Download - Fourier Series and Transform

Transcript
Page 1: Fourier Series and Transform

1

Fourier Series and Fourier Transform

Page 2: Fourier Series and Transform

2

What is a Fourier series ?

0

Let ( ) be a PERIODIC function of period 2 , and ( ) satisfies some"commonly practical" conditions, then, ( ) can be represented by atrigonometric series:

( ) ( cosn

f x f xf x

f x a a nx

π

= + +1

0

0

sin )

where 1 ( ) and

21 ( ) cos , 1, 2,3,...and

1 ( )sin , 1, 2,3,...

and the , ' and ' are the so-called Four

nn

n

n

n n

b nx

a f x dx

a f x nxdx n

b f x nxdx n

a a s b s

π

π

π

π

π

π

π

π

π

=

=

= =

= =

∫ier coefficients.

Page 3: Fourier Series and Transform

3

Derivation of the Fourier Coefficients

0

Let ( ) be a PERIODIC function of period 2 , and ( ) satisfies some"commonly practical" conditions, then, ( ) can be represented by atrigonometric series:

( ) ( cosn

f x f xf x

f x a a nx

π

= + +1

0- - - -1

0-

sin ).................(*)

Note that if we integrate both sides of (*) from to , we have:

( ) ( cos sin )

sin ( ) 2 (

nn

n nn

n

b nx

x x

f x dx a dx a nxdx b nxdx

nxf x dx a a

π π π π

π π π π

π

π

π π

π

=

=

= − =

= + +

⇒ = +

∑∫ ∫ ∫ ∫

∫ 01

0 -

cos ) 2

1 ( )2

nn

nxb an n

a f x dx

π π

π π

π

π

π

π

= − −

−⎤ ⎤+ =⎥ ⎥⎦ ⎦

⇒ =

Page 4: Fourier Series and Transform

4

Derivation of the Fourier Coefficients (cont’d)0

1

0- -

Now that ( ) ( cos sin ).................(*)

If we multiply both sides of (*) with cos and then integrate both sides from to , we have:

( ) cos cos ( cos c

n nn

n

f x a a nx b nx

mxx x

f x mxdx a mxdx a nxπ π

π π

π π

=

= + +

= − =

= +

∫ ∫ - -1

-

- - -

- -

os sin cos )....(**)

But: cos = 0 and

0 for 1 1cos cos cos( ) cos( ) and for 2 2

1 1sin cos sin( ) sin(2 2

nn

mxdx b nx mxdx

mxdx

n mnx mxdx n m xdx n m xdx

n m

nx mxdx n m xdx n

π π

π π

π

π

π π π

π π π

π π

π π

π

=

+

≠⎧= + + − = ⎨ =⎩

= + +

∑ ∫ ∫

∫ ∫ ∫

∫ ∫ -

0-

-

) 0

Thus, (**)

( ) cos 0 0

1 = ( ) cos , 1, 2,...

m

m

m xdx

f x mxdx a a

a f x mxdx m

π

π

π

π

π

π

π

π

− =

⇒ = ⋅ + +

⇒ =

Page 5: Fourier Series and Transform

5

Derivation of the Fourier Coefficients (cont’d)0

1

0- -

Now that ( ) ( cos sin ).................(*)

If we multiply both sides of (*) with sin and then integrate both sides from to , we have:

( )sin sin ( cos s

n nn

n

f x a a nx b nx

mxx x

f x mxdx a mxdx a nxπ π

π π

π π

=

= + +

= − =

= +

∫ ∫ - -1

-

- - -

- - -

in sin sin )....(**)

But: sin = 0 and

1 1cos sin sin( ) sin( ) 0 and2 2

0 for 1 1sin sin cos( ) cos( )2 2

nn

mxdx b nx mxdx

mxdx

nx mxdx m n xdx m n xdx

n mnx mxdx n m xdx n m xdx

π π

π π

π

π

π π π

π π π

π π π

π π π π

=

+

= + + − =

≠= − − + =

∑ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

0-

-

and for

Thus, (**)

( ) sin 0 0

1 = ( )sin , 1, 2,...

m

m

n m

f x mxdx a b

b f x mxdx m

π

π

π

π

π

π

⎧⎨ =⎩

⇒ = ⋅ + +

⇒ =

Page 6: Fourier Series and Transform

6

Example of Fourier Series

01

0 -

if 0Consider ( ) and ( 2 ) ( ).

