Download - Combinatorial Matrix Theory and - Index of - Iowa State University

Transcript
Page 1: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

Combinatorial Matrix Theory andSpectral Graph Theory

Leslie Hogben

Iowa State University andAmerican Institute of Mathematics

ICART 2008May 28, 2008

Page 2: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

Introduction

Inverse Eigenvalue Problem for a Graph (IEPG)

Minimum Rank Problem for a GraphBasic properties of minimum rankTrees

Spectral Graph Theory

Specific matrices A,L, |L|, A, L, |L|Relationships among A,L, |L|, A, L, |L|

Colin de Verdiere Type Parametersµ(G ), ν(G )ξ(G )Forbidden minors

Minimum Rank Problem: Recent ResultsMinimum rank graph catalogs

Page 3: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

Combinatorial Matrix Theory

! Studies patterns of entries in a matrix rather than values

! In some applications, only the sign of the entry (orwhether it is nonzero) is known, not the numerical value

! Uses graphs or digraphs to describe patterns

! Uses graph theory and combinatorics to obtain resultsabout matrices

! Inverse Eigenvalue Problem of a Graph (IEPG)associates a family of matrices to a graph and studiesspectra

Page 4: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

Algebraic Graph Theory

! Uses algebra and linear algebra to obtain results aboutgraphs or digraphs

! Groups used extensively in the study of graphs

! Spectral graph theory uses matrices and theireigenvalues are used to obtain information aboutgraphs.

! Specific matrices:! adjacency, Laplacian, signless Laplacian matrices! Normalized versions of these matrices

! Colin de Verdiere type parameters associate families ofmatrices to a graph but still use the matrices to obtaininformation about the graph

Page 5: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

Connections between these two approaches have yieldedresults in both directions.

Terminology and notation

! All matrices are real and symmetric

! Matrix B = [bij ]

! σ(B) is the ordered spectrum (eigenvalues) of B,repeated according to multiplicity, in nondecreasingorder

! All graphs are simple

! Graph G = (V ,E )

Page 6: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

! Inverse Eigenvalue Problem: What sets of real numbersβ1, . . . ,βn are possible as the eigenvalues of a matrixsatisfying given properties of a matrix?

! Inverse Eigenvalue Problem of a Graph (IEPG): For agiven graph G , what eigenvalues are possible for amatrix B having nonzero off-diagonal entriesdetermined by G?

Page 7: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

The graph G(B) = (V ,E ) of n × n matrix B is

! V = {1, ..., n},! E = {ij : bij "= 0 and i "= j}.! Diagonal of B is ignored.

Example:

B =

2 −1 3 5−1 0 0 0

3 0 −3 05 0 0 0

G(B)

1 2

34

The family of matrices described by G is

S(G ) = {B : BT = B and G(B) = G}.

Page 8: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

Tools for IEPG

! B is irreducible if and only if G(B) is connected

! Any (symmetric) matrix is permutation similar to ablock diagonal matrix and the spectrum of B is theunion of the spectra of these blocks

! The diagonal blocks correspond to the connectedcomponents of G(B)

! It is customary to assume a graph is connected (at leastuntil we cut it up)

Page 9: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

! B(i) is the principal submatrix obtained from B bydeleting the i th row and column.

! Eigenvalue interlacing: If β1 ≤ · · · ≤ βn are theeigenvalues of B, and γ1 ≤ · · · ≤ γn−1 are theeigenvalues of B(i), then

β1 ≤ γ1 ≤ β2 ≤ · · · ≤ γn−1 ≤ βn

! [Parter 69], [Wiener 84] If G(B) is a tree andmultB(β) ≥ 2, then there is k such thatmultB(k)(β) = multB(β) + 1

Page 10: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

Ordered multiplicity lists

! If the distinct eigenvalues of B are β1 < · · · < βr withmultiplicities m1, . . . ,mr , then (m1, . . . ,mr ) is calledthe ordered multiplicity list of B.

! Determining the possible ordered multiplicity lists ofmatrices in S(G ) is the ordered multiplicity list problemfor G

! The IEPG of G can be solved by! solving the ordered multiplicity list problem for G! proving that if ordered multiplicity list (m1, . . . ,mr ) is

possible, then for any real numbers γ1 < · · · < γr , thereis B ∈ S(G ) having eigenvalues γ1, . . . , γr withmultiplicities m1, . . . ,mr .

