Download - Crystal Structure of the Trinuclear Titanium Complex TiF3(μ-Ph2PO2)3Ti(μ-Ph2PO2)3TiF3· 1.5CH3CN: Complete Substitution of Ph2PO2-Anions for the Fluorine Atoms in Titanium Tetrafluoride

Transcript

0012-5008/01/0002- $25.00 © 2001

åÄIä “Nauka

/Interperiodica”0058

Doklady Chemistry, Vol. 376, Nos. 4–6, 2001, pp. 58–62. Translated from Doklady Akademii Nauk, Vol. 376, No. 6, 2001, pp. 772–776.Original Russian Text Copyright © 2001 by Il’in, Nikiforov, Aleksandrov, Roesky, Buslaev.

Comparison of the structures of the adducts of tita-nium and zirconium tetrafluorides with DMSO with thecomposition

MF

4

(DMSO)

2

(M = Ti, Zr) reveals spe-cific features of the coordination behavior of titaniumand zirconium central ions. In the titanium complex,the central ion has the coordination number 6 and anoctahedral environment of four terminal fluoro ligandsand two oxygen atoms of the

cis

-arranged DMSO mol-ecules [1]. The zirconium adduct of the same composi-tion is a centrosymmetric dimer consisting of twoZr(DMSO)

2

F

3

moieties linked by two fluorine bridges.The coordination number of Zr atoms in the dimer is 7,and the coordination polyhedron is a pentagonal bipyr-amid in which two fluorine occupy the axial positions,and the equatorial plane is defined by one terminal andtwo bridging fluorine atoms and two oxygen atoms ofthe DMSO molecules [2, 3]. The reaction of

ZrF

4

withdiphenylphosphinic acid

Ph

2

POOH

(LH) in DMSOsolutions yields the trinuclear complex

ZrF

3

(

µ−

Ph

2

PO

2

)

3

Zr(

µ

-Ph

2

PO

2

)

3

ZrF

3

· 3DMSO [4]; ineach of the coordination cores, zirconium is six-coordi-nate, which is untypical of fluorine-containing zirco-nium compounds. In this paper, we report on the crystalstructure of the product of the titanium tetrafluoridereaction with diphenylphosphinic acid (LH). Acetoni-trile and dichloromethane were used as solvents. Theprocedures for preparing solutions and purifying thesolvents, as well as details of recording

19

F

NMR spec-tra, have been described elsewhere [1, 2]. The initialsolution of

TiF

4

in

CH

3

CN

concurrently contained alarge number of monomeric and oligomeric (with fluo-rine bridges) titanium complexes whose coordination

sphere consisted of fluoro ligands and a CH

3

CN mole-cule [5]. Introducing two moles of LH into an acetoni-trile solution of tetrafluoride resulted in a precipitate,which was poorly solved in acetonitrile and readily sol-uble in

CH

2

Cl

2

and

CHCl

3

. To obtain single crystals ofthe reaction product, 1.3 mol of LH per mole of tetraflu-oride was added to the initial solution containing 2.6 wt %Ti. The resulting solution was allowed to stand in a drynitrogen atmosphere over a period of 2 months, whichresulted in single crystals with dimensions of

2

×

3

×

2

mm. The structure of these crystals was determined byX-ray crystallography. The NMR spectra of the precipi-tate and single crystals showed a singlet at 219.1 ppm(

δ

(CCl

3

F)

= 0). The crystals of

H

120

F

12

O

24

P

12

Ti

6

·

3CH

3

CN

(

I

) are orthorhombic:

a

= 26.930(6) Å,

c

=35.190(9) Å,

V

= 22 102(9) Å

3

,

d

calc

= 1.463 g cm

–3

,

µ

=

0.525 mm

–1

,

Z

= 6, space group

R

. The structure wassolved by direct methods and refined by least-squarescalculation with the SHELXS86 [6] and SHELXL93[7] program packages in an anisotropic (isotropic forhydrogen atoms) approximation to