if 0Consider the Fourier series representation of

( ) ( cos sin ).................(*)

1 1( ) [2 2

n nn

k xf x f x f x

k x

f x a a nx b nx

a f x dx kdπ

π

ππ

π

π π

=

− − < <⎧= + =⎨ < <⎩

= + +

= = −

∫0

- 0

0

- - 0

0

- - 0

0

0

] ( ) 02

1 1( )cos [ cos cos ] 0

1 1( )sin [ sin sin ]

cos cos 2 ( ) [1 ( 1) ( 1) 1)] [1 ( 1) ]

Theref

n

n

n n n

kx kdx

a f x nxdx k nxdx k nxdx

b f x nxdx k nxdx k nxdx

k nx nx k kn n n n

π

π

π π

π π

π π

π π

π

π

π ππ

π π

π π

π π π−

+ = − =

= = − + =

= = − +

⎤ ⎤= − = − − − − + = − −⎥ ⎥⎦ ⎦

∫ ∫

∫ ∫ ∫

∫ ∫ ∫

0 for 2, 4,6,...ore, 4 for 1,3,5,...

4 1 1Thus, ( ) (sin sin 3 sin 5 ...)3 5

n

nb k n

nkf x x x x

π

π

=⎧⎪= ⎨

=⎪⎩

= + + +

Page 7: Fourier Series and Transform

7

Fourier series for Odd functions

01

Let ( ) be a PERIODIC function of period 2 , and ( ) satisfies some"commonly practical" conditions, then, ( ) can be represented by a

Fourier series: ( ) ( cos sin )

If ( ) is

n nn

f x f xf x

f x a a nx b nx

f x

π

=

= + +∑

0 * 0

0 0 * 0

* *

* 0 0 * 0 0

an odd function, i.e. ( ) ( ) for all , then:1 1 1( ) [ ( ) ( ) ] [ ( *) ( *) ( ) ]

2 2 21 1[ ( *) * ( ) ] [ ( *) * ( ) ] 0

2 2A

x

x

x x

x x

f x f x x

a f x dx f x dx f x dx f x d x f x dx

f x dx f x dx f x dx f x dx

π π π

π π π

π π π π

π π π

π π

=

− − =

= =

= =

− = −

= = + = − − +

= − + = − + =

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

0

0

* 0

* 0

* 0

* 0

lso, 1 1( ) cos [ ( ) cos ( ) cos ]

1 [ ( *)cos( *) ( *) ( ) cos ]

1 [ ( *)cos( *) * ( ) cos ] 0 for 1, 2,3,...

Thus, if ( ) is an od

n

x

x

x

x

a f x nxdx f x nxdx f x nxdx

f x nx d x f x nxdx

f x nx dx f x nxdx n

f x

π π

π π

π

π

π

π

π π

π

π

− −

=

=

=

=

= = +

= − − − +

= − − + = =

∫ ∫ ∫

∫ ∫

∫ ∫

1

d periodic function with period of 2 , then

( ) sinnn

f x b nx

π∞

=

=∑

Page 8: Fourier Series and Transform

8

Fourier series for Even functions

01

Let ( ) be a PERIODIC function of period 2 , and ( ) satisfies some"commonly practical" conditions, then, ( ) can be represented by a

Fourier series: ( ) ( cos sin )

If ( ) is

n nn

f x f xf x

f x a a nx b nx

f x

π

=

= + +∑

0

0

* 0

* 0

* 0

an even function, i.e. ( ) ( ) for all , then:1 1( )sin [ ( )sin ( )sin ]

1 [ ( *)sin( *) ( *) ( )sin ]

1 [ ( *)( 1)sin( *) * ( )cos ]

n

x

x

x

f x f x x

b f x nxdx f x nxdx f x nxdx

f x nx d x f x nxdx

f x nx dx f x nxdx

π π

π π

π

π

π

π

π π

π

π

− −

=

=

=

− =

= = +

= − − − +

= − − +

∫ ∫ ∫

∫ ∫

∫* 0

01

0 for 1, 2,3,...