! If this case, IEPG for G is equivalent to the orderedmultiplicity list problem for G

Page 11: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

[Fiedler 69], [Johnson, Leal Duarte, Saiago 03],[Barioli, Fallat 05]The possible ordered multiplicity lists of matrices in S(T )have been determined for the following families of trees T :

! paths

! double paths

! stars

! generalized stars

! double generalized stars

For T in any of these families, IEPG for G is equivalent tothe ordered multiplicity list problem for G

It was widely believed that the ordered multiplicity listproblem was always equivalent to IEPG for trees.

Page 12: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

Example[Barioli, Fallat 03] For the tree TBF

the ordered eigenvalue list for the adjacency matrix A is

(−√

5,−√

2,−√

2, 0, 0, 0, 0,√

2,√

2,√

5),

so the ordered multiplicity list (1, 2, 4, 2, 1) is possible.But if B ∈ S(TBF ) has the five distinct eigenvaluesβ1 < β2 < β3 < β4 < β5 with ordered multiplicity list(1, 2, 4, 2, 1), then β1 + β5 = β2 + β4.

Page 13: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

First step in solving IEPG is determining maximumpossibility multiplicity of an eigenvalue.

! maximum multiplicitiy M(G ) = maxB∈S(G)

multB(β)

! minimum rank mr(G ) = minB∈S(G)

rank(B)

! M(G ) is the maximum nullity of a matrix in S(G )

! M(G ) + mr(G ) = |G |

The Minimum Rank Problem for a Graph is to determinemr(G ) for any graph G .

Page 14: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

Examples:Path: mr(Pn) = n − 1. Complete graph: mr(Kn) = 1

? ∗ 0 . . . 0 0∗ ? ∗ . . . 0 00 ∗ ? . . . 0 0...

......

. . ....

...0 0 0 . . . ? ∗0 0 0 . . . ∗ ?

1 1 . . . 11 1 . . . 1...

.... . .

...1 1 . . . 1

∗ is nonzero, ? is indefinite

Page 15: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

Minimum rank

Let G have n vertices.

! It is easy to obtain a matrix B ∈ S(G ) withrank(B) = n − 1 (translate)

! It is easy to have full rank (use large diagonal)

! If G is the disjoint union of graphs Gi then

mr(G ) =∑

mr(Gi )

! Only connected graphs are studied

! If G is connected,mr(G ) = 0 iff G is single vertexmr(G ) = 1 iff G = Kn, n ≥ 2

! mr(G ) = n − 1 if and only if G is a path [Fiedler 69]

Page 16: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

Minimum Rank Problem for Trees

Let T be a tree. ∆(T ) is the maximum of p − q such thatthere is a set of q vertices whose deletion leaves p paths.

Theorem (Johnson, Leal Duarte 99)

|T |−mr(T ) = M(T ) = ∆(T )

A related method for computing mr(T ) directly appearedearlier in [Nylen 96].

Numerous algorithms compute ∆(T ) by usinghigh degree (≥ 3) vertices.

The following algorithm works from the outside in. v is anouter high degree vertex if at most one component of T − vcontains high degree vertices.

Delete each outer high degree vertex. Repeat as needed.

Page 17: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

ExampleCompute mr(T ) by computing ∆(T ) = M(T ).

1

2

3

4 5 6

8 7

Page 18: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

ExampleCompute mr(T ) by computing ∆(T ) = M(T ).

1

2

3

4 5 6

8 7

Page 19: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

ExampleCompute mr(T ) by computing ∆(T ) = M(T ).

1

2

3

45 6

7

Page 20: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

ExampleCompute mr(T ) by computing ∆(T ) = M(T ).