R

= 0.061 and

R

(

F

2

)

= 0.189 for 4746 reflections with

F

2

> 3

σ

(

I

)

atGOOF = 1.117. Intensity data were collected on anEnraf-Nonius CAD4 automated diffractometer(

λ

Mo

K

α

, graphite monochromator,

ω

scan mode,

2

θ

max

= 48°

. A total of 7700 reflections were measured;5118 of them were with

F

2

> 3

σ

(

I

)

). Table 1 presentsfinal atomic coordinates, and Table 2 lists bond lengthsand bond angles in

I

.

The structure of

I

is composed of two crystallo-graphically independent trinuclear complexes (TC)

TiF

3

(

µ

-Ph

2

PO

2

)

3

Ti(

µ

-Ph

2

PO

2

)

3

TiF

3

and solvation ace-tonitrile molecules combined by van der Waals interac-tions. The first TC (Fig. 1a) has crystallographic sym-metry

C

3

i

, and the 3 axis passes through the

Ti

1

and

Ti

2

atoms, the central

Ti

1

atom being in the special position3. The second TC (Fig. 1b) has crystallographic sym-metry

C

i

, and the coordinates of the

Ti

3

atom coincidewith the crystallographic center of symmetry.

3

CHEMISTRY

Crystal Structure of the Trinuclear Titanium Complex TiF

3

(

m

-Ph

2

PO

2

)

3

Ti(

m

-Ph

2

PO

2

)

3

TiF

3

· 1.5CH

3

CN: Complete Substitution of Ph

2

P Anions for the Fluorine Atoms in Titanium Tetrafluoride

E. G. Il’in*, G. B. Nikiforov*, G. G. Aleksandrov*, H. W. Roesky**,and Academician Yu. A. Buslaev*

Received October 12, 2000

O2–

* Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow, 117907 Russia** Institut für anorganische Chemie der Universität Göttingen, Tammanstrasse 4, D37074 Göttingen, Germany

DOKLADY CHEMISTRY Vol. 376 Nos. 4–6 2001

CRYSTAL STRUCTURE OF THE TRINUCLEAR TITANIUM COMPLEX 59

Table 1. Bond lengths d (Å) and angles ω (deg) in the structure of complex I

Distance d Distance d Angle ω Angle ω

Ti1–O1 1.933(5) Ti1–O1#1 1.933(5) O1P1C1 108.0(3) O2P1C7 108.3(3)

Ti1–O1#2 1.933(5) Ti1–O1#3 1.933(5) O1P1C7 109.9(3) C1P1C7 105.6(3)

Ti1–O1#4 1.933(5) Ti1–O1#3 1.933(5) P1O1Ti1 145.8(3) P1O2Ti2 141.8(3)

Ti2–F1#3 1.786(5) Ti2–F1 1.786(5) C2C1P1 118.4(3) C6C1P1 121.6(3)

Ti2–F1#4 1.786(5) Ti2–O2 2.015(5) C8C7P1 120.6(3) C12C7P1 119.4(3)

Ti2–O2#3 2.015(5) Ti2–O2#4 2.015(5) O3#5Ti3O3 179.998(1) O3#5Ti3O7 89.4(2)

Ti1–O2 1.508(5) P1–O1 1.545(5) O3Ti3O7 90.6(2) O3#5Ti3O7#5 90.6(2)

P1–C1 1.782(4) P1–C7 1.797(4) O3Ti3O7#5 89.4(2) O7Ti3O7#5 108.0

Ti3–O3#5 1.937(5) Ti3–O3 1.937(5) O3#5Ti3O5 90.8(2) O3Ti3O5 89.2(2)

Ti3–O7 1.941(5) Ti3–O7#5 1.941(5) O7Ti3O5 90.5(2) O7#5Ti3O5 89.5(2)

