f(z)

Dβλf(z)

+ α′Dβ+2

λ f(z)

Dβ+1λ f(z)

≺ q(z) ,

(3.13)

113

Page 114: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

where q(z) is univalent in U with q(0) = 1 and maps the

unit disc U into the convex domain D contained in the

right half-plane.

Define the function

p(z) =Dβ+1

λ f(z)

Dβλf(z)

= 1 + p1z + · · ·

for f(z) ∈ A with

f(z) = z +∞∑

j=2

ajzj.

Note that

z(Dβ+1

λ f(z))′ = z +

∞∑

j=2

j (1 + (j − 1)λ)β+1 ajzj

= z +∞∑

j=2

((j − 1) + 1) (1 + (j − 1)λ)β+1 ajzj

= z +∞∑

j=2

(1 + (j − 1)λ)β+1 ajzj

+∞∑

j=2

(j − 1) (1 + (j − 1)λ)β+1 ajzj

= z + Dβ+1λ f(z)− z +

∞∑j=2

(j − 1) (1 + (j − 1)λ)β+1 ajzj

114

Page 115: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

= Dβ+1λ f(z) +

1

λ

∞∑j=2

((j − 1)λ) (1 + (j − 1)λ)β+1 ajzj

= Dβ+1λ f(z)

+1

λ

∞∑j=2

(1 + (j − 1)λ− 1) (1 + (j − 1)λ)β+1 ajzj

= Dβ+1λ f(z)− 1

λ

∞∑j=2

(1 + (j − 1)λ)β+1 ajzj

+1

λ

∞∑j=2

(1 + (j − 1)λ)β+2 ajzj

= Dβ+1λ f(z)− 1

λ

(Dβ+1

λ f(z)− z)

+1

λ

(Dβ+2

λ f(z)− z)

= Dβ+1λ f(z)− 1

λDβ+1

λ f(z) +z

λ+

1

λDβ+2

λ f(z)− z

λ

=λ− 1

λDβ+1

λ f(z) +1

λDβ+2

λ f(z)

=1

λ

((λ− 1)Dβ+1

λ f(z) + Dβ+2λ f(z)

).

Similarly we have

z(Dβ

λf(z))′ = z +

∞∑j=2

j (1 + (j − 1)λ)β ajzj

=1

λ

((λ− 1)Dβ

λf(z) + Dβ+1λ f(z)

).

115

Page 116: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Thus we see that

p(z) + α′λzp′(z)

p(z)=

Dβλf(z)

Dβ+1λ f(z)

+α′λ

((λ− 1)Dβ+1

λ f(z) + Dβ+2λ f(z)

λDβ+1λ f(z)

−(λ− 1)Dβλf(z) + Dβ+1

λ f(z)

λDβλf(z)

)

= (1− α′)Dβ+1

λ f(z)

Dβλf(z)

+ α′Dβ+2

λ f(z)

Dβ+1λ f(z)

= Jβ,λ(α′, f ; z).

From (3.13) we have

p(z) +zp′(z)1

α′λ· p(z)

≺ q(z) ,

with p(0) = q(0), Re q(z) > 0 , z ∈ U , α′ > 0 and

λ ≥ 0. In this conditions from Theorem 1.6.1 we obtain

p(z) ≺ q(z) or p(z) take all values in D.

If we consider the function g : [0, α′] → C,

g(u) = p(z) + u · λzp′(z)

p(z),

116

Page 117: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

with g(0) = p(z) ∈ D and g(α′) = Jβ,λ(α′, f ; z) ∈ D, it

easy to see that

g(α) = p(z) + α · λzp′(z)

p(z)∈ D , 0 ≤ α < α′ .

Thus we have

Jβ,λ(α, f ; z) ≺ q(z)

or

f(z) ∈ MLβ,α(q) .

From the above theorem we have

Corollarly 3.6.1 For every β ≥ 0, λ ≥ 0 and

α ∈ [0, 1], we have

MLβ,α(q) ⊂ MLβ,0(q) = SL∗β(q)

.

