Download - Kinematics: The Mathematics of Motionof Motionphysics.gsu.edu/apalkov/lecture2211_3.pdf · 2009. 8. 21. · Motion along a straight line 1 s 2 s 3 s 4 s Can be illustrated by position-versus-time

Transcript
Page 1: Kinematics: The Mathematics of Motionof Motionphysics.gsu.edu/apalkov/lecture2211_3.pdf · 2009. 8. 21. · Motion along a straight line 1 s 2 s 3 s 4 s Can be illustrated by position-versus-time

Kinematics: The Mathematics of Motionof Motion

1

Readings: Chapter 2

Page 2: Kinematics: The Mathematics of Motionof Motionphysics.gsu.edu/apalkov/lecture2211_3.pdf · 2009. 8. 21. · Motion along a straight line 1 s 2 s 3 s 4 s Can be illustrated by position-versus-time

Motion along a straight line

1 s 2 s 3 s 4 s Can be illustrated by position-versus-time graph:

x Continuous (smooth) curve

Originx

Origin(x=0)

10 cm

20 cm

40 cm

70 cm

t(s)1 2 3 4

2

Page 3: Kinematics: The Mathematics of Motionof Motionphysics.gsu.edu/apalkov/lecture2211_3.pdf · 2009. 8. 21. · Motion along a straight line 1 s 2 s 3 s 4 s Can be illustrated by position-versus-time

Position graph

x1 sec 2 sec 3 sec 4 sec

xvt

Δ=Δ

t(s)1 2 3 4

vVelocity is the same –zero acceleration( ) zero acceleration

0avgvat

Δ= =Δ

Straight line – uniform motion – the same velocity

3

Velocity is the slope

Page 4: Kinematics: The Mathematics of Motionof Motionphysics.gsu.edu/apalkov/lecture2211_3.pdf · 2009. 8. 21. · Motion along a straight line 1 s 2 s 3 s 4 s Can be illustrated by position-versus-time

Position graph: uniform motion

x

0xvt

Δ= =Δ

Motions in opposite directions 0v >

0v <

t(s)

4

Page 5: Kinematics: The Mathematics of Motionof Motionphysics.gsu.edu/apalkov/lecture2211_3.pdf · 2009. 8. 21. · Motion along a straight line 1 s 2 s 3 s 4 s Can be illustrated by position-versus-time

Uniform motion: motion with constant velocity

xΔ 0

0

tx xxvt t t

−Δ= =Δ −

0x 0 0( )tx x v t t= + −

t0tv

5t0t

Page 6: Kinematics: The Mathematics of Motionof Motionphysics.gsu.edu/apalkov/lecture2211_3.pdf · 2009. 8. 21. · Motion along a straight line 1 s 2 s 3 s 4 s Can be illustrated by position-versus-time

Uniform motion: application 0 0( )tx x v t t= + −

Example:

x 2 2 mvs

=1 5x m= 2 1x m=

Find andintx intt0 2t s=

intx 1 1 mvs

=s int int

1x

2xt t0t intt

int 1 1 int 0 int int( ) 5 2 3x x v t t t t= + − = + − = +

int 2 2 int 0 int int( ) 1 2 4 3 2x x v t t t t= + − = + − = − +

int int3 3 2t t+ = − + int 6t s=

6

int int int

int int3 3 6 9x t m= + = + =

Page 7: Kinematics: The Mathematics of Motionof Motionphysics.gsu.edu/apalkov/lecture2211_3.pdf · 2009. 8. 21. · Motion along a straight line 1 s 2 s 3 s 4 s Can be illustrated by position-versus-time

Position graph

7

Page 8: Kinematics: The Mathematics of Motionof Motionphysics.gsu.edu/apalkov/lecture2211_3.pdf · 2009. 8. 21. · Motion along a straight line 1 s 2 s 3 s 4 s Can be illustrated by position-versus-time

li ti realisticnon-realistic realistic

8

Page 9: Kinematics: The Mathematics of Motionof Motionphysics.gsu.edu/apalkov/lecture2211_3.pdf · 2009. 8. 21. · Motion along a straight line 1 s 2 s 3 s 4 s Can be illustrated by position-versus-time

Instantaneous velocity

Very small tΔ

Instantaneous velocity:

x

xvt

Δ=Δ

xΔtΔ

Instantaneous velocity:

If dependence is given, then ( )x t

( )x dx tvt dt

Δ= =Δ

- derivative

Instantaneous velocity - slope Example:4( ) 5x t t= 3( ) 20dx tv t

dt= =

9

dt

( ) 5sin( )x t t= ( ) 5cos( )dx tv tdt

= =

Page 10: Kinematics: The Mathematics of Motionof Motionphysics.gsu.edu/apalkov/lecture2211_3.pdf · 2009. 8. 21. · Motion along a straight line 1 s 2 s 3 s 4 s Can be illustrated by position-versus-time