Ti3–O5 1.942(5) Ti3–O5#5 1.942(5) O3#5Ti3O5#5 89.2(2) O3Ti3O5#5 90.8(2)

Ti4–F4 1.779(5) Ti4–F2 1.785(6) O7Ti3O5#5 89.5(2) O7#5Ti3O5#5 90.5(2)

Ti4–F3 1.792(5) Ti4–O8 2.015(6) O5Ti3O5#5 180.0 F4Ti4F2 94.5(3)

Ti4–O4 2.027(6) Ti4–O6 2.035(6) F4Ti4F3 95.2(3) F2Ti4F3 93.7(3)

P2–O4 1.506(6) P2–O3 1.535(6) F4Ti4O8 89.5(3) F2Ti4O8 174.7(3)

P2–C19 1.790(5) P2–C13 1.805(5) F3Ti4O8 89.4(3) F4Ti4O4 173.8(2)

P3–O6 1.500(6) P3–O5 1.531(6) F2Ti4O4 89.7(3) F3Ti4O4 89.1(2)

P3–C25 1.781(5) P3–C31 1.814(5) O8Ti4O4 86.0(2) F4Ti4O6 90.0(3)

P4–O8 1.511(6) P4–O7 1.526(6) F2Ti4O6 89.9(3) F3Ti4O6 173.5(3)

P4–C43 1.790(5) P4–C37 1.806(5) O8Ti4O6 86.6(2) O4Ti4O6 85.4(2)

N1–C49 1.10(2) C49–C50 1.42(2) O4P2O3 114.0(3) O4P2C19 111.1(3)

Angle ω Angle ω O3P2C19 109.1(3) O4P2C13 108.2(3)

O1Ti1O1#1 88.6(2) O1Ti1O1#2 88.6(2) O3P2C13106.7(3) C19P2C13

107.3(3)

O1#1Ti1O1#2 91.4(2) O1Ti1O1#3 179.996(1) O6P3O5 113.9(3) O6P3C25 111.7(3)

O1#1Ti1O1#3 91.4(2) O1#2Ti1O1#3 91.4(2) O5P3C25 109.0(3) O6P3C31 108.0(3)

O1Ti1O1#4 91.4(2) O1#1Ti1O1#4 88.6(2) O5P3C31 107.7(3) C25P3C31 106.2(3)

O1#2Ti1O1#4 180.0 O1#3Ti1O1#4 88.6(2) O8P4O7 113.5(3) O8P4C43 112.0(3)

O1Ti1O1#3 91.4(2) O1#1Ti1O1#3 180.0 O7P4C43 108.8(3) O8P4C37 108.9(3)

O1#2Ti1O1#3 88.6(2) O1#3Ti1O1#3 88.6(2) O7P4C37 105.7(3) C43P4C37 107.6(3)

O1#4Ti1O1#3 91.4(2) F1#3Ti2F1 93.9(2) P2O3Ti3 153.4(3) P2O4Ti4 148.2(4)

F1#3Ti2F1#4 93.9(2) F1Ti2F1#4 93.9(2) P3O5Ti3 151.3(4) P3O6Ti4 149.4(4)

F1#3Ti2O2 93.4(2) F1Ti2O2 86.3(2) P4O7Ti3 153.9(4) P4O8Ti4 150.1(4)

F1#4Ti2O2 172.7(2) F1#3Ti2O2#3 86.3(2) C14C13P2 117.5(4) C18C13P2 122.4(4)

F1Ti2O2#3 172.7(2) F1#4Ti2O2#3 93.4(2) C20C19P2 120.8(4) C24C19P2 118.9(4)

O2Ti2O2#3 86.4(2) F1#3Ti2O2#4 172.7(2) C26C25P3 121.9(3) C30C25P3 118.0(3)

F1Ti2O2#4 93.4(2) F1#4Ti2O2#4 86.3(2) C32C31P3 118.5(4) C36C31P3 121.5(4)

