Download - Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

Transcript
Page 1: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

Coherent-π production experiments review

Hide-Kazu TANAKAMIT

Page 2: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

Outline• Introduction

• Measurements in past

• Recent results at low energy

• K2K, MiniBooNE, SciBooNE

• Future prospect

• Summary

2

Page 3: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

Coherent pion production

3

Aνπ

• Neutrino interacts with nucleons coherently, producing a pion• No nuclear breakup occurs

Charged Current (CC): νµ+A→µ+A+π+

Neutral Current (NC): νµ+A→νµ+A+π0

ν (ν) µ± (ν / ν)

W± (Z) π±(0)

A

q2

tA

Coherence requires: t = (q - pπ)2 < 1/R2

where R is the size of the nucleus.

From the Rein-Sehgal model:1) σ(CC) = 2 σ(NC)2) σ(A) ~ A1/3

3) σ( ν ) ~ σ( ν )Characterized by a small momentum transfer to the nucleus, forward going π.

Page 4: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

Measurements in past• Measurements for ν, ν CC and NC modes

• for various nuclear targets

• High energy region: >7GeV (CC), >2GeV (NC)• R&S model agrees with the high energy results.

4

Experiments CC/NC ν / ν E (GeV) Target<A>

Aachen-Padova NC ν, ν 2 Al<27>

Gargamelle NC ν, ν 2 Freon <30>

CHARM NC ν, ν 20-30 Glass <20.7>

CHARM II CC ν, ν 20-30 Glass <20.7>

BEBC CC ν 5-100 Ne/H2 <20>

SKAT CC, NC ν, ν 3-20 Freon <30>

FNAL 15-ft NC ν 2-100 Ne/H2 <20>

FNAL 15-ft E632 CC ν, ν 10-100 Ne/H2

<20>

Assume:•  A1/3 dependence•  σ(CC coherent)=2*σ(NC coherent)

Volume 313, number 1,2 PHYSICS LETTERS B 26 August 1993

300

250

o E 200

~b 150

.-~ 100

50

300 ' ' ' ' I ' ~ ' ' I ' ' ' ' I ' ~

Z , i i I i i i i I i i i I I i

0 50 100 150 0

Ev [GeV]

250

•Eo200 ~-~" 150

% 13 ~ 100

5O

- I I I I I I I I I I I I I I I I

B&K

i i i l i i i i I i i i I I i

50 100 150

E ~ [ GeV]

Fig. 5. Visible cross section (En >/ 5 GeV) for coherent single charged plon production for neutrino and antmeutrmo induced

interactions. The predictions of the Rein-Sehgal model (full hne) and of the Bel 'kov-Kopehovlch model (dashed hne) are

indicated

500

400

E o 300

o .?,

~ 200

100

500

i i i I i i i I i ' i ' ' ' ' i i i i i i i i i , i s i

• penment) .I ~ TI x Aachen ~ Padua [1] +Gargamelle[2] 4~"t' " • CHARM.L3].. • SKAT (CC) [4] ./~ ¢, SKAT (NC) [4] • BEBC[7]

, , I , , I , , , I ,O,F~A~-[~],, I , ,qF~/~LI9], I , 20 40 60 80 100 120 140

E v [GeV]

I i I I I I I I i l l I I I I I I l l i I I I i l l I

400 ~ _

300 i ~ :

b 200

J, )~LJT/"1~. ' .L ~ d u a [1] + Gargamelle [2] 100 • CHARM [3] T

i , I i i i I M t , I R M , I r , , I i m r I i i i I i

0 20 40 60 80 100 120 140

E~ [GeV]

Fig. 6. Compilation of experiments on coherent single p]on producUon. Shown are the results from both neutral current

[ 1-4] and charged current [4-9] data, for neutrino and antmeutrmo reduced interactions. The FNAL [8,9 ] values from

combined neutrino and antmeutrmo data have been included m the upper dxagram For this experiment the results for the

visible cross section were corrected for the selecUon of En >/ 5 GeV according to the Bel'kov-Kopellov~ch approach. Data

from other experiments have been scaled, where necessary, to allow comparison The pred]cuons of the Rem-Sehgal model

(full hne) and of the Bel 'kov-Kopeliovlch model (dashed hne) are mdxcated.

274

Plots from Phys.Lett. B313, 267-275 (1993)

ν

ν

Page 5: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

Recent resultsat low energy (~1GeV)

5

• <Eν>=1.3 GeV• Target: Scintillator (CH)

• Tracking detector

• Experimental signature:• Two MIP-like (µ+π) tracks • By looking at recoil proton (vertex

activity) isolate coh-π

Coherent π (MC)

Resonant π (MC)

Vertex activity (recoil proton)

πμ

π

μ

• <Eν>=1.1GeV• Target: Mineral oil (CH2)

• Cherenkov detector• Experimental signature:

• Two e-like ring (π0→γγ) events• With pion in forward direction

ν NC coherent π0

MiniBooNE: Phys. Lett. B664, 41 (2008)

ν CC coherent π+

K2K-SciBar: Phys. Rev Lett. 95, 252301 (2005)

Difficulties

This mode is buried beneath a

mountain of CCQE.

The three tracks tend to have

overlapping rings.

!0!

+= CC!

0 three

ring mess....