Theorem 3.6.4 Let q(z) ∈ Hu(U), with q(0) = 1,

q(U) = D, where D is a convex domain contained in

117

Page 118: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

the right half plane, β ≥ 0, α ∈ [0, 1] and λ ≥ 1 . If

F (z) ∈ MLβ,α(q) then f(z) = LaF (z) ∈ SL∗β(q), where

La is the integral operator defined by (3.1).

Proof. From (3.1) we have

(1 + a)F (z) = af(z) + zf ′(z) .

Note that

(1 + a)Dβ+1λ F (z) = aDβ+1

λ f(z) + z(Dβ+1

λ f(z))′

= aDβ+1λ f(z) +

1

λ

((λ− 1)Dβ+1

λ f(z) + Dβ+2λ f(z)

)

or

λ(1+a)Dβ+1λ F (z) = ((a + 1)λ− 1) Dβ+1

λ f(z)+Dβ+2λ f(z)

and

λ(1 + a)DβλF (z) = ((a + 1)λ− 1) Dβ

λf(z) + Dβ+1λ f(z).

With the following definition for p(z),

Dβ+1λ f(z)

Dβλf(z)

= p(z) , p(0) = 1 ,

118

Page 119: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

we obtain

zp′(z)Dβλf(z) + zp(z)

(Dβ

λf(z))′ = z

(Dβ+1

λ f(z))′.

This implies that

λzp(z)′Dβλf(z) + (λ− 1)p(z)Dβ

λf(z) + p(z)Dβ+1λ f(z)

= (λ− 1)Dβ+1λ f(z) + Dβ+2

λ f(z).

Therefore, we have that

λzp(z)′Dβλf(z)Dβ+1

λ f(z) + (λ− 1)p(z)Dβ

λf(z)

Dβ+1λ f(z)

+ p(z)

= (λ− 1) +Dβ+2

λ f(z)

Dβ+1λ f(z)

,

that is, that

Dβ+2λ f(z)

Dβ+1λ f(z)

=1

p(z)

(p(z)2 + λzp′(z)

).

Therefore, we obtain

Dβ+1λ F (z)

DβλF (z)

=p(z)2 + λzp′(z) + ((a + 1)λ− 1) p(z)

p(z) + ((a + 1)λ− 1)

= p(z) + λzp′(z)

p(z) + ((a + 1)λ− 1),

where a ∈ C, Rea ≥ 0, β ≥ 0 and λ ≥ 1 .

119

Page 120: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

If we denoteDβ+1

λ F (z)

DβλF (z)

= h(z), with h(0) = 1, we

have from F (z) ∈ MLβ,α(q) (see the proof of the above

Theorem):

Jβ,λ(α, F ; z) = h(z) + α · λ · zh′(z)

h(z)≺ q(z)

Using the hypothesis, from Theorem 1.6.1, we obtain

h(z) ≺ q(z)

or

p(z) + λzp′(z)

p(z) + ((a + 1)λ− 1)≺ q(z) ,

where a ∈ C, Re a ≥ 0 and λ ≥ 1 .

By using the Theorem 1.6.1 and the hypothesis we

have

p(z) ≺ q(z)

orDβ+1

λ f(z)

Dβλf(z)

≺ q(z) ,

where β ≥ 0 and λ ≥ 1 .

This means f(z) = LaF (z) ∈ SL∗β(q) .

120

Page 121: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Remark 3.6.6 It is easy to observe that if we choose

different values for the parameters β and λ, and different

functions q(z), in the present results, we obtain every

results from the previously sections of this chapter.

121

Page 122: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Bibliography

[1] M. Acu, On a subclass of α-uniform convex func-

tions, Archivum Mathematicum, Tomus 41/2005,

No. 2, 175-180.

[2] M. Acu, Some subclasses of α-uniformly convex

functions, Acta Mathematica Academiae Paedogog-

icae Nyiregyhaziensis, Vol. 21 (2005), 49-54.

[3] M. Acu, A general class of starlike functions, In-

dian Journal of Mathematics and Mathematical Sci-

ences, Vol. 1, No. 2(2005), 131-137.

[4] M. Acu, A general class of starlike func-

tions,Journal of Approximation Theory and Appli-

cations, Vol. 1, No. 2(2005), 75-82.

122

Page 123: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

[5] M. Acu, On a class of α-convex functions, Acta Uni-

versitatis Apulensis, No. 11/2006, 7-18.