1

2

3

5 6

7

Page 21: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

ExampleCompute mr(T ) by computing ∆(T ) = M(T ):

! the six vertices {1, 2, 3, 5, 6, 7} were deleted

! there are 18 paths

! M(T ) = ∆(T ) = 18− 6 = 12

! mr(T ) = 35− 12 = 23

1

2

3

5 6

7

Page 22: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

Adjacency matrix

! A(G ) = A = [aij ] where aij =

{1 if i ∼ j0 if i "∼ j

! σ(A) = (α1, . . . ,αn)

Example W5

2

1

3

45

A =

0 1 1 1 11 0 1 0 11 1 0 1 01 0 1 0 11 1 0 1 0

(α1,α2,α3,α4,α5) = (−2, 1−√

5, 0, 0, 1 +√

5)

Page 23: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

! If two graphs have different spectra (equivalently,different characteristic polynomials) of the adjacencymatrix, then they are not isomorphic

! However, non-isomorphic graphs can be cospectral

Example

p(x) = x6 − 7x4 − 4x3 + 7x2 + 4x − 1

Spectrally determined graphs:

! Complete graphs Empty graphs

! Graphs with one edge Graphs missing only 1 edge

! Regular of degree 2 Regular of degree n-3

! Kn,n,...,n mKn

Page 24: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

Laplacian matrix

! L(G ) = L = D −A(G ) whereD = diag(deg(1), . . . , deg(n)).

! σ(L) = (λ1, . . . ,λn)

Example W5

2

1

3

45

L =

4 −1 −1 −1 −1−1 3 −1 0 −1−1 −1 3 −1 0−1 0 −1 3 −1−1 −1 0 −1 3

(λ1,λ2,λ3,λ4,λ5) = (0, 3, 3, 5, 5)

Page 25: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

! isomorphic graphs must have the same Laplacianspectrum (i.e., Laplacian characteristic polynomial)

! non-isomorphic graphs can be Laplacian cospectral

! [Schwenk 73], [McKay 77] For almost all trees T thereis a non-somorphic tree T ′ that has both the sameadjacency spectrum and the same Lapalcian spectrum

! for any G , λ1(G ) = 0

! algebraic connectivity: λ2(G ), second smallesteigenvalue of L

! vertex connectivity: κv(G ), minimum number ofvertices in a cutset (G "= Kn)

! [Fiedler 73] λ2(G ) ≤ κv(G )

Example λ2(W5) = 3 = κv(W5)

Page 26: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

Signless Laplacian matrix

! |L|(G ) = |L| = D + A(G ) whereD = diag(deg(1), . . . , deg(n))

! σ(|L|) = (µ1, . . . , µn)

Example W5

2

1

3

45

|L| =

4 1 1 1 11 3 1 0 11 1 3 1 01 0 1 3 11 1 0 1 3

(µ1, µ2, µ3, µ4, µ5) = (1, 9−√

172 , 3, 3, 9+

√17

2 )

Page 27: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

Normalized adjacency matrix

! A =√

D−1A

√D−1

whereD = diag(deg(1), . . . , deg(n))

! σ(A) = (α1, . . . , αn)

Example W5

2

1

3

45

A =

0 12√

31

2√

31

2√

31

2√

31

2√

30 1

3 0 13

12√

313 0 1

3 01

2√

30 1

3 0 13

12√

313 0 1

3 0

(α1, α2, α3, α4, α5) = (−23 ,−1

3 , 0, 0, 1)

Page 28: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

Normalized Laplacian matrix

! L =√

D−1L

√D−1

! σ(L) = (λ1, . . . , λn)

Example W5

2

1

3

45

L =

1 − 12√

3− 1

2√

3− 1

2√

3− 1

2√

3− 1

2√

31 −1

3 0 −13

− 12√

3−1

3 1 −13 0

− 12√

30 −1

3 1 −13

− 12√

3−1

3 0 −13 1

(λ1, λ2, λ3, λ4, λ5) = (0, 1, 1, 43 , 5

3)

Page 29: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

Normalized Signless Laplacian matrix

! |L| =√

D−1|L|

√D−1

! σ(|L|) = (µ1, . . . , µn)

Example W5

2

1

3

45

|L| =

1 12√

31

2√

31

2√

31

2√

31

2√

31 1

3 0 13

12√

313 1 1

3 01

2√

30 1

3 1 13

12√

313 0 1

3 1

(µ1, µ2, µ3, µ4, µ5) = (13 , 2

3 , 1, 1, 2)

Page 30: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

Relationships between A,L, |L|, A, L, |L| and their spectra

Let G be a graph of order n.