O2Ti2O2#4 86.4(2) O2#3Ti2O2#4 86.4(2) C38C37P4 121.9(4) C42C37P4 118.1(4)

O2P1O1 114.1(3) O2P1C1 110.7(3) C44C43P4 120.1(3) C48C43P4 119.8(3)

N1C49C50 176(2)

Note: Symmetry codes: #1 x – y + 2/3, x + 1/3, –z + 1/3; #2 y – 1/3, –x + y + 1/3, –z + 1/3; #3 –x + 2/3, –y + 4/3, –z + 1/3; #4 –y + 1, x – y + 1, z;#5 –x + 5/3, –y + 4/3, –z + 1/3.

60

DOKLADY CHEMISTRY Vol. 376 Nos. 4–6 2001

IL’IN et al.

Table 2. Atomic coordinates and thermal parameters Uiso/Ueq

Atom x y z Uiso/Ueq, Å2 Atom x y z Uiso/Ueq, Å2

M o l e c u l e A M o l e c u l e B

Ti1 0.3333(0) 0.6667(0) 0.1667(0) 0.0174(7) C16 0.9752(3) 0.5359(2) 0.0926(3) 0.067(4)

Ti2 0.3333(0) 0.6667(0) 0.0327(1) 0.0272(6) C17 0.9780(3) 0.5721(3) 0.0634(2) 0.071(4)

P1 0.2988(1) 0.7314(1) 0.0998(1) 0.0251(5) C18 0.9728(3) 0.6198(3) 0.0716(2) 0.052(3)

F1 0.2688(2) 0.6312(2) 0.0054(1) 0.048(1) C19 0.9573(3) 0.7271(3) 0.0782(2) 0.042(2)

O1 0.3260(2) 0.7220(2) 0.1358(1) 0.026(1) C20 1.0087(2) 0.7735(3) 0.0660(2) 0.060(3)

O2 0.2899(2) 0.6906(2) 0.0678(2) 0.028(1) C21 1.0117(3) 0.7986(3) 0.0309(2) 0.081(4)

C1 0.3428(2) 0.8038(2) 0.0850(2) 0.030(2) C22 0.9633(4) 0.7771(4) 0.0080(2) 0.088(4)

C2 0.3396(3) 0.8176(2) 0.0473(1) 0.048(2) C23 0.9119(4) 0.7307(4) 0.0201(2) 0.093(4)

C3 0.3723(3) 0.8739(3) 0.0349(1) 0.059(3) C24 0.9089(3) 0.7057(3) 0.0552(2) 0.068(3)

C4 0.4081(3) 0.9165(2) 0.0602(2) 0.065(3) C25 0.9096(2) 0.8374(3) 0.2042(1) 0.035(2)

C5 0.4113(3) 0.9028(2) 0.0978(2) 0.062(3) C26 0.9561(2) 0.8789(3) 0.2246(2) 0.052(3)

C6 0.3787(3) 0.8465(2) 0.1102(1) 0.045(2) C27 0.9472(2) 0.9021(3) 0.2574(2) 0.060(3)

C7 0.2306(2) 0.7243(2) 0.1115(2) 0.029(2) C28 0.8917(3) 0.8839(3) 0.2698(2) 0.064(3)

C8 0.2274(2) 0.7697(2) 0.1278(2) 0.046(2) C29 0.8452(2) 0.8424(3) 0.2495(2) 0.075(4)

C9 0.1744(3) 0.7636(3) 0.1367(2) 0.054(3) C30 0.8541(2) 0.8191(3) 0.2167(2) 0.055(3)

C10 0.1245(2) 0.7121(3) 0.1293(2) 0.065(3) C31 0.9108(3) 0.8527(3) 0.1234(2) 0.040(2)

C11 0.1276(2) 0.6667(3) 0.1131(3) 0.084(4) C32 0.9213(3) 0.8441(3) 0.0859(2) 0.059(3)