Sample events purity

total MC 267007 100%

CCQE 168723 63%

CC!0 16504 6%

CC!+ 66268 25%

Data 341272

Data/MC 1.28

Data: 6.3·1020 p.o.t.

MC: 41.1·1020 p.o.t.

Page 6: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

Recent resultsat low energy (~1GeV)

6

ν NC coherent π0

MiniBooNE: Phys. Lett. B664, 41 (2008)

ν CC coherent π+

K2K-SciBar: Phys. Rev Lett. 95, 252301 (2005)

= (0.04 ± 0.29 (stat.) +0.32- 0.35 (sys.)) x 10-2

Cross section ratio: σ(CC coh-π) / σ (CC)

No evidence of CC coherent π prod.

CoherentResonant

Background

Coherent fraction in NC-1π0:

Ncoh/(Ncoh + Nres) = (19.5 ± 1.1 (stat.) ± 2.5 (sys.))%

Clear evidence of NC coherent π prod.

Page 7: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

More NC-π0 from MiniBooNE

7

C.E. Anderson at NuInt09 • New NC-π0 results for both ν and ν beam modes.

• Demonstrated comparison between data and models

• ν and ν data suggest:

• Clear evidence of non-zero NC coh-π

• Forward angular distribution is sensitive to model predictions

ν

ν

NOTE: MC distributions are absolutely normalized

Page 8: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

CC coh-π results from SciBooNE

8

MRD stopped sample<Eν>= 1.1 GeV

MRD penetrated sample<Eν>= 2.2 GeV

No evidence of CC coherent pion produc2on was found.➜ Confirmed K2K results

Phys . Rev. D78 112004, 2008

Page 9: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

Upper limit on cross section

9

Measured upper limits on σ(CC coherent π)/σ(CC) raGos are converted to upper limits on absolute cross secGons by using σ(CC) predicted by MC simulaGon.

Rein-Sehgalw/ lepton mass correction(Our default model)

Alvarez-Ruso et al.

Kartavtsev et al.

SciBooNE 90% C.L.

Recently proposed CC coherent π models predict production of CC coherent π events just below our upper limit.

➜ Search for ν CC coherent pion production, since ν data is expected to be more sensitive to look at CC coherent π production than ν data.

New coherent π models:•Singh et al., Phys Rev. Lett. 96:241801 (2006).•Paschos and Kartavtsev, Phys. Rev D74:054007

(2006).•Alvarez-Ruso et al., Phys. Rev C75:05501 (2007).•Nakamura et al. arXiv:0901.2366•Hernandez et al. Phys. ReV D76, 033005 (2007),

D79, 013002 (2009)•...

Upper limit:33% of the prediction

Page 10: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

Search for ν CC coherent π at SciBooNE

10

Mon May 11 11:02:50 2009

Entries 245

(GeV/c)µP

0 0.2 0.4 0.6 0.8 1 1.2 1.40

10

20

30

40

50

60

70 Entries 245

, fwd, nQE nuCOMBO)!+µ (MRD stop 2trk, µ

P

0 0.2 0.4 0.6 0.8 1 1.2 1.40

10

20

30

40

50

60

70 Entries 245 Entries 245

(degree)µ"

0 10 20 30 40 50 60 70 80 900

10

20

30

40

50

60

70

Entries 245

, fwd, nQE, nuCOMBO)!+µ (MRD penet 2trk, µ"

0 10 20 30 40 50 60 70 80 900

10

20

30

40

50

60

70

Entries 245 Entries 245

(GeV)rec.

#E0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

10

20

30

40

50

60 Entries 245

, fwd, nQE, nuCOMBO)!+µ (MRD penet 2trk, #

E

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

10

20

30

40

50

60 Entries 245 Entries 245

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

10

20

30

40

50

60

70

80

90 Entries 245

, fwd, nQE, nuCOMBO)!+µ (MRD penet 2trk, 2

Q

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

10

20

30

40

50

60

70

80

90 Entries 245

(GeV/c)µP

0 0.2 0.4 0.6 0.8 1 1.2 1.4

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(degree)µ"

0 10 20 30 40 50 60 70 80 90

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(GeV)rec.

#E0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ν coherent π sample also show data deficit at low Q2 region.

ν Coherent-π sample(µ+π w/o activity)

Qrec2 (GeV/c)2

Used the same selection criteria as ν coherent π (NOTE: no syst. error included, no MC tuning yet)

+: dataWed May 6 17:07:54 2009

! CC coherent "

! CC coherent "

(wrong sign)"

CC other"

! CC resonant "

CC QE"

NC"

BG (EC/MRD events)

coherent-π

But data suggest non-zero CC coherent π component.

Mon May 11 11:02:48 2009

Entries 245

(GeV/c)µP

0 0.2 0.4 0.6 0.8 1 1.2 1.40

5

10

15

20

25

30

35

40

45 Entries 245

nonQE, w/ activity)!+µ (2track µP

0 0.2 0.4 0.6 0.8 1 1.2 1.40

5

10

15

20

25

30

35

40

45 Entries 245 Entries 245

(degree)µ"

0 10 20 30 40 50 60 70 80 900

5

10

15

20

25

30

35

40Entries 245

nonQE, w/ activity)!+µ (2track µ"

0 10 20 30 40 50 60 70 80 900

5

10

15

20

25

30

35

40Entries 245 Entries 245

(GeV)rec.