Thus, if ( ) is an even periodic function with period of 2 , then

( ) cos

x

nn

n

f x

f x a a nx

π

=

=

= =

= +

Page 9: Fourier Series and Transform

9

Representation by a Fourier series

Theorem:If a periodic function ( ) with period 2 is piecewise continuousin the interval , and has a left-hand derivative and right-hand derivative at each point of that interval, then the Four

f xx

ππ π− ≤ ≤

0

0

ier series (*) of ( ) is convergent and its sum is ( ), except at a point at which ( ) is discontinuous and thesum of the series is the average of the left- and right-hand limitsof ( ) at .

f x f xx f x

f x x

Page 10: Fourier Series and Transform

10

Functions of any period p=2L

0

Let ( ) be a PERIODIC function of period 2 , and ( ) satisfies some"commonly practical" conditions, then, ( ) has a Fourier series given by:

( ) ( cos sin )..n n

f x L f xf x

n nf x a a x b xL Lπ π

= + +1

0

.................(***)

where 1 ( ) and

21 ( ) cos , 1, 2,3,...and

1 ( )sin , 1, 2,3,...

Proof:

Substitute

n

L

L

L

n L

L

n L

a f x dxL

n xa f x dx nL L

n xb f x dx nL L

x Lvv xL

π

π

ππ

=

=

= =

= =

= ⇔ =

, then corresponds to

thus, let ( ) = ( ). Then: ( 2 )( 2 ) ( )= ( +2L)= ( 2 ) ( ) ( )

( ) has a period of 2 .We can therefore expand ( ) using the previous results of (*).

x L v

g v f xL v Lvg v f f f x L f x g v

g vg v

π

πππ π

π

= ± = ±

++ = + = =

Page 11: Fourier Series and Transform

11

Functions of any period p=2L (Example)

0

Let ( ) be a PERIODIC function of period 2 , and ( ) satisfies some"commonly practical" conditions, then, ( ) has a Fourier series given by:

( ) ( cos sin )..n n

f x L f xf x

n nf x a a x b xL Lπ π

= + +1

0

.................(***)

1 1 1where ( ) , ( ) cos , ( )sin2

0 if 2 1Find the Fourier series for ( ) if 1 1 2 4 2

0 if 1 2Obs

n

L L L

n nL L L

n x n xa f x dx a f x dx b f x dxL L L L L

xf x k x period L L

x

π π

=

− − −= = =

− < < −⎧⎪= − < < = = ⇒ =⎨⎪ < <⎩

∫ ∫ ∫

2 1

0 2 1

1

1

erve that ( ) is an even function ' 01 1 1( ) ( )

2 4 4 2

0 if is even1 1 2 2( )cos cos sin if 1,5,9,...

2 2 22 if 3,7,11,...

Th

n

L

L

L

n L

f x b ska f x dx f x dx kdx

L

nn x n x k n ka f x dx k dx n

L L n nk n

n

π π ππ π

π

− − −

− −

⇒ =

= = = =

⎧⎪⎪⎪= = = = =⎨⎪−⎪ =⎪⎩

∫ ∫ ∫

∫ ∫

2 1 3 1 5 1 7us, ( ) (cos cos cos cos ...)2 2 3 2 5 2 7 2k kf x x x x xπ π π π

π= + − + − +

Page 12: Fourier Series and Transform

12

Half-range Expansion

1 1 1

1

Consider a function ( ) which is only defined for the interval0 , then we can construct

( ) for 0 ( ) and ( 2 ) ( )

( ) for 0Then, ( ) is a periodic, ODD, function of per

f xx L

f x x Lf x f x L f x

f x L xf x

≤ ≤

≤ ≤⎧= + =⎨− − ≤ ≤⎩

1

1 01 1

1

iod 2 , and thus, we can obtainthe Fourier series expansion for ( ), i.e.

( ) ( cos sin ) sin ..............(**)

1where ( )sin ,

n n nn n

n

Lf x

n n nf x a a x b x b xL L L

n xb f x dxL L

π π π

π

∞ ∞

= =

= + + =

=

∑ ∑

0

1 10

* 0

1* 0

1 0

1, 2,3,...

