Download - Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

Transcript
Page 1: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

Institute of Astronomy,Radio Astronomy and Plasma Physics GroupEidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology, Zürich

Flare Electron Acceleration

Arnold Benz

Page 2: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

1. RHESSI Observations

Spectral evolution of flares

Page 3: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

thermal

non-thermal

RHESSItwo component fits:T, EMγ, F35

Page 4: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

Grigis & B.

flux

spectral index

Page 5: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

P. Grigis

Page 6: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.
Page 7: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

P. Grigis

Page 8: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

Battaglia et al. 2005

Page 9: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

Δ

< C2

> C2

ΔΔ●

Battaglia & B., 2005

Page 10: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

FHXR ─ γ Relation

1. "Pivot" point at about 9 ± 3 keV (soft-hard-soft)

2. Consistent with constant acceleration rate above threshold energy (13.9 keV)

3. Consistent with constant total power in particles above threshold energy (13.6 keV)

4. Consistent with stochastic acceleration beyond 18.1 keV

5. Inconsistent with pure "statistical flare" scenario

Page 11: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

Approximation for d << dc:

f(E) fo E-

fo (WL) 7/8 anti-

(WL) -1/2 correlation !

E1/2 f(E) f(E)

t + z E E E1/2 + t

(

D Ecoll

Diffusion by stochastic wave turbulence

(

( ((f(E) =

Assume steady state => Bessel equation

Solution: f(E) = C E -d + 1/2 Kd(E)

1/L aW

}Benz 1977

(

Page 12: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

Approximate further, eliminate WL and get for observed HXR flux:

FHXR C(1/2 + 1/2[1 +(+3/2)]1/2)2

[( - 1)(+3/2)]2

log FHXR

Brown & Loran, 1985

Page 13: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

2. RHESSI –Phoenix Observations

Page 14: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

0

10

20

30

40

50

60

70

80

Type III

Pulsations

Narrowband spikes

Diffuse cont.

Type IV

Type I

Hf broadband(gyro-synchrotron)

befo

re

rise pe

ak deca

y

afte

r

radio emission in 201 X-ray flares >C5.0

Page 15: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

Meter-Decimeter Radio Patterns

of X-ray selected flares

A Standard 129

B Just IIIm 8

C Afterglows 20 D No Radio 34 E Type I 10

Page 16: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

Standard

Page 17: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

M1.1Standard

25 – 50 keV

50 – 100 keV

irreg.pulsation

Page 18: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

Standard

reverseddrift IIIm

25 – 50 keV

50 – 100 keV

M1.1

Page 19: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

Standardirregularpulsation

decimetricnarrowband spikes

50 – 100 keV

25 – 50 keV

M1.1

Page 20: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

C7.7Standard

IIIdmirreg.pulsation

hf continuum

6 – 12 keV

12 – 25 keV

25 – 50 keV

Page 21: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

Just IIIm

Page 22: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

C7.9Just IIIm

6 – 12 keV

12 – 25 keV

25 – 50 keV

Page 23: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

Just IIIm

6 – 12 keV

12 – 25 keV

25 – 50 keV

C7.9

Page 24: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

Type IV and DCIM "Afterglows"

Page 25: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

type IV

gyro-synchrotron

Phoenix-2Radio spectrum

GOESClassX17

gyro-synchrotron

drifting structure

decimetric pulsations

Page 26: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

Phoenix-2Radio spectrum decimetric

pulsations

decimetric patch

Page 27: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

Type IV

DCIM

Page 28: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

M2.3

12 – 25 keV

6 – 12 keV

3 – 6 keV

Afterglows

narrowband spikes

IIIm andhf continuum

Page 29: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

Afterglows

3 – 6 keV

6 – 12 keV

12 – 25 keV

M2.3

regular dmpulsation

patch

Page 30: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

100 – 300 keV regular dmpulsations

Afterglows

6 – 12 keV

12 – 25 keV

25 – 50 keV

50 – 100 keV

M5.0

Page 31: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

No Radio

Page 32: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

radio-quiet flare

GOES class M1.0

6 – 12 keV

12 – 25 keV25 – 50 keV

50 – 100 keV

Page 33: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

no-radio flares

Flares C5.0 – C9.9 22 %

Flares > M1.0 12 %

All flares > C5.0 17 %

Two possible interpretations:

1. Small flares have less radio emission (sensitivity effect)

2. Large flare have more associated processes

("large flare syndrom", suggesting indirect connection)

Page 34: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

2

1

A

B

C

Standard: reconnection at 1 and 2Just IIIm: reconnection at 2Type IV: reconnection at 2 after 1Noise storm: reconnection at 2Radio-quiet:: reconnection at 1

Page 35: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

2

1

A

Standard: reconnection at 1 and 2Just IIIm: reconnection at 2Type IV: reconnection at 2 after 1Noise storm: reconnection at 2Radio-quiet:: reconnection at 1

Page 36: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

Summary on HXR - Radio Correlations

• Hard X-ray and radio emissions of flares are relatively independent.

• 17% of >C5.0 flares have no coherent radio emissions (22% if type I excluded).

• Many type IIIm have no hard X-ray emission.

• Correlation is often poor, suggesting multiple acceleration sites for "standard flare pattern" and "afterglows".

• Multiple reconnection may also interprete "big flare syndrom".

Page 37: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

Conclusions1. Where are electrons accelerated?

- often in more than one site (independent signatures)

- most IIIm (and SEDs) have only very weak hard X-ray

emission (possibly high-coronal flares).

2. How are they accelerated? - Violent acceleration processes are excluded. - If acceleration signature, why not close X-ray correlation? - Radio type IV and DCIM indicate processes long after flare

3. If loop-top, why this large number? - loop-top may be secondary acceleration site

Page 38: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

Observational Constraints on Flare Particle Acceleration

1. Absence of radio emission in 17% of flares does not support violent acceleration processes, such as single shocks or single DC fields.

2. Consistent with heating processes (bulk energization).

3. RHESSI observations show that flares start with soft non-thermal spectrum. In the beginning it is difficult to distinguish from a thermal spectrum (γ ≈ 8).

4. The spectrum of non-thermal electrons gets harder with flux of non- thermal electrons both in time during one flare, as well as with peak flare flux (Battaglia et al. 2005).

5. The evidence supports stochastic bulk energization to hot thermal distribution and, if driven enough with power-law wings.

Page 39: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.
Page 40: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.
Page 41: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

IIIm

irregular dmpulsation

narrowbandspikes

reversed driftIIIdm

Standard

6 – 12 keV

12 – 25 keV

25 - 50 keV

C9.0

Page 42: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

6 – 12 keV

II

IIIdm

HF cont.

Standard

12 – 25 keV

25 – 50 keV

X1.6

IIIdmIIIdm

Page 43: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

OVSA

Standard Irregular pulsationC9.7

Page 44: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

Standard

6 – 12 keV

12 – 25 keV

C6.5

irreg.pulsation

Page 45: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

Christe & Krucker

StandardRHESSI

Page 46: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

Just IIIm

6 – 12 keV

12 – 25 keV

C8.0

Page 47: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

Type I

12 – 25 keV

6 – 12 keV

C7.3

Page 48: Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.

Type I