#E0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

5

10

15

20

25

30

35

40 Entries 245

nonQE, w/ activity)!+µ (2track #

E

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

5

10

15

20

25

30

35

40 Entries 245 Entries 245

2 (GeV/c)rec.

2Q0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

60

70

80

Entries 245

nonQE, w/ activity)!+µ (2track 2

Q

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

10

20

30

40

50

60

70

80

Entries 245

(GeV/c)µP

0 0.2 0.4 0.6 0.8 1 1.2 1.4

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(degree)µ"

0 10 20 30 40 50 60 70 80 90

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(GeV)rec.

#E0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 (GeV/c)rec.

2Q0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ν Coherent π counter sample

(µ+π w/ activity)

Qrec2 (GeV/c)2

11

PreliminaryPreliminary

Page 11: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

Search for ν CC coherent π at SciBooNE

11

Define signal region: Q2<0.1 (GeV/c)2

- 139 events observed- 80 non-coherent π events (BG)

➜ Data - BG: 59±14 (stat)

NEUT (R&S) prediction: 151 (ν:130 ν:21)

➜ Upper limit of ν results 33% of the prediction: 50 (ν+ν)

4σ level “data excess”.

And consistent with ν CC coh-π upper limit within stat error.

Mon May 11 11:02:50 2009

Entries 245

(GeV/c)µP

0 0.2 0.4 0.6 0.8 1 1.2 1.40

10

20

30

40

50

60

70 Entries 245

, fwd, nQE nuCOMBO)!+µ (MRD stop 2trk, µ

P

0 0.2 0.4 0.6 0.8 1 1.2 1.40

10

20

30

40

50

60

70 Entries 245 Entries 245

(degree)µ"

0 10 20 30 40 50 60 70 80 900

10

20

30

40

50

60

70

Entries 245

, fwd, nQE, nuCOMBO)!+µ (MRD penet 2trk, µ"

0 10 20 30 40 50 60 70 80 900

10

20

30

40

50

60

70

Entries 245 Entries 245

(GeV)rec.

#E0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

10

20

30

40

50

60 Entries 245

, fwd, nQE, nuCOMBO)!+µ (MRD penet 2trk, #

E

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

10

20

30

40

50

60 Entries 245 Entries 245

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

10

20

30

40

50

60

70

80

90 Entries 245

, fwd, nQE, nuCOMBO)!+µ (MRD penet 2trk, 2

Q

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

10

20

30

40

50

60

70

80

90 Entries 245

(GeV/c)µP

0 0.2 0.4 0.6 0.8 1 1.2 1.4

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(degree)µ"

0 10 20 30 40 50 60 70 80 90

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(GeV)rec.

#E0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ν Coherent-π sample(µ+π w/o activity)

Qrec2 (GeV/c)2

coherent-π

Preliminary

Preliminary & stat. error only

Page 12: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

ν CC coherent π sample in θπ vs θµ

12

Wed May 6 17:19:23 2009

0

5

10

15

20

25

µP0 10 20 30 40 50 60 70 80 90

µ!

0

10

20

30

40

50

60

70

80

90

, fwd, nQE NoMC-coh)"+µ (MRD stop 2trk, "! vs

µ! , fwd, nQE NoMC-coh)"+µ (MRD stop 2trk,

"! vs

µ!

0

2

4

6

8

10

12

14

16

18

µP0 10 20 30 40 50 60 70 80 90

µ!

0

10

20

30

40

50

60

70

80

90

, fwd, nQE NoMC-coh)"+µ (MRD stop 2trk, "! vs

µ! , fwd, nQE NoMC-coh)"+µ (MRD stop 2trk,

"! vs

µ!

-4

-3

-2

-1

0

1

2

3

µP0 10 20 30 40 50 60 70 80 90

µ!

0

10

20

30

40

50

60

70

80

90

, fwd, nQE NoMC-coh)"+µ (MRD stop 2trk, "! vs

µ! , fwd, nQE NoMC-coh)"+µ (MRD stop 2trk,

"! vs

µ!

Data MC (no coh-π)

“Data excess” insmall θπ && small θµ

θπ(deg)

1030

5070

Preliminary Preliminary

1030

5070

θπ(deg)

10 30 50 70 θµ (deg)

10 30 50 70 θµ (deg)

Wed May 6 17:19:23 2009

0

5

10

15

20

25

µP0 10 20 30 40 50 60 70 80 90

µ!

0

10

20

30

40

50

60

70

80

90

, fwd, nQE NoMC-coh)"+µ (MRD stop 2trk, "! vs

µ! , fwd, nQE NoMC-coh)"+µ (MRD stop 2trk,

"! vs

µ!

0

2

4

6

8

10

12

14

16

18

µP0 10 20 30 40 50 60 70 80 90

µ!

0

10

20

30

40

50

60

70

80

90

, fwd, nQE NoMC-coh)"+µ (MRD stop 2trk, "! vs

µ! , fwd, nQE NoMC-coh)"+µ (MRD stop 2trk,

"! vs

µ!

-4

-3

-2

-1

0

1

2

3

µP0 10 20 30 40 50 60 70 80 90

µ!

0

10

20

30

40

50

60

70

80

90

, fwd, nQE NoMC-coh)"+µ (MRD stop 2trk, "! vs

µ! , fwd, nQE NoMC-coh)"+µ (MRD stop 2trk,

"! vs

µ!

