Download - Countrate estimates. Particle production in heavy ion collisions.

Transcript
Page 1: Countrate estimates. Particle production in heavy ion collisions.

Countrate estimates

Page 2: Countrate estimates. Particle production in heavy ion collisions.

Particle production in heavy ion collisions

Page 3: Countrate estimates. Particle production in heavy ion collisions.

Particle multiplicities for central Au+Au collisionsfrom UrQMD calculations

Au+Au 6 AGeV central minimum bias 0.00072 0.00018

Example Ω production

Direct production:NN + - NN (Ethr = 12.7 GeV)

Production via multiple collisions:

NN K+ΛN, NN K+K-NN, ΛK- - 0, -K- - -

Page 4: Countrate estimates. Particle production in heavy ion collisions.

ObservablesU+U 23 AGeV

Page 5: Countrate estimates. Particle production in heavy ion collisions.

Pion multiplicities per participating nucleons

RHIC

Page 6: Countrate estimates. Particle production in heavy ion collisions.

meson-baryon interaction

Page 7: Countrate estimates. Particle production in heavy ion collisions.

SIS: KaoS AGS: E802,E866 SPS: NA49

Production of K+ und K- mesons in central AuAu/PbPb collisions

NN K+N: Elab 1.6 GeVNN K+K-NN: Elab 2.5

GeV

RHIC RHIC

Page 8: Countrate estimates. Particle production in heavy ion collisions.

GSI

Meson production in central Au+Au collisionsW. Cassing, E. Bratkovskaya, A. Sibirtsev, Nucl. Phys. A 691 (2001) 745

Page 9: Countrate estimates. Particle production in heavy ion collisions.

Rapidity distributions

Rapidity: y(0) = y-ym with y =0.5 ln [(E+pz)/(E-pz)]

Central Pb+Pb collisions at SPS energies C. Blume for the NA49 Collaboration, J.Phys. G31 (2005) S685-S692

Page 10: Countrate estimates. Particle production in heavy ion collisions.

Particle yields in midrapidity from central A+A collisions

Page 11: Countrate estimates. Particle production in heavy ion collisions.

Central Au+Au collisions (midrapidity): statistical model results

E = 2 AGeV E = 4 AGeV

E = 6 AGeVE = 8 AGeV

A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl.Phys. A772 (2006) 167-199

Page 12: Countrate estimates. Particle production in heavy ion collisions.

E = 10.7 AGeV

E = 40 AGeV E = 80 AGeV

Central Au+Au collisions (midrapidity): statistical model results

Page 13: Countrate estimates. Particle production in heavy ion collisions.

E = 158 AGeV

Central Au+Au collisions (midrapidity): Statistical model results

Page 14: Countrate estimates. Particle production in heavy ion collisions.

Central Au+Au collisions (midrapidity): Statistical model results

Page 15: Countrate estimates. Particle production in heavy ion collisions.

Central Au+Au collisions (midrapidity): Statistical model results

Page 16: Countrate estimates. Particle production in heavy ion collisions.

Central Au+Au collisions (midrapidity): Statistical model results

Page 17: Countrate estimates. Particle production in heavy ion collisions.

Central Au+Au collisions (midrapidity): Statistical model results

Page 18: Countrate estimates. Particle production in heavy ion collisions.

Central Au+Au collisions (midrapidity): Statistical model results

Page 19: Countrate estimates. Particle production in heavy ion collisions.

Strangeness/pion ratios

Decrease of baryon-chemicalpotential: transition frombaryon-dominatedto meson-dominatedmatter

?

C. Blume for the NA49 Collaboration, J.Phys. G31 (2005) S685-S692

Page 20: Countrate estimates. Particle production in heavy ion collisions.

Strangeness = 2 × (K+ + K−) + 1.54 × (Λ + Λ¯)Entropy = 1.5 × (π+ + π−) + 2 × p¯

Page 21: Countrate estimates. Particle production in heavy ion collisions.

The freeze-out curve in the QCD phase diagramA. Andronic, P. Braun-Munzinger, J. Stachel, Nucl.Phys. A772 (2006) 167-199

Page 22: Countrate estimates. Particle production in heavy ion collisions.