[6] M. Acu, F. Al-Oboudi, M. Darus, S. Owa, Y. Po-

latoglu, E. Yavuz, On some α-convex functions, In-

ternational Journal of Open Problems in Computer

Science and Mathematics, Vol. 1, No. 1/June 2008,

11 pg.

[7] M. Acu, D. Blezu A preserving property of a Libera

type operator, Filomat, 14(2000), 13-18.

[8] M. Acu, D. Blezu, S. Owa A general class of close to

convex functions, Journal of Approximation Theory

and Applications, Vol. I, No. 2(2005), 67-73.

[9] M. Acu, S. Owa On a subclass of n-starlike func-

tions, International Journal of Mathematics and

Mathematical Sciences, 17(2005), 2841-2846.

[10] M. Acu, S. Owa On a subclass of n-convex func-

tions, Journal of Approximation Theory and Appli-

123

Page 124: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

cations, Vol. I, No. 1(2005), 1-9.

[11] M. Acu and S. Owa, Note on a class of starlike func-

tions, Proceedings of The International Short Joint

Research Work on Study on Calculus Operators in

Univalent Function Theory - Kyoto 2006, 1-10.

[12] M. Acu and S. Owa, Note on a class of convex func-

tions, Proceedings of The International Short Joint

Research Work on Study on Calculus Operators in

Univalent Function Theory - Kyoto 2006, 11-20.

[13] J.W. Alexander, Functions wich map the interior of

the unit circle upon simple regions, Ann. of Math.,

17(1915), 12-22.

[14] F.M. Al-Oboudi, On univalent funtions defined by a

generalized Salagean operator, Ind. J. Math. Math.

Sci. 2004, no. 25-28, 1429-1436.

[15] S.D. Bernardi, Convex and starlike univalent func-

tions, Trans. Amer. Math. Soc., 135(1969), 129-446.

124

Page 125: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

[16] L. Bieberbach, Uber einige Extremal probleme im

Gebiete der konformen Abbildung, Math. Ann.,

77(1916), 153-172.

[17] L. Bieberbach, Uber die Koeffizientem derjeni-

gen Potenzreihen, welche eine schlithe Abbildung

des Einheitskreises vermitteln, Preuss. Akad. Wiss.

Sitzungsb., (1916), 940-955.

[18] D. Blezu, On the n-uniformly close to convex func-

tions with respect to a convex domain, General

Mathematics, 9(2001), no. 3-4, 1-8.

[19] V.V. Cernikov, The α-convexity of univalent func-

tions, Mat. Zametki, 11, 2(1972), 227-232.

[20] L. De Branges, A proof of the Bieberbach conjecture,

Acta Math., 154(1985), 137-152.

[21] P.L. Duren, Univalent Functions, Springer-Verlag,

1984.

125

Page 126: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

[22] A.W. Goodman, On Uniformly Starlike Functions,

Journal of Math. Anal. and Appl., 155(1991), 364-

370.

[23] A.W. Goodman, On uniformly convex functions,

Ann. Polon. Math., LVIII(1991), 82-92.

[24] T. Gronwall, Some remarks on conformal represen-

tation, Ann. of Math., (2) 16(1914-15), 72-76.

[25] P. Hamburg, P. Mocanu, N. Negoescu, Mathe-

matical Analysis (Complex Functions) (Romanian),

Didactically and Pedagogical Publising House,

Bucharest, 1982.

[26] S. Kanas, Uniformly α-convex functions, Int. J. of

Appl. Mathematics, Vol. 1, 3(1999), 305-310.

[27] S. Kanas, A. Wisniowska, Conic regions and k-

uniform convexity, Journal of Comp. and Appl.

Mathematics, 105(1999), 327-336.

126

Page 127: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

[28] S. Kanas, A. Wisniowska, Conic regions and k-

uniform convexity II, Folia Scient. Univ. Tehn.

Resoviensis, Zeszyty Naukove Pol. Rzeszowskiej,

Mathematika 22, 170(1998), 65-78.

[29] S. Kanas, A. Wisniowska, Conic domains and star-

like functions, Revue Roumaine, (1999).