10 30 50 7010305070

Preliminary

θπ(deg)

θµ (deg)

θπθµ ν beam

direction

µ

π

[Data-MC(no coh)] / stat. err

Page 13: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

ν CC coherent π sample in θπ vs θµ

12

Wed May 6 17:19:23 2009

0

5

10

15

20

25

µP0 10 20 30 40 50 60 70 80 90

µ!

0

10

20

30

40

50

60

70

80

90

, fwd, nQE NoMC-coh)"+µ (MRD stop 2trk, "! vs

µ! , fwd, nQE NoMC-coh)"+µ (MRD stop 2trk,

"! vs

µ!

0

2

4

6

8

10

12

14

16

18

µP0 10 20 30 40 50 60 70 80 90

µ!

0

10

20

30

40

50

60

70

80

90

, fwd, nQE NoMC-coh)"+µ (MRD stop 2trk, "! vs

µ! , fwd, nQE NoMC-coh)"+µ (MRD stop 2trk,

"! vs

µ!

-4

-3

-2

-1

0

1

2

3

µP0 10 20 30 40 50 60 70 80 90

µ!

0

10

20

30

40

50

60

70

80

90

, fwd, nQE NoMC-coh)"+µ (MRD stop 2trk, "! vs

µ! , fwd, nQE NoMC-coh)"+µ (MRD stop 2trk,

"! vs

µ!

Data MC (no coh-π)

“Data excess” insmall θπ && small θµ

θπ(deg)

1030

5070

Preliminary Preliminary

1030

5070

θπ(deg)

10 30 50 70 θµ (deg)

10 30 50 70 θµ (deg)

Wed May 6 17:19:23 2009

0

5

10

15

20

25

µP0 10 20 30 40 50 60 70 80 90

µ!

0

10

20

30

40

50

60

70

80

90

, fwd, nQE NoMC-coh)"+µ (MRD stop 2trk, "! vs

µ! , fwd, nQE NoMC-coh)"+µ (MRD stop 2trk,

"! vs

µ!

0

2

4

6

8

10

12

14

16

18

µP0 10 20 30 40 50 60 70 80 90

µ!

0

10

20

30

40

50

60

70

80

90

, fwd, nQE NoMC-coh)"+µ (MRD stop 2trk, "! vs

µ! , fwd, nQE NoMC-coh)"+µ (MRD stop 2trk,

"! vs

µ!

-4

-3

-2

-1

0

1

2

3

µP0 10 20 30 40 50 60 70 80 90

µ!

0

10

20

30

40

50

60

70

80

90

, fwd, nQE NoMC-coh)"+µ (MRD stop 2trk, "! vs

µ! , fwd, nQE NoMC-coh)"+µ (MRD stop 2trk,

"! vs

µ!

10 30 50 7010305070

Preliminary

θπ(deg)

θµ (deg)

θπθµ ν beam

direction

µ

π

[Data-MC(no coh)] / stat. err

θπ <35oMon May 11 11:02:50 2009

Entries 146

(GeV/c)µP

0 0.2 0.4 0.6 0.8 1 1.2 1.40

5

10

15

20

25

30

35 Entries 146

< 35)!" sample, ! (MRD stop coh-µP

0 0.2 0.4 0.6 0.8 1 1.2 1.40

5

10

15

20

25

30

35 Entries 146 Entries 146

(degree)µ"

0 10 20 30 40 50 60 70 80 900

5

10

15

20

25

30

35

40Entries 146

< 35)!" sample, ! (MRD stop coh-

µ"

0 10 20 30 40 50 60 70 80 900

5

10

15

20

25

30

35

40Entries 146 Entries 146

(GeV)rec.

#E0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

5

10

15

20

25

30

Entries 146

< 35)!" sample, ! (MRD stop coh-#E

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

5

10

15

20

25

30

Entries 146 Entries 146

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

10

20

30

40

50Entries 146

< 35)!" sample, ! (MRD stop coh-2Q

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

10

20

30

40

50Entries 146

(GeV/c)µP

0 0.2 0.4 0.6 0.8 1 1.2 1.4

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(degree)µ"

0 10 20 30 40 50 60 70 80 90

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(GeV)rec.

#E0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Pµ θµ

coherent-π

θπ >35o

Mon May 11 11:02:51 2009

Entries 99

(GeV/c)µP

0 0.2 0.4 0.6 0.8 1 1.2 1.40

5

10

15

20

25

30

Entries 99

> 35)!" sample, ! (MRD stop coh-µP

0 0.2 0.4 0.6 0.8 1 1.2 1.40

5

10

15

20

25

30

Entries 99 Entries 99

(degree)µ"

0 10 20 30 40 50 60 70 80 900

5

10

15

20

25

30

35 Entries 99

> 35)!" sample, ! (MRD stop coh-

µ"

0 10 20 30 40 50 60 70 80 900

5

10

15

20

25

30

35 Entries 99 Entries 99

(GeV)rec.