! A + L = I

! So αn−k+1 + λk = 1

! |L| + L = 2I

! So µn−k+1 + λk = 2

Example W5 eigenvalue relationships

(α5, α4, α3, α2, α1) = (1, 0, 0,−13 ,−2

3)

(λ1, λ2, λ3, λ4, λ5) = (0, 1, 1, 43 , 5

3)

(µ5, µ4, µ3, µ2, µ1) = (2, 1, 1, 23 , 1

3)

Page 31: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

Let G be an r -regular graph of order n.

! L + A = rI , so λk = r − αn−k+1

! |L|−A = rI , so µk = r + αk

! A = 1r A, so αk = 1

r αk

! L = 1r L, so λk = 1

r λk

! |L| = 1r |L|, so µk = 1

r µk

Page 32: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

A,L, |L|, A, L, |L| and the incidence matrix

Let G be a graph with n vertices and m edges.

! incidence matrix P = P(G ) is the n ×m 0,1-matrixwith rows indexed by the vertices of G and columnsindexed by the edges of G

P = [pve ] where pve =

{1 if e is incident with v0 otherwise

! |L| = PPT

! |L| =√

D−1|L|

√D−1

= (√

D−1P)(

√D−1P)T

! L = P ′P ′T where P ′ is an oriented incidence matrix.

! L =√

D−1L

√D−1

= (√

D−1P ′)(

√D−1P ′)T

! L, |L|, L, |L| are all positive semidefinite

! all eigenvalues λk , µk , λk , µk are nonnegative.

Page 33: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

The spectral radius of B is ρ(B) = maxβ∈σ(B)

|β|

A, |L|, A, |L| ≥ 0 (nonnegative)

Theorem (Perron-Forbenius)

Let P ≥ 0 be irreducible. Then

! ρ(P) > 0,

! ρ(P) is an eigenvalue of P,

! eigenvalue ρ(P) has a positive eigenvector, and

! ρ(P) is a simple eigenvalue of P (multiplicity 1).

Page 34: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

Let G "= Kn be connected.

! σ(|L|) ⊆ [0, 2] and µn = 2 = ρ(|L|)! σ(A) ⊆ [−1, 1] and αn = 1 = ρ(A)

! σ(L) ⊆ [0, 2] and λ1 = 0

! 0 < λ2 ≤ 2

! nn−1 ≤ λn ≤ 2 and λn = 2 if and only if G is bipartite

!∑n

i=1 λi = n

Page 35: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

Colin de Verdiere’s graph parameters

! Colin de Verdiere defined new graph parameters µ(G )and ν(G )

! minor monotone! bound M from below! use the Strong Arnold Property

! Unlike the specific matrices originally used in spectralgraph theory, these parameters involve families ofmatrices

! Close connections with IEPG and minimum rank

Page 36: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

A minor of G is a graph obtained from G by a sequence ofedge deletions, vertex deletions, and edge contractions.

A graph parameter ζ is minor monotone if for every minor Hof G , ζ(H) ≤ ζ(G ).

X fully annihilates B if

1. BX = 0

2. X has 0 where B has nonzero

3. all diagonal elements of X are 0

The matrix B has the Strong Arnold Property (SAP) if thezero matrix is the only symmetric matrix that fullyannihilates B.

Page 37: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

See [van der Holst, Lovasz, Shrijver 99] for informationabout SAP

! SAP comes from manifold theory.

! RB = {C : rank C = rank B}.! SB = S(G(B)).

! B has SAP if and only if manifolds RB and SB intersecttransversally at B.

! Transversal intersection allows perturbation.

Page 38: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

µ(G ) = max{null(L)} such that

1. L is a generalized Laplacian matrix(L ∈ S(G ) and off-diagonal entries ≤ 0)

2. L has exactly one negative eigenvalue (with multiplicityone)

3. L has SAP

Theorem (Colin de Verdiere 90)

! µ is minor monotone

! µ(G ) ≤ 1 if and only if G is a path

! µ(G ) ≤ 2 if and only if G is outerplanar

! µ(G ) ≤ 3 if and only if G is planar

Page 39: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

! For any graph,µ(G ) ≤ M(G ).

