Download - L-7 ECE-495 595

Transcript
Page 1: L-7  ECE-495 595

ECE 495/595 (aka ECE-381)

Introduction to Power Systems

Edward D. Graham, Jr. Ph.D., P.E.

Lecture 7September 7, 2011

Office: ECE-235B

[email protected]

More Three Phase Power

Page 2: L-7  ECE-495 595
Page 3: L-7  ECE-495 595
Page 4: L-7  ECE-495 595
Page 5: L-7  ECE-495 595
Page 6: L-7  ECE-495 595

= instantaneous power

Page 7: L-7  ECE-495 595

t

Page 8: L-7  ECE-495 595
Page 9: L-7  ECE-495 595

- Θi

Remember: Complex Conjugate (a + jb)* = (a – jb)

Page 10: L-7  ECE-495 595

- Θi

Page 11: L-7  ECE-495 595

0

NO

Page 12: L-7  ECE-495 595
Page 13: L-7  ECE-495 595

Page 14: L-7  ECE-495 595
Page 15: L-7  ECE-495 595
Page 16: L-7  ECE-495 595
Page 17: L-7  ECE-495 595
Page 18: L-7  ECE-495 595
Page 19: L-7  ECE-495 595
Page 20: L-7  ECE-495 595
Page 21: L-7  ECE-495 595
Page 22: L-7  ECE-495 595
Page 23: L-7  ECE-495 595

0

Page 24: L-7  ECE-495 595
Page 25: L-7  ECE-495 595

Root

Square

Mean

2

Page 26: L-7  ECE-495 595

PF = Power Factor

Page 27: L-7  ECE-495 595
Page 28: L-7  ECE-495 595
Page 29: L-7  ECE-495 595
Page 30: L-7  ECE-495 595

= Complex Power

This equation is the basis for the Power Triangle

Page 31: L-7  ECE-495 595
Page 32: L-7  ECE-495 595
Page 33: L-7  ECE-495 595

Changing Landscape of Power Systems and Utilities Deregulation

Page 34: L-7  ECE-495 595
Page 35: L-7  ECE-495 595
Page 36: L-7  ECE-495 595

Three Phase ExampleAssume a -connected load is supplied from a 313.8 kV (L-L) source with Z = 10020

13.8 013.8 013.8 0

ab

bc

ca

V kVV kVV kV

13.8 0 138 20

138 140 138 0

ab

bc ca

kVI amps

I amps I amps

Page 37: L-7  ECE-495 595

Three Phase Example (continued)

*

138 20 138 0239 50 amps239 170 amps 239 0 amps

3 3 13.8 0 kV 138 amps5.7 MVA5.37 1.95 MVA

pf cos 20 lagging

a ab ca

b c

ab ab

I I I

I I

S V I

j

Page 38: L-7  ECE-495 595

In the News: New CWLP GeneratorCWLP = City Water, Light & Power Springfield, Ill.

This is a 280 MVA Generator for CWLP’s New Coal Plant

Page 39: L-7  ECE-495 595

Delta-Wye Transformation

Y

phase

To simplify analysis of balanced 3 systems:1) Δ-connected loads can be replaced by

1Y-connected loads with Z3

2) Δ-connected sources can be replaced byY-connected sources with V

3 30Line

Z

V

Page 40: L-7  ECE-495 595

Delta-Wye Transformation Proof

From the side we get

Hence

ab ca ab caa

ab ca

a

V V V VIZ Z Z

V VZI

Page 41: L-7  ECE-495 595

Delta Wye Transformation

Page 42: L-7  ECE-495 595

Delta-Wye Transformation, (Continued)

a

From the side we get( ) ( )

(2 )Since I 0Hence 3

3

1Therefore3

ab Y a b ca Y c a

ab ca Y a b c

b c a b c

ab ca Y a

ab caY

a

Y

YV Z I I V Z I IV V Z I I I

I I I I IV V Z I

V VZ ZI

Z Z

Page 43: L-7  ECE-495 595

Three Phase Transmission Line

Page 44: L-7  ECE-495 595
Page 45: L-7  ECE-495 595

Interconnected North American Power Grid

Page 46: L-7  ECE-495 595
Page 47: L-7  ECE-495 595
Page 48: L-7  ECE-495 595
Page 49: L-7  ECE-495 595
Page 50: L-7  ECE-495 595
Page 51: L-7  ECE-495 595
Page 52: L-7  ECE-495 595
Page 53: L-7  ECE-495 595
Page 54: L-7  ECE-495 595
Page 55: L-7  ECE-495 595

Three Phase Transmission Line

Page 56: L-7  ECE-495 595

Per Phase Analysis

Per phase analysis allows analysis of balanced 3 systems with the same effort as for a single phase systemBalanced 3 Theorem: For a balanced

3 system with– All loads and sources Y connected– No mutual Inductance between phases

Page 57: L-7  ECE-495 595

Per Phase Analysis (continued)

Then– All neutrals are at the same potential– All phases are COMPLETELY decoupled– All system values are the same sequence

as sources. The sequence order we’ve been using (phase b lags phase a and phase c lags phase a) is known as “positive” sequence (abc); later in the course we’ll discuss negative and zero sequence systems.

Page 58: L-7  ECE-495 595

Per Phase Analysis ProcedureTo do per phase analysis1. Convert all load/sources to equivalent Y’s2. Solve phase “a” independent of the other

phases3. Total system power S = 3 Va Ia

*

4. If desired, phase “b” and “c” values can be determined by inspection (i.e., ±120° degree phase shifts)

5. If necessary, go back to original circuit to determine line-line values or internal values.

Page 59: L-7  ECE-495 595

Per Phase ExampleAssume a 3, Y-connected generator with Van =

10 volts supplies a -connected load with Z = -j through a transmission line with impedance of j0.1 per phase. The load is also connected to a -connected generator with Va”b” = 10through a second transmission line which also has an impedance of j0.1 per phase.

Find1. The load voltage Va’b’2. The total power supplied by each generator, SY

and S

Page 60: L-7  ECE-495 595

Per Phase Example (continued)

First convert the delta load and source to equivalent Y values and draw just the "a" phase circuit

Page 61: L-7  ECE-495 595

Per Phase Example (continued)

' ' 'a a a

To solve the circuit, write the KCL equation at a'1(V 1 0)( 10 ) V (3 ) (V j3

j j

Page 62: L-7  ECE-495 595

Per Phase Example (continued)

' ' 'a a a

'a

' 'a b' 'c ab

To solve the circuit, write the KCL equation at a'1(V 1 0)( 10 ) V (3 ) (V j3

10(10 60 ) V (10 3 10 )3

V 0.9 volts V 0.9 volts

V 0.9 volts V 1.56

j j

j j j j

volts

Page 63: L-7  ECE-495 595

Per Phase Example (continued)

*'*

ygen

*" '"

S 3 3 5.1 3.5 VA0.1

3 5.1 4.7 VA0.1

a aa a a

a agen a

V VV I V jj

V VS V jj