#E0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

5

10

15

20

25

Entries 99

> 35)!" sample, ! (MRD stop coh-#E

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

5

10

15

20

25

Entries 99 Entries 99

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

5

10

15

20

25

30

35

40

Entries 99

> 35)!" sample, ! (MRD stop coh-2Q

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

5

10

15

20

25

30

35

40

Entries 99

(GeV/c)µP

0 0.2 0.4 0.6 0.8 1 1.2 1.4

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(degree)µ"

0 10 20 30 40 50 60 70 80 90

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(GeV)rec.

#E0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Pµ θµ

Page 14: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

ν CC coherent π

13

Mon Jul 6 12:48:54 2009

Entries 140

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

5

10

15

20

25

30

35

40

45

Entries 140

< 35)!" sample, ! (MRD stop coh-

2Q

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

5

10

15

20

25

30

35

40

45

Entries 140 Entries 94

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

5

10

15

20

25

30

35

40 Entries 94

> 35)!" sample, ! (MRD stop coh-

2Q

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

5

10

15

20

25

30

35

40 Entries 94

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ν coh-π, θπ < 35o

Mon Jul 6 12:48:54 2009

Entries 140

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

5

10

15

20

25

30

35

40

45

Entries 140

< 35)!" sample, ! (MRD stop coh-

2Q

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

5

10

15

20

25

30

35

40

45

Entries 140 Entries 94

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

5

10

15

20

25

30

35

40 Entries 94

> 35)!" sample, ! (MRD stop coh-

2Q

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

5

10

15

20

25

30

35

40 Entries 94

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 (GeV/c)rec.

2Q0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

DA

TA

/MC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ν coh-π, θπ > 35o

Signal region: Q2<0.1- 87 events observed- 31 non-coherent π events (BG)

➜ Data - BG: 56±11 (stat)NEUT (R&S) prediction: 92 (ν+ν)

Qrec2

Signal region: Q2<0.1- 52 events observed- 49 non-coherent π events (BG)

➜ Data - BG: 2.6±8.5 (stat)

NEUT (R&S) prediction: 59 (ν+ν)

Preliminary & stat. error only

CC coherent π component at small θπ region.

Qrec2

Page 15: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

ν CC coherent π

14

θπ < 35 deg θπ > 35 deg

Δφ Δφ

• Similar enhancement in ν data ➜ Pions from CC coh-π production tend to be produced more forward than prediction.

• Important to measure π kinematics.

• In order to describe data, pion kinematics description needs to be improved.

θπ distribution

ν

coherent-π

K. Hiraide at NuInt09

• Hint for CC/NC coherent π puzzle at low energy??• NC coh-π measurement was based on π0-kinematics, CC coh-π

measurement was based on µ-kinematics.

Page 16: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

NC-π0 from SciBooNE

15

σ(NC-π0)σ(CC)

= 7.5 ± 0.6(stat.) +0.760.90 (sys.) x 10-2 !

!"#$%&'()*%+,#)-*'.#+/*#012#

!"#3),,# !"#34('&*/(

5677#('.8'#9+4:;<#)&=#94*:'.<#),#4&'#+474.#-4.#>?@

NC-π0 (resonant+coherent)

OtherDirt eventCosmic ray

Preliminary

Reconstructed invariant mass in 2γ system

σ(NC-π0)σ(CC) = 6.8 x 10-2cf. MC prediction:

Page 17: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

NC-π0 from SciBooNE

15

σ(NC-π0)σ(CC)

= 7.5 ± 0.6(stat.) +0.760.90 (sys.) x 10-2 !

!"#$%&'()*%+,#)-*'.#+/*#012#

!"#3),,# !"#34('&*/(

5677#('.8'#9+4:;<#)&=#94*:'.<#),#4&'#+474.#-4.#>?@

NC-π0 (resonant+coherent)

OtherDirt eventCosmic ray

Preliminary

Reconstructed invariant mass in 2γ system

! ! "#

!!"#$%&'"(')*'+,",-".'/0"/12)3-$,/2$")/0*&'3-$,/2$")/0*&' 4-$"+-$,/2$")/0*&'

cosθπ

NC-π0 (primary, res+coh)NC-π0 (secondary)

Data/MC prediction are in fairy good agreement.

σ(NC-π0)σ(CC) = 6.8 x 10-2cf. MC prediction:

Page 18: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

NC-π0 from SciBooNE

16

σ(NC-π0)σ(CC)

= 7.5 ± 0.6(stat.) +0.760.90 (sys.) x 10-2 !

!"#$%&'()*%+,#)-*'.#+/*#012#

!"#3),,# !"#34('&*/(

5677#('.8'#9+4:;<#)&=#94*:'.<#),#4&'#+474.#-4.#>?@

NC-π0 (resonant+coherent)

OtherDirt eventCosmic ray

Preliminary

Reconstructed invariant mass in 2γ system

σ(NC-π0)σ(CC) = 6.8 x 10-2cf. MC prediction:

: SciBar hit, area∝energy deposit

SciBar EC MRD

γ→e+e

Recoiled proton?

γ→e+e

SciBar has a capability to distinguish NC resonant-π0 and coherent-π0 event-by-event.

ν

Page 19: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

Future prospect• MINERvA (NuMI at Fermilab) has an excellent

capability for CC and NC coherent π productions

• Wide energy range: Eν ~2-20 GeV • Several nuclear targets: He, C (and CH), Fe, Pb

• Reconstruct energy of final state hadronic system.

• Data taking starts soon.

• Have been running with the full Tracking Prototype in the ν beam since mid April 2009!