! If G is not planar then 3 < µ(G ) ≤ M(G ) is sometimesuseful for small graphs

! To study minimum rank, generalized Laplacians andnumber of negative eigenvalues are not usually relevant

Page 40: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

Example

! K2,2,2 is planar but not outer planar, so µ(K2,2,2) = 3(no generalized Laplacian of K2,2,2 has rank 2)

! mr(K2,2,2) = 2 and M(K2,2,2) = 4

K2,2,2

1

2

3

4

6

5

rankB =

0 1 −1 0 1 11 0 1 1 0 1−1 1 −2 −1 1 00 1 −1 0 1 11 0 1 1 0 11 1 0 1 1 2

= 2

Page 41: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

ν(G ) = max{null(B)} such that

1. B ∈ S(G )

2. B is positive semi-definite

3. B has SAP

! [Colin de Verdiere] ν is minor monotone

! For any graph, ν(G ) ≤ M(G )

Page 42: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

To study minimum rank, positive semi-definite is not usuallyrelevant.

Example

! No positive semi-definite matrix in S(K2,3) has rank 2so ν(K2,3) = 2

! mr(K2,3) = 2 and M(K2,3) = 3

K2,3

1

2

3 4 5rankB =

0 0 1 1 10 0 1 1 11 1 0 0 01 1 0 0 01 1 0 0 0

= 2

Page 43: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

The new parameter ξ

! To study minimum rank,positive semi-definite, generalized Laplacians andnumber of negative eigenvalues usually are not relevant.

! Minor monotonicity is useful.

Definitionξ(G ) = max{null(B) : B ∈ S(G ),B has SAP}

Example: ξ(K2,2,2) = 4 = M(K2,2,2) because the matrix Bhas SAP

Example: ξ(K2,3) = 3 = M(K2,3) because the matrix B hasSAP

Page 44: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

For any graph G ,

! µ(G ) ≤ ξ(G )

! ν(G ) ≤ ξ(G )

! ξ(G ) ≤ M(G )

! ξ(Pn) = 1 = M(Pn)

! ξ(Kn) = n − 1 = M(Kn)

! If T is a non-path tree, ξ(T ) = 2.

Page 45: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

Theorem (Barioli, Fallat, Hogben 05)

ξ is minor monotone.

Forbidden minorsSince ξ is minor monotone, the graphs G such that ξ(G ) ≤ kcan be characterized by a finite set of forbidden minors.

ξ(G ) ≤ 1 if and only if G contains no K3 or K1,3 minor.

K3

K1,3

Page 46: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

Theorem (Hogben, van der Holst 07)

ξ(G ) ≤ 2 if and only if G contains no minor in the T3 family.

T3 family

K2,3K

4

T3

Page 47: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

Minimum rank problem

Minimum rank is characterized for:

! trees [Nylen 96], [Johnson, Leal-Duarte 99]

! unicyclic graphs [Barioli, Fallat, Hogben 05]

! extreme minimum rank:mr(G ) = 0, 1, 2: [Barrett, van der Holst, Loewy 04]mr(G ) = |G |− 1, |G |− 2: [Fiedler 69],[Hogben, van der Holst 07], [Johnson, Loewy, Smith]

Reduction techniques for

! cut-set of order 1 [Barioli, Fallat, Hogben 04]and order 2 [van der Holst 08]

! joins [Barioli, Fallat 06]

Page 48: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

Minimum rank graph catalogs

! Minimum rank of many families of graphs determinedat the 06 AIM Workshop.

! On-line catalogs of minimum rank for small graphs andfamilies developed.

! The ISU group determined the order of all graphs oforder 7.

Minimum rank of families of graphshttp://aimath.org/pastworkshops/catalog2.html

Minimum rank of small of graphshttp://aimath.org/pastworkshops/catalog1.html

Page 49: Combinatorial Matrix Theory and - Index of - Iowa State University

CombinatorialMatrix Theory and

Spectral GraphTheory

Leslie Hogben

Introduction

IEPG

Minimum RankBasic propertiesTrees

Spectral GraphTheorySpecific MatricesRelationships

CdV Parametersµ(G), ν(G)ξ(G)Forbidden minors

mr: Recent Resultsmr graph catalogs

Thank You!