1Also that [ ( )sin ( )sin ]

1 ( *) [ ( *)sin ( *) ( )sin ]

1 ( *) [ ( *)sin ( *) ( )sin ]

L

L

L

n L

x L

x L

L

n

n x n xb f x dx f x dxL L L

n x n xf x d x f x dxL L L

n x n xf x d x f x dxL L L

π π

π π

π π

=

=

=

= +

−= − − +

= − +

∫ ∫

∫ ∫* 0

*

*

1* 0 0

0

1

1 ( *) = [ ( *)sin ( *) ( )sin ]

2 = ( )sin

Once ' are determined, (**) can be used to represent ( ) for 0because ( ) (

x

x L

x L L

x

L

n

n x n xf x d x f x dxL L L

n xf x dxL L

b s f x x Lf x f

π π

π

=

=

=

=+

≤ ≤=

∫ ∫

∫ ∫

) for 0 .x x L= ≤ ≤

Page 13: Fourier Series and Transform

13

Half-range Expansion (cont’d)

2 2 2

2

Alternatively, for the function ( ) which is only defined for the interval0 , we can construct

( ) for 0 ( ) and ( 2 ) ( )

( ) for 0Then, ( ) is a periodic, EVEN, functio

f xx L

f x x Lf x f x L f x

f x L xf x

≤ ≤

≤ ≤⎧= + =⎨ − − ≤ ≤⎩

2

2 0 01 1

n of period 2 , and thus, we can obtainthe Fourier series expansion for ( ), i.e.

( ) ( cos sin ) cos ..............(**)

where

n n nn n

Lf x

n n nf x a a x b x a a xL L Lπ π π∞ ∞

= =

= + + = +∑ ∑

0 2 0

2 0

1 1 ( ) ( )21 2 ( ) cos ( ) cos 1, 2,3,...

Once the ' are determined, (**) can be used to represent ( ) for 0because ( )

L L

L

L L

n L

n

a f x dx f x dxL L

n x n xa f x dx f x dx nL L L L

a s f x x Lf x f

π π−

= =

= = =

≤ ≤=

∫ ∫

∫ ∫

2 ( ) for 0 .x x L= ≤ ≤

Page 14: Fourier Series and Transform

14

Complex Fourier series

01

0

Consider the Fourier series representation for a PERIODIC function ( ) of period 2 :

( ) ( cos sin )....................(*)

1 1where ( ) , ( ) c2

n nn

n

f x

f x a a nx b nx

a f x dx a f xπ

π

π

π π

=

= + +

= =

∫1os , ( )sin

It can be shown that ( ) can also be represented in the following alternative form:

1 ( ) where ( )2

n

inx inxn n

n

nxdx b f x nxdx

f x

f x c e c f x e dx

π π

π π

π

π

π

π

− −

∞−

−=−∞

=

= =

∫ ∫

∑ ∫

Page 15: Fourier Series and Transform

15

Complex Fourier series (cont’d)0

1

0

Proof: Consider ( ) ( cos sin )....................(*)

1 1 1where ( ) , ( ) cos , ( )sin2

Recall that cos sin ; cos sin1cos2

n nn

n n

inx inx

f x a a nx b nx

a f x dx a f x nxdx b f x nxdx

e nx i nx e nx i nx

nx

π π π

π π ππ π π

=

− − −

= + +

= = =

= + = −

⇒ =

∫ ∫ ∫

( ) ( ) ( )

( ) ( )

0 0

1 and sin2 2

1 1( cos sin ) = ( ) ( )2 2 2 2

1 1Define = ; and = ( ) and = ( ); (*) becomes:2 2

inx inx inx inx inx inx

inx inx inx inx inx inxn nn n n n n n

n n n n n n

ie e nx e e e ei

a ba nx b nx e e i e e a ib e a ib e

c a c a ib k a ib

− − −

− − −

−+ = − = −

⇒ + = + − − − + +

− +

01

( ) ( )...................(**)

1 1 1Also that = ( ) ( ( ) cos ( )sin ) ( )2 2 2

1 1 1and = ( ) ( ( ) cos ( )sin )2 2 2

inx inxn n

n

inxn n n

n n n

f x c c e k e

c a ib f x nx i f x nx dx f x e dx

k a ib f x nx i f x nx dx

π π

π π

π

π

π π

π π

∞−

=

− −

= + +

− = − ⋅ =

+ = + ⋅ =

∫ ∫

∫ ( )

Finally, by defining and substitute by in (**) to get:1 ( ) where ( ) , 0, 1, 2,...

2

inx

n n n n

inx inxn n

n

f x e dx

c k k c

f x c e c f x e dx n

π

π

π

ππ

− −

∞−

−=−∞

=

= = = ± ±

∑ ∫

Page 16: Fourier Series and Transform

16

Complex Fourier series (cont’d)

For a periodic function ( ) of period =2 ,1 ( ) where ( ) , 0, 1, 2,...