17

CC Coherent Pion Production Cross Section

0

100

200

300

400

500

0 2.5 5 7.5 10 12.5 15 17.5 20E! (GEV)

" (1

0-40 C

M2 )/12

C N

UC

LEU

S

A-Dependence of 5 GeV CC Coherent Cross-Section

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

0 25 50 75 100 125 150 175 200

A

!(1

0-3

8 c

m2/n

uc

leu

s)

Figure 13: Left: Coherent cross-sections measured by MINER!A compared with existing publishedresults. MINER!A errors here are statistical only. Right: Measurement of the coherent cross-section asa function of atomic number in MINER!AThe shaded band indicates the range of previous measure-ments. Error bars indicate the size of the experimental errors in a single 1-GeV bin. The curve showsthe prediction from the Rein-Seghal model. Crosses are the prediction of the Rein-Seghal model forscattering from carbon, iron, and lead, circles are the predictions of the Paschos-Kartavtsev model.

Applying this set of cuts to our signal sample we find that 7698 signal events pass all cuts, whichgives an overall efficiency of 31%. Applying the factor 0.65 to account for the fact that we have notused fully reconstructed quantities for our kinematic cuts gives us a final event sample of 5004 events.Applying these cuts to the background sample we find that 12 events out of 20k pass all cuts. Nor-malized to the total event rate, this gives an expected background of 4400 events. We note that in thisanalysis other important variables for background rejection, related to associated activity around thevertex, were not used. Figure 13 shows the expected precision of the MINER!A measurement as afunction of neutrino energy. Here we have only included the statistical error on the signal and assumedthat the measured value is that predicted by Rein-Seghal. No attempt has not been made to quantifythe systematic errors on this measuerment other than that resulting from the background subtraction.Previous measurements of the coherent cross-section were statistics limited.

3.3.2 A-dependence of the coherent cross-section

Another task for MINER!A will be comparison of reaction rates for lead and carbon. The expectedyield from lead will be! 1800 charged-current events, assuming the same efficiency. The A-dependenceof the cross-section depends mainly on the model assumed for the hadron–nucleus interaction, andserves as a crucial test for that component of the predictions. No experiment to date has been ableto perform this comparison. For reference, the predicted ratio of carbon to lead neutral-current cross-sections at 10 GeV in the Rein-Sehgal and Paschos models are 0.223 and 0.259, respectively [57].Figure 13 shows the predicted A-dependence according to the model of Rein and Sehgal.

26

A-range of current measurements

Expected MINERvA statistics

A-dependence of CC coh-π

Plots from MINERvA proposal

Page 20: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

Summary• Several measurements on coherent pion production.

• ν, ν, CC and NC modes

• Recent results on CC/NC coherent π at low energy, ~1GeV.

• Although good agreement between high energy results and R&S model, not so for low energy results.

• Data suggest: pions from CC coherent π tend to be produced more forward than R&S model prediction.

• A variety of models has been proposed.

• New experimental results will be published shortly.

• Experimental & theoretical studies are in progress.

18

Page 21: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

Backup

19

Page 22: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

CC-π+ at MiniBooNE

20

J. Nowak at NuInt09

Page 23: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

SciBooNE efficiency

21

!!!"#$%&%'(!)*!%++*"*%'",

-.!/!0!"!0!1'2!"#!

!!

3)%'*'4!1'45%/*#'!1'45%/*#'!6#6%'(76

8++*"*%'",

8++*"*%'",!2&#).!1(!!1!.6155

9:;<!2%4&%%.=!#)%'*'4!1'45%

>%(?%%'!67#'!1'2!)*#'

@#!%++*"*%'",!+#&!)*#'!

6#6%'(76!>%5#?!<ABC!D%EF"

8++*"*%'",

8++*"*%'",

The efficiency calculation depends on the model prediction of kinematics

K. Hiraide at NuInt09

Page 24: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

Eν, Q2 reconstruction

22

(Pµ,θµ)

p

µ

CC-QE

Eν, Q2 reconstruction assuming CC-QE (ν+n→µ+p)

Q2rec = 2Erec

! (Eµ ! pµ cos !µ)!m2µ

Erec! =

12

(M2p !m2

µ)! (Mn ! V )2 + 2Eµ(Mn ! V )(Mn ! V )! Eµ + pµ cos !µ

V: nuclear potential (27MeV)

Uses only muon kinematics

!

!"#$%&'"(%)*+,"-./0"12$)3

!

!"#$%&'"(%)*+,"-./0"12$)3

θµ

!"

!"#$%&'()#'"*+,!, +-2+.&&)/0%1+22-,+30%"/.'0#&4+

!"#$%&'(!"!#$%&'()!#*+$,! #-$.'!/0

&)&*+,-./&01-23&45$16,%5-7

5!,67879:

!; 1/!23'4567/

Eνrec

!