J. Randrup and J. Cleymans, hep-ph/0607065

Page 23: Countrate estimates. Particle production in heavy ion collisions.
Page 24: Countrate estimates. Particle production in heavy ion collisions.

Pion production in Au + Au collisions at 1.5 AGeV

Data: T. Schuck, Dipl. Thesis 2003, GSI/Uni Frankfurt

Page 25: Countrate estimates. Particle production in heavy ion collisions.

"Boltzmann" parameterisation:

d3/dp3 = C1 exp(-E/T1) + C2 exp(-E/T2)

Page 26: Countrate estimates. Particle production in heavy ion collisions.

Kinetic energy of a particle:Ek = Eth + Eflow = 3/2 kT + m/2flow2

The explosion of the fireball

Blast wave model: isotropically expanding System with temperature T P.J. Siemens and J.O. Rasmussen, Phys. Rev. Lett. 42 (1979) 880

dotted line: f = const. solid line: Hubble expansion f = rH

Page 27: Countrate estimates. Particle production in heavy ion collisions.

N. Xu, Int. J. Mod. Phys. E16 (2007) 715

Page 28: Countrate estimates. Particle production in heavy ion collisions.
Page 29: Countrate estimates. Particle production in heavy ion collisions.

Participants

Spectators

Determination of collision centrality

Number of participating nucleons in A+A collisions : Apart = 2 x A/Z x (Z – Zspec)

or Zero Degree Calorimeter: EZDC= Ebeam APro-Spec and Apart = 2 ( A - EZDC/Ebeam)

Page 30: Countrate estimates. Particle production in heavy ion collisions.

Determination of the reaction plane

Transverse Momentum Method: P. Danielewicz & G. Odyniec, Phys. Lett. 157 B (1985) 146

Q = p

= 1 für y>ycm

R = arctan(Qy/Qx)

Dispersion of the reaction plane:

Sub-Event-Method: = 1 - 2

Page 31: Countrate estimates. Particle production in heavy ion collisions.

s/

P ²

Expect Large Pressure Gradients Hydro FlowExpect Large Pressure Gradients Hydro Flow

...])φ[2(2φcos211

2122

3

3

RRT

vvdydp

Nd

pd

NdE

])φ[2cos(2 Rv

The Flow ProbeThe Flow ProbeThe Flow ProbeThe Flow Probe

Page 32: Countrate estimates. Particle production in heavy ion collisions.
Page 33: Countrate estimates. Particle production in heavy ion collisions.

Dense baryonic matter up to 3 ρ0:

Probing the nuclear equation-of-state with heavy ions

Page 34: Countrate estimates. Particle production in heavy ion collisions.

Observable in HI collisions: collective flow (driven by pressure)

The equation-of-state of (symmetric) nuclear matter

E/A() = -16 MeV

(E/A)()/

Compressibility:

(E/A)/

= 200 MeV: "soft" EOS = 380 MeV: "stiff" EOS

C. Fuchs, Prog. Part. Nucl. Phys. 56 (2006) 1Equation of state:

PV T E P E/V E/A

Page 35: Countrate estimates. Particle production in heavy ion collisions.

Definition of the potentials in transport codes

Bethe Weizsaecker –mass formula:

Volume term

(with eos)

+Surface term +Coulomb term +symmetry term

(+pairing term not included)

2 and 3 body interactions (no equilibrium required)

Page 36: Countrate estimates. Particle production in heavy ion collisions.

The eos in IQMDafter the convolution of the Skyrme type potentials supplemented by momentum dependent interactions (mdi) for infinite nuclear matter at equilibrium

hard

soft

Page 37: Countrate estimates. Particle production in heavy ion collisions.

Baryon/energy density in central cell (Au+Au, b=0 fm):Transport code HSD: mean field, hadrons + resonances + strings

E. Bratkovskaya, W. Cassing

Baryon and energy densities at FAIR energies

Page 38: Countrate estimates. Particle production in heavy ion collisions.
Page 39: Countrate estimates. Particle production in heavy ion collisions.