2is the so-called complex form of Fourier series or just complex Fourier ser

inx inxn n

n

f x

f x c e c f x e dx nπ

π

π

π

∞−

−=−∞

= = = ± ±∑ ∫ies

For a periodic function ( ) with period = 2 , the corresponding complexFourier series is given by:

( )

1where ( ) , 0,2

ni xL

nn

ni xLL

n L

f x L

f x c e

c f x e dx nL

π

π

=−∞

=

= =

∫ 1, 2,...± ±

Page 17: Fourier Series and Transform

17

Complex Fourier series: An Example

(1

Consider a periodic function ( ) of period =2 , where ( ) for 1Let ( ) where ( ) , 0, 1, 2,...

2then

1 1 1( )2 2 2

x

inx inxn n

n

inx x inxn

f x f x e x

f x c e c f x e dx n

ec f x e dx e e dx

π

π

π π

π π

π π π

π

π π π

∞−

−=−∞

−− −

− −

= − < <

= = = ± ±

= = =

∑ ∫

∫ ∫)

2

2 2

1 ( )1 2 1

And since cos sin cos ( 1)1 1 1and , and sinh

1 (1 )(1 ) 1 2( 1) sinh (1 ) sinh ( 1) (1 )( ) ,

(1 ) (1 )

in x inx

in n

n nx inx

nn

e e ein in

e n n nin in e e

in in in nin inc f x e e

n n

π π π

π

π

π π

π

π π π

π

π ππ π

− −

±

=−∞

⎤ −=⎥− −⎦

= ± = = −

+ + −= = =

− − + +

− + − +⇒ = ⇒ = =

+ +∑

Furthermore, (1 ) (1 )(cos sin ) (cos sin ) ( cos sin )and (1 ) (1 )(cos sin ) (cos sin ) ( cos sin )

(1 ) (1 ) 2(cos sin )

Thus,

inx

inx

inx inx

x

in e in nx i nx nx n nx i n nx nxin e in nx i nx nx n nx i n nx nx

in e in e nx n nx

f

π π

− < <

+ = + + = − + +

− = − − = − − +

⇒ + + − = −

21

sinh ( 1) 2(cos sin )( ) [1 ], (1 )

nx

n

nx n nxx e xn

π π ππ

=

− −= = + − < <

+∑

Page 18: Fourier Series and Transform

18

Representation for Aperiodic function: Fourier TransformConsider an APERIODIC function ( ). Define ( ) be the Fourier Transform of ( ) as follows:

( ) ( )

It can be shown that: 1 ( ) (

2

i x

f xF i f x

F i f x e dx

f x F i

ω

ω

ω

π

∞ −

−∞=

=

{ }

{ }{ }1

1

)

Let's define as the Fourier transform operator, then

( ) ( ) = ( )

also define as the Inverse Fourier transform operator, then

( )

i x

i x

e d

F i f x f x e dx

f x

ω

ω

ω ω

ω

−∞

∞ −

−∞

=

=

F

F

F

F { } 1( ) ( ) 2

i xF i F i e dωω ω ωπ

−∞= ∫

Page 19: Fourier Series and Transform

19

Representation for Aperiodic function: Fourier TransformConsider an APERIODIC function ( ) defined for the interval ,

and ( ) 0 otherwise. Define a periodic function ( ) of period =2 , i.e. ( ) ( 2 )

and ( ) ( ) for

Then, the Com

f x L x L

f x f x L f x f x L

f x f x L x L

− ≤ ≤

= = +

= − < <

plex Fourier series for ( ) is given by:

1 1( ) .........(1) where ( ) ( ) ......(2)2 2

Define ( ) ( ) ......................(3)

Sub.

n n ni x i x i xLL L L

n n Ln

i x

f x

f x c e c f x e dx f x e dxL L

F i f x e dx

π π π

ωω

∞ − −∞

− −∞=−∞

∞ −

−∞

= = =

=

∑ ∫ ∫

0 0

0 0

0 00

(3) into (2) 2 ( ) ( ) where = ,

( ) ( ) = ( ) .......(4)2 2

As , ( ) approaches ( ) and consequently (4) becomes :

n

in x in x

n n

nL c F i F inL L

F inf x e F in eL

L f x f x

f

ω ω

π πω ω

ω ω ωπ

∞ ∞

=−∞ =−∞

⇒ ⋅ = =

⇒ =

→∞

∑ ∑

000

0 0 0

( ) ( ) ...............(5)2

Also, since = , 0 as , let , and

thus, the summation in (5) becomes an integral:1 ( ) ( ) ......