!"#$%&'"(%)*+,"-./0"12$)3Q2rec

SciBooNE 1-trk sample

Preliminary

Preliminary

CC-QECC-resonant πCC-coherent πNCBkg (EC/MRD)

Data

rec

Page 25: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

Q2 resolution forCC coherent π

23

41

Q2 resolution of CC-coherent ! events

Mean: -0.024 (GeV/c)2

Sigma: 0.016 (GeV/c)2

Q2 resolution of CC-coherent ! sample

Q2 resolution of CC-coherent πevents

Mean: -0.024 (GeV/c)2 Sigma: 0.016 (GeV/c)2

Page 26: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

ν Coherent pion production

• Neutrino interacts with nucleons coherently, producing a pion• No nuclear breakup occurs

Charged Current (CC): νµ+A→µ+A+π+

Neutral Current (NC): νµ+A→νµ+A+π0

Several measurements in past (‘80-’90).

Volume 313, number 1,2 PHYSICS LETTERS B 26 August 1993

300

250

o E 200

~b 150

.-~ 100

50

300 ' ' ' ' I ' ~ ' ' I ' ' ' ' I ' ~

Z , i i I i i i i I i i i I I i

0 50 100 150 0

Ev [GeV]

250

•Eo200 ~-~" 150

% 13 ~ 100

5O

- I I I I I I I I I I I I I I I I

B&K

i i i l i i i i I i i i I I i

50 100 150

E ~ [ GeV]

Fig. 5. Visible cross section (En >/ 5 GeV) for coherent single charged plon production for neutrino and antmeutrmo induced

interactions. The predictions of the Rein-Sehgal model (full hne) and of the Bel 'kov-Kopehovlch model (dashed hne) are

indicated

500

400

E o 300

o .?,

~ 200

100

500

i i i I i i i I i ' i ' ' ' ' i i i i i i i i i , i s i

• penment) .I ~ TI x Aachen ~ Padua [1] +Gargamelle[2] 4~"t' " • CHARM.L3].. • SKAT (CC) [4] ./~ ¢, SKAT (NC) [4] • BEBC[7]

, , I , , I , , , I ,O,F~A~-[~],, I , ,qF~/~LI9], I , 20 40 60 80 100 120 140

E v [GeV]

I i I I I I I I i l l I I I I I I l l i I I I i l l I

400 ~ _

300 i ~ :

b 200

J, )~LJT/"1~. ' .L ~ d u a [1] + Gargamelle [2] 100 • CHARM [3] T

i , I i i i I M t , I R M , I r , , I i m r I i i i I i

0 20 40 60 80 100 120 140

E~ [GeV]

Fig. 6. Compilation of experiments on coherent single p]on producUon. Shown are the results from both neutral current

[ 1-4] and charged current [4-9] data, for neutrino and antmeutrmo reduced interactions. The FNAL [8,9 ] values from

combined neutrino and antmeutrmo data have been included m the upper dxagram For this experiment the results for the

visible cross section were corrected for the selecUon of En >/ 5 GeV according to the Bel'kov-Kopellov~ch approach. Data

from other experiments have been scaled, where necessary, to allow comparison The pred]cuons of the Rem-Sehgal model

(full hne) and of the Bel 'kov-Kopeliovlch model (dashed hne) are mdxcated.

274

Plots from Phys.Lett. B313, 267-275 (1993)

ν

ν

40

40

Eν (GeV)

Eν (GeV)

x 10-38 cm2

2

2High energy results and the model suggest: cross sections of coherent π prod. for ν and ν are similar size.σ(νCC-coh) ~ σ(ν CC-coh)

Solid line: Rein-Sehgal modelDotted line: Bel’kov-Kopeliovich

Measurements are at high energy region.Rein-Sehgal model well describes the data.

➜ ν data is expected to be more sensitive to look at CC coherent π production than ν data. ∵ σ(ν CC) > σ(ν CC)

24

Page 27: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

Reconstructing π0

25

π0 vertexγ→e+e-

SciBar

Z (beam direction)z=0

Reconstructed π0 vertex position

Dirt events

SciBar detectorPreliminary

! ! !"

!"!#$%&'()#*%)+&'!,-.!0 #$%&'()#*%)$/!01((! !0 #$%&'()#*%)$/!0&0$')*0!

2#&0!3$#$!451'6!"!+(!($71#1)$/!+')&!45!"!1'/!458'/!"!

Reconstructed invariant massfor 2γ system

Preliminary

Data: ~550 eventsMC: ~60% NCπ0 purity

ex. Dirt event

Y. Kurimoto

Page 28: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

ν contamination in ν beam mode

26

ν (wrong sign) ~30%background in MRD stopped sample

ν (right sign)

ν (wrong sign)

+: data

-50 0 50 100 150 200 250 300

-150

-100

-50

0

50

100

150

-50 0 50 100 150 200 250 300

-150

-100

-50

0

50

100

150

1-track (µ) event 2-track (µ+p) event

ν CC-QE ν CC-QE

Mon Jan 12 20:32:35 2009

Entries 180

(GeV/c)µP

0 0.2 0.4 0.6 0.8 1 1.2 1.40

5

10

15

20

25

30

35

Entries 180

+p QE)µ (2track µP

0 0.2 0.4 0.6 0.8 1 1.2 1.40

5

10

15

20

25

30

35

Entries 180 Entries 180

(degree)µ!

0 10 20 30 40 50 60 70 80 900

5

10

15

20

25

30

35

40

45Entries 180

+p QE)µ (2track µ!

0 10 20 30 40 50 60 70 80 900

5

10

15

20

25

30

35

40

45Entries 180 Entries 180

(GeV)rec.