[30] S. Kanas, T. Yaguchi, Subclasses of k-uniformly

convex and starlike functions defined by general-

ized derivate I, Indian J. Pure and Appl. Math. 32,

9(2001), 1275-1282.

[31] W. Ma, D. Minda, Uniformly convex functions,

Ann. Polon. Math., LVII 2(1992), 165-175.

[32] I. Magdas, Suficient conditions or uniform starlike-

ness of order α, Mathematica, 40(63), 2(1998), 219-

226.

[33] I. Magdas, On α-type uniformly convex functions,

Studia Mathematica, Vol. XLIV, 1(1999), 11-17.

127

Page 128: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

[34] I. Magdas, A new subclass of uniformly convex func-

tions with negative coefficients, (to appear).

[35] I. Magdas, A generalizations of a class of uniformly

convex functions, Mathematica, 41(64), 2(1999),

187-193.

[36] I. Magdas, On α-uniformly convex functions, Ma-

thematica, 43(66), 2(2001), 211-218.

[37] A. Marx, Untersuchungen uber schlichte Abbildun-

gen, Math. Ann., 107(1932-33), 40-67.

[38] S.S. Miller, P.T. Mocanu, Second order differential

inequalities in the complex plane, J. Math. Anal.

Appl., 65(1978), 298-305.

[39] S.S. Miller, P.T. Mocanu, Differential subordi-

nations and univalent functions, Mich. Math.,

28(1981), 157-171.

[40] S.S. Miller, P.T. Mocanu, Univalent solution of

Briot-Bouquet differential equations, J. Differential

128

Page 129: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

Equations, 56(1985), 297-308.

[41] S.S. Miller, P.T. Mocanu, On some classes of

first order differential subordinations, Mich. Math.,

32(1985), 185-195.

[42] S.S. Miller, P.T. Mocanu, M.O. Reade, Bazilevic

functions and generalized convexity, Rev. Roum.

Math. Pures Appl., 19, 2(1974), 213-224.

[43] P.T. Mocanu, T. Bulboaca, G. Salagean, Geomet-

ric Theory of Univalent Functions (Romanian), Sci-

ences Book Publishing House (Cluj), 1999.

[44] N.N. Pascu, Alpha-close-to-convex functions,

Romanian-Finnish Seminar om Complex Analysis,

Bucharest, 1976, Proc. Lect. Notes Math. 1976,

743, Springer-Verlag, 1979, 331-335.

[45] Ch. Pommerenke, Univalent functions, Vander-

hoeck - Ruprecht, Gottingen, 1975.

129

Page 130: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

[46] F. Ronning, Uniformly convex functions and a cor-

responding class of starlike functions, Proc. Amer.

Math. Soc., 118, 1(1993), 190-196.

[47] F. Ronning, Integral reprezentations of bounded

starlike functions , Ann. Polon. Math., LX, 3(1995),

289-297.

[48] S. Ruscheweyh, New criterion for univalent func-

tions, Proc. Amer. Math. Soc., 49(1975), 109-115.

[49] K. Sakaguchi, On a certain univalent mapping, J.

Math. Soc. Japan, 1(1969), 72-75.

[50] G.S. Salagean, Complex Plane Geometry (Ro-

manian), Promedia Plus Publising House, Cluj-

Napoca, 1997.

[51] J. Stankiewicz, A. Wisniowska, Starlike functions

associated with some hyperbola, Folia Scient. Univ.

Tehn. Resoviensis, Zeszyty Naukove Pol. Rzes-

zowskiej, Mathematika 19, 147(1996), 117-126.

130

Page 131: Mugur Alexandru Acu - ULB Sibiudepmath.ulbsibiu.ro/chair/acu_mugur/manexe/subclassesofalphaconvex.pdf · Mugur Alexandru Acu SUBCLASSES OF fi-CONVEX FUNCTIONS ”Lucian Blaga”

[52] E. Strohhacker, Beitrage zur Theorie der schlichten

Functionen, Math. Z., 37(1933), 356-380.

[53] K.G. Subramanian, T.V. Sudharsan, P. Balasub-

rahmanyam, H. Silverman, Classes of uniformly

starlike functions, (to appear).

131