2

in x

n

n

i x

x F in e

L nL

f x F i e d

ω

ω

ω ωπ

πω ω ω ω ω ω

ω ωπ

=−∞

−∞

=

→ →∞ = ∆ =

⇒ =

∫ .........(6)

From (3), ( ) is the so-called Fourier transform of a function ( ).F i f xω

Page 20: Fourier Series and Transform

20

Fourier transform: An example

{ }0

, for 0Find the Fourier transform of ( )

0 otherwise

( ) ( ) ( ) = ( 1) ( 1)

Note that ( ) is in general a complex-value function.

ai x i x i a i a

k x af x

k i kF i f x f x e dx ke dx e ei

F i

ω ω ω ωωω ω

ω

∞ − − − −

−∞

< <⎧= ⎨⎩

⋅= = = − = −

−∫ ∫F

Page 21: Fourier Series and Transform

21

Some useful Properties of Fourier transform

{ } { } { }

{ } { }

{ }

{ }

0

0

0

0

1. Linearity: ( ) ( ) [ ( ) ( )] ( ) ( )

2. Time-shifting: ( ) ( )

3. Frequency-shifting: ( ) ( ( ))

14. Time and Frequency Scaling: ( ) ( )

i x

i x

i x

af x bg x af x bg x e dx a f x b g x

f x x e f x

e f x F i

if ax Fa a

ω

ω

ω ω ω

ω

∞−

−∞

+ = + = +

− =

= −

=

∫F F F

F F

F

F

Page 22: Fourier Series and Transform

22

Some useful Properties of Fourier transform (cont’d)

{ } { }

{ } { }2

5. Differentiation in Time: If ( ) 0 as , then

'( ) '( ) ( ) ( ) ( ) ( )

and ''( ) ( )

16. Integration: ( *) * ( ) (0) (

i x i x i x

x

f x x

f x f x e dx f x e i f x e dx i f x

f x f x

f x dx F i Fi

ω ω ωω ω

ω

ω π δω

∞ ∞∞− − −

−∞−∞ −∞

−∞

→ →∞

⎤= = − − =⎦

= −

⎧ ⎫= +⎨ ⎬

⎩ ⎭

∫ ∫

F F

F F

F

{ }

)

( )7. Differentiation in Frequency: ( )

8. Convolution: Let the convolution * of functions and be defined by:

( ) ( * )( ) ( ) ( ) ( ) ( )

then:

dF ixf x id

f g f g

h x f g x f p g x p dp f x p g p dp

ω

ωω

∞ ∞

−∞ −∞

=

= = − = −∫ ∫

F

{ } { } { } ( * )( ) ( ) ( )f g x f x g x=F F F

Page 23: Fourier Series and Transform

23

Fourier Transform of Periodic functions

{ }

0

0

0

10

The concept of Fourier transform also applies to periodic functions as well. 1Consider ( ) 2 ( ) ( ) ( )

2

Thus, for ( ) 2 ( ), ( ) ( )

o

i xi x

in xn n

n n

F i f x F i e d e

F i c n f x F i c e

ωω

ω

ω πδ ω ω ω ωπ

ω πδ ω ω ω

−∞

∞ ∞−

=−∞ =−∞

= − ⇒ = =

= ⋅ − = =

∑ ∑F

00r 2 ( )................(*)

For any period function ( ), say of period = 2 , since we can express ( ) as

a Complex Fourier series: ( )

in xn n

n n

ni xL

n nn n

c e c n

f x L f x

f x c e c

ω

π

πδ ω ω∞ ∞

=−∞ =−∞

=−∞ =−∞

⎧ ⎫ = ⋅ −⎨ ⎬⎩ ⎭

= =

∑ ∑

F

0

0

0

0

where

From (*), the Fourier transform of this periodic function ( ) is given by:

( ) 2 ( )

where 's are the coefficients of

in x

in xn n

n n

n

eL

f x

F i c e c n

c

ω

ω

πω

ω πδ ω ω

∞ ∞

=−∞ =−∞

=

⎧ ⎫= = ⋅ −⎨ ⎬⎩ ⎭

∑ ∑F

the Complex Fourier series of ( ).f x