C12 0.1807(2) 0.6728(2) 0.1042(2) 0.058(3) C33 0.9177(4) 0.8774(4) 0.0571(2) 0.074(4)

M o l e c u l e B C34 0.9037(4) 0.9193(3) 0.0656(2) 0.086(4)

Ti3 0.8333(0) 0.6667(0) 0.1667(0) 0.0228(5) C35 0.8932(4) 0.9279(3) 0.1030(3) 0.095(5)

Ti4 1.0392(1) 0.8030(1) 0.1783(0) 0.0385(5) C36 0.8968(4) 0.8946(3) 0.1319(2) 0.075(4)

P2 0.9538(1) 0.6902(1) 0.1213(1) 0.0313(5) C37 0.9183(3) 0.7145(3) 0.2831(1) 0.039(2)

P3 0.9182(1) 0.8099(1) 0.1603(1) 0.0316(5) C38 0.9334(3) 0.6932(3) 0.3142(2) 0.070(3)

P4 0.9339(1) 0.7033(1) 0.2350(1) 0.0314(5) C39 0.9216(4) 0.7037(4) 0.3508(2) 0.082(4)

F2 1.0833(2) 0.8386(2) 0.1382(2) 0.063(2) C40 0.8945(4) 0.7356(4) 0.3563(2) 0.091(4)

F3 1.0882(2) 0.7826(2) 0.1972(2) 0.056(2) C41 0.8793(4) 0.7570(4) 0.3252(2) 0.089(4)

F4 1.0656(2) 0.8666(2) 0.2060(2) 0.060(2) C42 0.8912(3) 0.7464(3) 0.2886(2) 0.066(3)

O3 0.8931(2) 0.6637(2) 0.1379(2) 0.033(1) C43 0.9503(2) 0.6466(2) 0.2360(2) 0.036(2)

O4 1.0005(2) 0.7288(2) 0.1484(2) 0.038(1) C44 1.0067(2) 0.6590(2) 0.2397(2) 0.062(3)

O5 0.8692(2) 0.7480(2) 0.1556(2) 0.032(1) C45 1.0191(2) 0.6148(3) 0.2417(3) 0.077(4)

O6 0.9768(2) 0.8165(2) 0.1568(2) 0.038(1) C46 0.9750(3) 0.5581(2) 0.2398(2) 0.064(3)

O7 0.8784(2) 0.6832(2) 0.2128(2) 0.034(1) C47 0.9186(3) 0.5457(2) 0.2361(2) 0.063(3)

O8 0.9835(2) 0.7586(2) 0.2202(2) 0.039(1) C48 0.9062(2) 0.5899(2) 0.2341(2) 0.049(3)

C13 0.9647(3) 0.6313(2) 0.1089(2) 0.038(2) N1 0.0469(9) 0.5777(9) –0.0195(6) 0.187(8)

C14 0.9619(3) 0.5951(3) 0.1380(1) 0.050(3) C49 0.0937(9) 0.5988(8) –0.0217(5) 0.116(6)

C15 0.9671(3) 0.5474(3) 0.1299(2) 0.066(3) C50 0.1541(9) 0.6290(9) –0.0262(6) 0.143(7)

Table 3. Bond lengths rM–F and rM–O (Å) in the structures of the trinuclear titanium and zirconium complexes

Complex

Coordinate

O–M–F O–M–O

rMF rMO rMO

ZrF3(µ-Ph2PO2)3Zr(µ-Ph2PO2)3ZrF3 1.933 ± 0.013 2.133 ± 0.011 2.065 ± 0.008TiF3(µ-Ph2PO2)3Ti(µ-Ph2PO2)3TiF3 1.785 ± 0.007 2.025 ± 0.010 1.938 ± 0.004