Finding position from velocity

( )dx tvdt

= ( ) ( )x t v t dt= ∫

10

Page 11: Kinematics: The Mathematics of Motionof Motionphysics.gsu.edu/apalkov/lecture2211_3.pdf · 2009. 8. 21. · Motion along a straight line 1 s 2 s 3 s 4 s Can be illustrated by position-versus-time

v

2

2 1 2 1 ( )t

t

x x x v t dt− = − = ∫1( )x 2( )x

1t

t1t 2t

The displacement is the area, displacement is positive

v2

2 1 2 1 ( ) 0t

x x x v t dt− = − = >∫v

1t 2t t Displacement is negative

1

2 1 2 1t∫

( ) 0v t >

1 2 Displacement is negative2

1

2 1 2 1 ( ) 0t

t

x x x v t dt− = − = <∫

111( )x 2( )x ( ) 0v t <

Page 12: Kinematics: The Mathematics of Motionof Motionphysics.gsu.edu/apalkov/lecture2211_3.pdf · 2009. 8. 21. · Motion along a straight line 1 s 2 s 3 s 4 s Can be illustrated by position-versus-time

Example:

Fi d th t di l tC D

Find the net displacement

A B

1( ) 2 2 22

Bt

A B B Ax x x v t dt m− = − = = − = −∫ i2

At∫

1( ) 2 2 22

Ct

B C C Bx x x v t dt m− = − = = =∫ iarea

2Bt∫

( ) 2 (10 4) 12Dt

C D D Ct

x x x v t dt m− = − = = − =∫ i

12

Ct

2 2 12 12A D D A D C C B B A C D B C A Bx x x x x x x x x x x x

m− − − −= − = − + − + − = + +

= − + + =

Page 13: Kinematics: The Mathematics of Motionof Motionphysics.gsu.edu/apalkov/lecture2211_3.pdf · 2009. 8. 21. · Motion along a straight line 1 s 2 s 3 s 4 s Can be illustrated by position-versus-time

Velocity is the slope

x A C

dsvdt

=B

t0Av < 0Cv >

A B Cv v v< <

13

Page 14: Kinematics: The Mathematics of Motionof Motionphysics.gsu.edu/apalkov/lecture2211_3.pdf · 2009. 8. 21. · Motion along a straight line 1 s 2 s 3 s 4 s Can be illustrated by position-versus-time

Velocity is the slope dsvdt

=

A l ti i th l

v dvat dt

Δ= =Δ

Acceleration is the slope

t dtΔ

14

Page 15: Kinematics: The Mathematics of Motionof Motionphysics.gsu.edu/apalkov/lecture2211_3.pdf · 2009. 8. 21. · Motion along a straight line 1 s 2 s 3 s 4 s Can be illustrated by position-versus-time

Motion with constant acceleration

Motion with constant velocity:

0tx xxv−Δ

= = ( )x x v t t= + −0

vt t t

= =Δ − 0 0( )tx x v t t= +

Motion with constant acceleration:

0

0

tv vvat t t

−Δ= =Δ − 0 0( )tv v a t t= + −

tt

dxv

dt=

?tx =

0 0

20 0 0 0 0 0 0 0

1( ( )) ( ) ( )2

t t

t tt t

x x v dt x v a t t dt x v t t a t t= + = + + − = + − + −∫ ∫

15

Page 16: Kinematics: The Mathematics of Motionof Motionphysics.gsu.edu/apalkov/lecture2211_3.pdf · 2009. 8. 21. · Motion along a straight line 1 s 2 s 3 s 4 s Can be illustrated by position-versus-time

Motion with constant velocity or constant acceleration

Motion with constant velocity: 0 0( )tx x v t t= + −

21

Motion with constant acceleration:0 0( )tv v a t t= + −

20 0 0 0

1( ) ( )2tx x v t t a t t= + − + −

Useful relation:0( ) tv v

t t− 0

0( ) tt ta

− = 20 0

0 0( )1

2t t

tv v v v

x x va a− −

= + +

thenthen

2 20 02 ( )t tv v a x x− = −

16

Page 17: Kinematics: The Mathematics of Motionof Motionphysics.gsu.edu/apalkov/lecture2211_3.pdf · 2009. 8. 21. · Motion along a straight line 1 s 2 s 3 s 4 s Can be illustrated by position-versus-time

Motion with constant velocity or constant acceleration0t =0 0t =

Motion with constant velocity: 0tx x v t= +

Motion with constant acceleration:0tv v a t= +

20 0

12tx x v t a t= + +

2 20 02 ( )t tv v a x x− = −

17

Page 18: Kinematics: The Mathematics of Motionof Motionphysics.gsu.edu/apalkov/lecture2211_3.pdf · 2009. 8. 21. · Motion along a straight line 1 s 2 s 3 s 4 s Can be illustrated by position-versus-time

Free fall motion - motion with constant acceleration

29.8 ma gs

= − = −y

constantg =

0tv v g t= −

2 2 2 ( )

21y y v t g t= +

2 20 02 ( )t tv v g y y− = − −

0 0 2ty y v t g t= + −

18

Page 19: Kinematics: The Mathematics of Motionof Motionphysics.gsu.edu/apalkov/lecture2211_3.pdf · 2009. 8. 21. · Motion along a straight line 1 s 2 s 3 s 4 s Can be illustrated by position-versus-time

Free fall motion - motion with constant acceleration

m

0finalv = 0tv v g t= −2 2

0 02 ( )t tv v g y y− = − −29.8 mg

s=

20 0

12ty y v t g t= + −

0

0

2 /0

v m sy=

=

2 9.8tv t= −At final point:

0v 0 2 9 8 t=

22 4.9ty t t= −

2 22 2 9.8t tv y− = − × ×0finalv = 0 2 9.8 ft= −

22 2 9.8 fy− = − × ×

19

2 4.9ty t t22 4.9f f fy t t= −