"E

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

5

10

15

20

25

30

Entries 180

+p QE)µ (2track "E

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

5

10

15

20

25

30

Entries 180 Entries 180

2 (GeV/c)rec.

2Q

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

5

10

15

20

25

Entries 180

+p QE)µ (2track 2Q

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

5

10

15

20

25

Entries 180

(GeV/c)µP

0 0.2 0.4 0.6 0.8 1 1.2 1.4

DA

TA/M

C

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(degree)µ!

0 10 20 30 40 50 60 70 80 90

DA

TA/M

C

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(GeV)rec.

"E

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

DA

TA/M

C

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 (GeV/c)

rec.

2Q

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DA

TA/M

C

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

~90% ν purity(ν CC-QE: 75%)

2-track QE-like sampleEν (GeV)

Mon Jan 12 20:32:43 2009

Entries 4676

(GeV/c)µP

0 0.2 0.4 0.6 0.8 1 1.2 1.40

100

200

300

400

500

600

700

800Entries 4676

(1trk no vtx activity)µP

0 0.2 0.4 0.6 0.8 1 1.2 1.40

100

200

300

400

500

600

700

800Entries 4676 Entries 4676

(degree)µ!

0 10 20 30 40 50 60 70 80 900

100

200

300

400

500

600

700

800

Entries 4676

(1trk no vtx activity)µ!

0 10 20 30 40 50 60 70 80 900

100

200

300

400

500

600

700

800

Entries 4676 Entries 4676

(GeV)rec.

"E

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

100

200

300

400

500

600

700

Entries 4676

(1trk no vtx activity)"E

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

100

200

300

400

500

600

700

Entries 4676 Entries 4676

2 (GeV/c)rec.

2Q

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

200

400

600

800

1000

1200

1400

1600

Entries 4676

(1trk no vtx activity)2Q

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

200

400

600

800

1000

1200

1400

1600

Entries 4676

(GeV/c)µP

0 0.2 0.4 0.6 0.8 1 1.2 1.4

DAT

A/M

C

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(degree)µ!

0 10 20 30 40 50 60 70 80 90

DAT

A/M

C

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(GeV)rec.

"E

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

DAT

A/M

C

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 (GeV/c)

rec.

2Q

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DAT

A/M

C

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

~90% ν purity( ν CC-QE: 80%)

1-track w/o activity sample

Preliminary

Eν (GeV)

ν (wrong sign)

Right

SignWron

g

SignSciBooNE

Page 29: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

Neutrino cross section(NEUT prediction)

27

• QE• Llewellyn Smith, Smith-Moniz• MA=1.2GeV/c2

• PF=217MeV/c, EB=27MeV(for Carbon)

• Resonant π• Rein-Sehgal (2007)• MA=1.2 GeV/c2

• Coherent π• Rein-Sehgal (2006)• MA=1.0 GeV/c2

• DIS• GRV98 PDF• Bodek-Yang correction

• Intra-nucleus interactions

MINOS, MINERvA, NuMIK2K, NOvA

MiniBooNE, T2K, SciBooNE

Super-K atmospheric ν

Carbon target

Page 30: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

Normalization for MC sample

• Use “fractional” normalization for MC sample, which is defined by CC event selection.

• For example...

28

Define normalization:Start with the same # of events

Data MC

CC selection(SciBar-MRD matching) 30,337 30,337

# of track(2-track selection) 5,939 5898

PID(µ+π selection) 2,255 2,388

Vertex activity (isolate coh-π) 425 661

at SciBooNE

Page 31: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

NC-1π0 meas. by K2K-1KT• 1KT detector: K2K near detector

• 1,000 ton water Cherenkov

• Neutrino energy: 1.3 GeV

• 1st meas. of NC-1π0 prod. in H2O

• 2,496 NC-π0 sample• NC-1π0 purity (in 1π0 sample): 71%

• Resonance: 52%• Coherent: 10%• Final state interaction: 7%

• σ(NC1π0)/σ(CC) = (6.4 ± 0.1 ± 0.7)%

• NEUT prediction: 6.5%• Good agreement with expectations

• Momentum distribution disagrees

Physics Letters B619, 255 (2005)

Page 32: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

NC-1π0 meas. at MiniBooNE • MiniBooNE detector at FNAL• 800 ton mineral oil (CH2) Cherenkov

• Neutrino energy: 0.7GeV (peak)

• 1st measurement of NC coherent-π0 below 2GeV

• 28,000 NC-1π0 events• S/N~30

• Coherent fraction in NC-1π0; Ncoh/(Ncoh + Nres) = (19.5±1.1± 2.5)%

• Model predicted (Rein-Sehgal) 30% fraction.

• 1.5 times lower than default prediction.

• Higher production rate wrt predictions at low π0 momentum.

Phys. Lett. B664, 41 (2008)

• MiniBooNE anti-neutrino data also suggested coherent π contribution. V. T. Nguyen, AIP Conf.Proc.967:285-288,2007. (NuInt07)

Page 33: Coherent-π production experiments reviewlss.fnal.gov/conf2/C090720/wg2_tanaka-coherentpiexpreview.pdf · 100 • CHARM [3] T i , I i i i I M t , I R M , I r , , I i m r I i i i I

Comparison

31

Other measurements athigher neutrino energy

assuming•  A2/3 dependence•  σ(CC coherent)=2*σ(NC coherent)