DOKLADY CHEMISTRY Vol. 376 Nos. 4–6 2001

CRYSTAL STRUCTURE OF THE TRINUCLEAR TITANIUM COMPLEX 61

Each complex consists of two TiF3 moieties bonded

to the central Ti3 atom through the bridging Ph2Panions. The Ti…Ti distances in the trinuclear com-plexes are 4.714 (a) and 4.902(2) Å (b). All titaniumatoms are bound to distorted octahedral arrays. Thecentral titanium atoms (Ti1 and Ti3) of the trinuclearcomplexes are surrounded by six oxygen atoms at dis-tances of 1.933(5) to 1.942(5) Å (Table 2). The coordi-nation sphere of the peripheral titanium atoms (Ti2 andTi4) is composed of three facially arranged fluorineatoms and three oxygen atoms. The distances betweenthe Ti2 and Ti4 atoms and fluorine atoms are within therange 1.779–1.792(6) Å. The bonds to the oxygenatoms being trans to the fluorine atoms are consider-ably longer than those in the central moiety and rangefrom 2.015 to 2.035(6) Å. The TiOPOTi fragments are

O2–

nonplanar: the Ti1OPO (Ti3OPO) torsion angles fallwithin the range from 31.6° to 46.2°, and the Ti2OPO(Ti4OPO) angles range from 61.3° to 69.7° (Table 2).

Therefore, in contrast to the MF4(DMSO)2 (M = Ti,Zr) adducts, both [MF2(Ph2PO2)2]3 complexes have thesame structure. The central metal atoms of the trinu-clear complexes are surrounded by six oxygen atoms ofthe bridging Ph2P anions; the corresponding M–Obonds are shorter than the like bonds in the peripheralmoieties (Table 3) where the oxygen atoms are trans tomore basic fluoride ions.

ACKNOWLEDGMENTS

This study was carried out in the context of cooper-ation between the Russian Academy of Sciences andthe Deutsche Forschungsgemeinschaft.

O2–

(a)

Ti2a Ti1

O1

C7

C1

P1

O2

Ti2

F1

C13

P2

O3

C19

C43

O4

O8

P4

P3

O7

O5

Ti3Ti4a

C37

C25

F3

F2

F4O6

C31

(b)

Fig. 1. Structure of the TiF3(µ-Ph2PO2)3Ti(µ-Ph2PO2)3TiF3 complex.

62

DOKLADY CHEMISTRY Vol. 376 Nos. 4–6 2001

IL’IN et al.

REFERENCES1. Nikiforov, G.B., Aleksandrov, G.G., Il’in, E.G., et al.,

Dokl. Akad. Nauk, 1999, vol. 367, no. 6, pp. 772–775[Dokl. Chem. (Engl. Transl.), vol. 367, nos. 4–6,pp. 197–200].

2. Il’in, E.G., Aleksandrov, G.G., Kovalev, V.V., et al.,Dokl. Akad. Nauk, 1997, vol. 355, no. 3, pp. 349–353[Dokl. Phys. Chem. (Engl. Transl.), vol. 355, nos. 1–3,pp. 201–206].

3. Alcock, N.W. and Errington, W., Acta Crystallogr., Sect.C: Cryst. Struct. Commun., 1994, vol. 50, p. 226.

4. Il’in, E.G., Kovalev, V.V., Aleksandrov, G.G., et al.,Dokl. Akad. Nauk, 2000, vol. 375, no. 4, pp. 484–486

[Dokl. Chem. (Engl. Transl.), vol. 375, nos. 4–6,pp. 260–262].

5. Il’in, E.G., Nikiforov, G.B., Ignatov, M.E., and Bus-laev, Yu.A., Dokl. Akad. Nauk, 1999, vol. 369, no. 6,pp. 770–777 [Dokl. Chem. (Engl. Transl.), vol. 369,nos. 4–6, pp. 299–306].

6. Sheldrick, G.M., SHELXS86: Program for the Solutionof Crystal Structures, Göttingen: Univ. of Göttingen,1985.

7. Sheldrick, G.M., SHELXL93: Program for the Refine-ment of Crystal Structures, Göttingen: Univ. of Göttin-gen, 1993.