Dynamics of a semi-central Au+Au collision at 2 AGeV(BUU calculation, P. Danielewicz, MSU)

Page 40: Countrate estimates. Particle production in heavy ion collisions.

Azimuthal angle distribution:dN/d1 + 2v1cos + 2v2 cos2

C.Pinkenburg et al., (E895), Phys. Rev. Lett. 83 (1999) 1295

Azimuthal angular distribution of protons measured

in Au+Au collisions at 1.15, 2, 4, 6, 8 AGeV

Rapidity: y(0) = y-ym with y = 0.5 ln [(E+pz)/(E-pz)]

AGeV

Page 41: Countrate estimates. Particle production in heavy ion collisions.

dN/d1 + 2v1cos + 2v2 cos2

P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002) 1592

Probing the nuclear equation-of-state: proton collective flow

Transverse in-plane flow: Elliptic flow:

F = d(px/A)/d(y/ycm)

K = 170 – 210 MeV K = 170 – 380 MeV

Page 42: Countrate estimates. Particle production in heavy ion collisions.

P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002) 1592

pressure P = ρ2 · ( δ(ε/ρ) / δρ )with nuclear density ρ and energy density ε

Pressure as function of density

Independent observable ? particle production

Within microscopic transport models the collective flow is sensitive to:

The nuclear matter equation of state

In-medium nucleon-nucleon cross sections

Momentum dependent interactions

Page 43: Countrate estimates. Particle production in heavy ion collisions.

Probing the equation-of-state of symmetric nuclear matter:

Kaon production in Au+Au collisions at 1 AGeV

K+ mesons probe high densities

udsn

du

udd

su

K+

pp → K+Λp (Ethres= 1.6 GeV)

K+ reabsorption negligible

Page 44: Countrate estimates. Particle production in heavy ion collisions.

Probing the nuclear equation-of-state (ρ = 1 – 3 ρ0) by K+ meson production in C+C and Au+Au collisions

Transport model (RBUU)Au+Au at 1 AGeV:κ = 200 MeV ρmax 2.9 ρ0

K+κ = 380 MeV ρmax 2.4 ρ0

K+Reference system C+C: K+ yield not sensitive to EOS

Idea: K+ yield baryon density ρ compressibility κ

Experiment: C. Sturm et al., (KaoS Collaboration), Phys. Rev. Lett. 86 (2001) 39Theory: Ch. Fuchs et al., Phys. Rev. Lett. 86 (2001) 1974

Page 45: Countrate estimates. Particle production in heavy ion collisions.

The compressibility of nuclear matterExperiment: C. Sturm et al., (KaoS Collaboration) Phys. Rev. Lett. 86 (2001) 39

Theory: QMD Ch. Fuchs et al., Phys. Rev. Lett. 86 (2001) 1974 IQMD Ch. Hartnack, J. Aichelin, J. Phys. G 28 (2002) 1649

soft equation-of-state:≤ 200 MeVAu/C ratio: cancellation of systematic errors both in experiment and theory

Page 46: Countrate estimates. Particle production in heavy ion collisions.
Page 47: Countrate estimates. Particle production in heavy ion collisions.

Exploring the "nuclear" EOS at 3ρ0 < ρ < 7ρ0

Measure excitation function of (multi-strange) hyperon production in heavy-ion collisions from 2 - 15 AGeV (no data yet):

Direct production:

NN Λ0Λ0 NN (Ethr = 7.1 GeV)NN + - NN (Ethr = 9.0 GeV) NN + - NN (Ethr = 12.7 GeV)

Production via multiple collisions:

NN K+Λ0N, NN K+K-NN, Λ0K- - 0, -K- - - Λ0 K+ +0 , + K+ + +.

Page 48: Countrate estimates. Particle production in heavy ion collisions.

The in-medium properties of strange mesons

Page 49: Countrate estimates. Particle production in heavy ion collisions.

(1232)

(1600)

k,

p,n

N(1440)

N(1520)

M[GeV]

0

1

a1

Vakuum<qq> 0

Mesonen

BaryonenChiral Symmetry of QCD:

Quarks are massless.

