Download - Micro & Nanofluidics

Transcript
Page 1: Micro & Nanofluidics

Micro&Nanofluidics

Page 2: Micro & Nanofluidics

FluidicsReynoldsNumber(dimensionless)

Re = inertial termsviscous terms

=ρ vDη

Re<500:laminarflow(fluidflowsinparallellayers)Re>2000:turbulentflow

ρ:fluiddensityv:fluidspeedη  :fluidviscosityD:diameterofthepipe

Iner5a:resistanceofanobjecttoanychangeinitsmoGon(tokeepmovinginastraightlineatconstantvelocity,ortokeepsGll)

Viscosity:fluidresistanceflow(togradualdeformaGonbyshearstress)

Page 3: Micro & Nanofluidics

ReynoldsnumberFornoncircularchannels,usethehydraulicdiametertocalculatetheReynoldsnumber:D=DH

DH = d pipe diameter

DH =2

1h+1w

channel height and width

DH =4AP

A:crosssecGonareaP:weNedperimeter

DefiniGon:

wh

Workonexercise1

Page 4: Micro & Nanofluidics

FluidicsTurbulent

Laminar

Bloodinbloodcapillaries

Airinairwaycapillaries

Laminar

Turbulent

Turbulent

Turbulent

Page 5: Micro & Nanofluidics

LowReynoldsnumberprevailnotonlyinthemicroworld…

B. H. Weigl, R. L. Bardell, and C. R. Cabrera, "Lab-on-a-chip for drug development", Advanced Drug Delivery Reviews 55 (3), 349 (2003).

D =100mv =10m / year = 0.3µms−1

η =1010kgm−1 s−1

ρ =103 kgm−3

Re = ρ vDη

= 3⋅10−12 <<1

Viscoustermsdominateandwehavelaminarflow

Page 6: Micro & Nanofluidics

Inalaminarflow,theviscoustermsdominateImage=honeyflowinginachannel

Page 7: Micro & Nanofluidics

Liquidandsampletransport-Pressuredrivenflow

SGck-boundarycondiGons(u=0atr=±a)giveaparabolicflowprofile:

u(r) = umax 1−r2

a2#

$ %

&

' (

aisthetuberadius

UniversityofTwente–groupofAlbertvandenBerg

r

ParGclesattheperipherytravelslowerthanparGclesinthecenter.AplugofsampleisthereforespreadoutasittravelsinthetubewhichmaylowerresoluGonofafluidicssystem.Itcanalsobeuseful:LargeparGclesareexcludedfromtheedgesandtravelonaveragefasterthansmallparGcles,thatcanbeclosertotheedges(hydrodynamicchromatography).

pubs.acs.org/doi/pdfplus/10.1021/ac034663l

2a

Page 8: Micro & Nanofluidics

Microandnanofluidics-LabonachipMicroandnanofluidics:CanbeusedforfundamentalstudiesmadepossiblethankstotheproperGesofthesmallchannelsLabonachip:applicaGonofmicroandnanofluidics-analysisanddiagnosGcsorientedAdvantagesovertradiGonalmethods:-smallersampleandreagentamountneeded-fasterexperiments

Page 9: Micro & Nanofluidics

FabricaGon–PhotolithographyandSoeLithography

PDMS

Master

PDMS

Master

PDMS

SiliconWaferorglassslide

Page 10: Micro & Nanofluidics

Diffusion:becomesimportantinmicrofluidicsduetothesmallsizeofthechannels.

BrownianmoGon:randommovementofmolecules/objectsinafluidduetothefastmovingofatomsinthefluid.

Page 11: Micro & Nanofluidics

x 2 = 2Dt

DiffusioncoefficientD:Einstein’srelaGonship:

D = µkBT =kBT6πηa

kB:Boltzmannconstant=1.38064852×10-23m2kgs-2K-1T:temperatureη:viscosityofthefluidµ:mobilityoftheparGclea:parGculeradius

Inonedimension

MovementineachorthogonaldirecGonisindependent.

r2 = x 2 + y 2 = 4DtTwodimensions

r2 = x 2 + y 2 + z2 = 6DtThreedimensions

x 2€

y 2

r2

heremeansaveragingovermanyaNemptseachoneofduraGont.

Diffusion

Page 12: Micro & Nanofluidics

Ingeneralinmicrofluidics,theflowislaminarandthereisnoconvecGvemixing.Duetoshortdistances,insteaddiffusionbecomesimportant.

Rhodamine

Anthocyanin

OUTLET

TWOIN

LETS

Diffusivemixer

ThemixingofRhodamineandanthocyanineisachievedbydiffusiononly(noturbulentflow)

Workonexercises2and3

Page 13: Micro & Nanofluidics

Ingeneralinmicrofluidics,theflowislaminarandthereisnoconvecGvemixing.Duetoshortdistances,insteaddiffusionbecomesimportant.

FITC

TexasRed

X

ThewidthsofthestreamsattheoutletarefuncGonsoftherelaGveflowratesattheinletchannels.

OUTLET

THRE

EINLETS

Diffusivemixer

Page 14: Micro & Nanofluidics

Anotherexampleofmicrofluidicdevice

Page 15: Micro & Nanofluidics

Rcd

R < Rc R > Rc

1

2

3

4

5=N

Rc = distance between obstaclesperiod of array

Basicidea:streamlinesconsGtutepotenGaltrajectories.ParGclesshiestreamline,andthustrajectory,asaresponsetoaforce(heresteric:they“bump”intotheobstacles)

DeterminisGclateraldisplacement:Bumperarray

CriGcalRadius:

The parGcles with R<Rc followtheflowdirecGon.TheparGcleswith R>Rc travel through thedeviceatananglecomparedtothedirecGonoftheflow.

Page 16: Micro & Nanofluidics

Rcd

R < Rc R > Rc

1

2

3

4

5=N

Rc = distance between obstaclesperiod of array

Basicidea:streamlinesconsGtutepotenGaltrajectories.ParGclesshiestreamline,andthustrajectory,asaresponsetoaforce(heresteric:they“bump”intotheobstacles)

DeterminisGclateraldisplacement:Bumperarray

CriGcalRadius:

Idealcase

The parGcles with R<Rc followtheflowdirecGon.TheparGcleswith R>Rc travel through thedeviceatananglecomparedtothedirecGonoftheflow.

Page 17: Micro & Nanofluidics

ApplicaGon–Ultrasimplelabel-freesorGngoftrypanosomesTrypanosomabrucei->sleepingsickness.• Fatal(100%)disease.• Fatal(5%)treatment.à ImperaGvetominimizefalsenegaGvesaswellasfalseposiGves.

CurrentdiagnosisreliesonenrichmentbyionexchangechromatographyandcentrifugaGon.Simplerandcheapermethodsneededthatareadaptedtouseinremoteareas.Majorchallenge–NeedtodetectaslowconcentraGonsas100parasitespermL.

Page 18: Micro & Nanofluidics

depth37µm

depth11µm

depth4µm

Holm,Beech,...LabChip2011

At99%RBCrejecGon

wehaveacaptureefficiency9%

wehaveacaptureefficiency99.5%

wehaveacaptureefficiency53%

ApplicaGon–Ultrasimplelabel-freesorGngoftrypanosomes