In natur chiral symmetry is broken:Spontaneous: Parity-Doubletts are not degenerated Explicit: small pion mass (Goldstone Boson)

Explicit breaking: mu 5 MeV, md 10 MeV, ms 150

MeV Spontaneos/dynamical breaking:quarks couple to the virtual quark-antiquark pairs of the chiral

condensate

Page 50: Countrate estimates. Particle production in heavy ion collisions.

B 3-80 , T 130 MeV

Page 51: Countrate estimates. Particle production in heavy ion collisions.

K mesons in dense matter

G.E Brown, C.H. Lee, M. Rho, V. Thorsson, Nucl. Phys. A 567 (1994) 937 T. Waas, N. Kaiser, W. Weise, Phys. Lett. B 379 (1996) 34

J. Schaffner-Bielich, J. Bondorf, I. Mishustin ,Nucl. Phys. A 625 (1997)

How to measure in-medium modifications of kaons in heavy-ion collisions?

yield at subthreshold beam energies

repulsive K+N and attractive K-N potential: angular distributions

Page 52: Countrate estimates. Particle production in heavy ion collisions.

In-medium modifications of K+ mesons

Data: M. Menzel et al., (KaoS Collab.), Phys. Lett. B 495 (2000) 26 K. Wisniewski et al., ( FOPI Collab.), Eur. Phys. J A 9 (2000) 515

Reduced K+ yield due to increased in-medium K+ mass

Page 53: Countrate estimates. Particle production in heavy ion collisions.

Data: Y. Shin et al., (KaoS Collaboration), Phys. Rev. Lett. 81 (1998) 1576 F. Uhlig et al., (KaoS Collaboration), Phys. Rev. Lett. 95 (2005) 012301 Calculations see A. Larionov, U. Mosel, nucl-th/0504023

Data show evidence for repulsive K+N interaction !

K+ azimuthal emission pattern from A+A collisions

K+ mean free path in nuclear matter at ρ0: λ ~ 5 fm

Page 54: Countrate estimates. Particle production in heavy ion collisions.

F. Uhlig et al., (KaoS Collaboration), Phys. Rev. Lett. 95 (2005) 012301

Ni+Ni at 1.93 AGeV: π, K+ and K- azimuthal distributions

3.8 fm < b < 6.4 fm 0.4 < y/ybeam <0.6 0.2 GeV < p┴< 0.8 GeV IQMD Calculation:

C. Hartnack et al.

Page 55: Countrate estimates. Particle production in heavy ion collisions.

dN(φ)/φ 1 + 2v1cos(φ) + 2v2cos(2φ) + ...

Au+Au 1.5 AGeV semi-central collisions (b > 6.4 fm)K+ and K- azimuthal angular distributions

M. Płoskon, PhD Thesis 2005

Page 56: Countrate estimates. Particle production in heavy ion collisions.

Antikaon spectral function in nuclear matter

self-consistent coupled channel calculation with mean field (s,p,d waves)

(1405)

K- K-

N-1

Page 57: Countrate estimates. Particle production in heavy ion collisions.

dN(φ)/φ 1 + 2v1cos(φ) + 2v2cos(2φ) + ...

Elliptic flow of K+ and K- mesons:Comparison to off-shell transport calculations

and in-medium spectral functionsData: M. Płoskon, PhD Thesis, Univ. Frankfurt 2005Off-shell transport calculations: W. Cassing et al., NPA 727 (2003) 59, E. Bratkovskaya, priv. com.Coupled channel G-Matrix approach (K- spectral functions): L. Tolos et al., NPA 690 (2001) 547

Page 58: Countrate estimates. Particle production in heavy ion collisions.

Summary Kaon production

Excitation function of K+ production in A+A collisions (ρ = 1–3 ρ0): The nuclear matter equation-of-state is soft ( K 200 MeV) Yield and elliptic flow of K+ mesons in A+A collisions: The in-medium potential of K+ mesons is repulsive (i.e. the effective K+ mass is increased) Yield and elliptic flow of K- mesons in A+A collisions: Quantitative interpretation of data requires off-shell transport calculations and in-medium spectral functions