Download - Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

Transcript
Page 1: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

1

Chemical Engineering ThermodynamicsChemical Engineering ThermodynamicsPrepared byPrepared by:: DrDr NNINIEKINIEK FajarFajar PuspitaPuspita M Eng AugustM Eng August 20201111Prepared byPrepared by:: Dr. Dr. NNINIEKINIEK FajarFajar PuspitaPuspita, M.Eng August, , M.Eng August, 20201111

2011Gs_III_Heat Effects2011Gs_III_Heat Effects

1

Lesson Topics Descriptions

Lesson 3ALesson 3A Internal Energy & E h l

Mendiskusikan definisi energi dalam dan entalpi untuk l b id l i d d Enthalpy real substances, gas-gas ideal, cairan dan padatan

incompresible.

Lesson 3BLesson 3B Thermo Properties: NIST WebBook

Mempelajari bagaimana menggunakan NIST Webbookuntuk mencapai data termodinamika.

Lesson 3CLesson 3C Heat Capacities Mempelajari 2 definisi kapasitas panas: kapasitas panas volume konstan dan kapasitas panas tekanan konstan.

L 3DL 3D H th ti l M l j i l hi t tik t k t k Lesson 3DLesson 3D Hypothetical Process Paths

Mempelajari alur proses hipotetik untuk menentukan perubahan sifat termal dari keadaan awal ke keadaan akhir.

Lesson 3ELesson 3E Phase Changes Mempelajari bahwa alur proses hipotetik untuk alat yang bermanfaat dalam mempertimbangakan perubahan sifat terkait dengan perubahan fase.

2

Page 2: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

2

Three Principle Phases, RevisitedThree Principle Phases, RevisitedIn Chapter 2, Lesson B, we discussed the difference between the three principle phases: gas, liquid, and solid. Just to refresh your memory, move the mouse pointer over the sketch of each phase to see a description of that phase.

We also learned that, in all the phases, molecules move randomly with three different types of motion: vibration, rotation and translation.

Molecules move randomly with three different types of motion: vibration, rotation and translation. Molecules are separated by large distances and travel a long way between collisions.

Molecules move randomly with all three types of motion, but they are much closer together and cannot travel very far between collisions

phase.

Atoms or molecules have all three types of motion, but they are very close together. As a result, they cannot travel far at all before they collide. Each molecule moves about within a small space and does not tend to wander.

The internal energy of the system is defined as the sum of the kinetic energies in the vibrational, rotational and translational motion of molecules.

closer together and cannot travel very far between collisions.

3

U(T,P) for Real SubstancesU(T,P) for Real Substances

Real Substances: Kenaikan T meningkatkan gerakan molekuler a.l. vibrasi, rotasi dan

l i d j k ikk Utranslasi, dan juga akan menaikkan U.Kenaikan P sedikit menurunkan U pada sebagian besar nilai T dan P.Fenomena ini terjadi karena interaksi molekuler yang kompleks.

UUUUEnergi Internal

sangat dipengaruhioleh T

Energi Internal kurang dipengaruhioleh P

U = U(T, P)

U as a Function of T at Constant P U as a Function of P at Constant T

TT PP4

Page 3: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

3

U(T) for Ideal GasesU(T) for Ideal Gases

Ideal Gases: Kenaikan T meningkatkan gerakan molekuler vibrasi, rotasi dan translasi.Kenaikan T juga menaikkan U.Perubahan P tidak mempengaruhi U karena tidak adanya interaksip g ymolekuler.U = U(T)

5

U(T) for Incompressible LiquidsU(T) for Incompressible LiquidsIncompressible Liquids & Solids :

Kenaikan T meningkatkan gerakan molekuler secara vibrasi, rotasi and translasi.Kenaikan T juga meningkatkan U.Perubahan P tidak mempengaruhi U karena volume molar dari senyawa incompressible tidak dipengaruhi oleh perubahan tekanan. Konsekuensinya, tidak ada perubahan pada ekstensinya dan sifat interkasi molekuler dankarena itu, U tidak berubah juga.

U = U(T)

6

Page 4: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

4

Internal Energy_Energi dalam(E dalam) adalah total energi kinetik (Ek) dan energi potensial (Ep) yang ada didalam sistem. Formula E = Ek + Ep. Namun karena besar energi kinetik dan energi potensial pada sebuah sistemNamun karena besar energi kinetik dan energi potensial pada sebuah sistemtidak dapat diukur, maka besar energi dalam sebuah sistem juga tidak dapatditentukan, yang dapat ditentukan adalah besar perubahan energi dalam(E) suatu sistem.Perubahan energi dalam dapat diketahui dengan mengukur kalor (q) dankerja (w), yang akan timbul bila suatu sistem bereaksi. Oleh karena itu, perubahan energi dalam dirumuskan dengan persamaan :

E = q - w.q q

Jika sistem menyerap kalor, q +. Jika sistem mengeluarkan kalor q –

w Jika sistem melakukan kerja, w+Jika sistem dikenai kerja oleh lingkungan, w-

7

Energi dalamJadi bila suatu sistemmenyerap kalor darilingkungan sebesar 10 kJ, dansistem tersebut juga

E = q - wj g

melakukan kerja sebesar 6 kJ, maka perubahan energidalam-nya akan sebesar 16 kJ.

q =+10 kJ w = - 6 kJ

w + (dilakukan)jika jumlah kalor yang masuk =jumlah kerja yang dilakukan,

PERUBAHANPERUBAHAN ENERGIENERGI DALAMDALAM BERNILAIBERNILAI 0 0

SISTEM

SISTEMq + (masuk)

q – (dikeluarkan)

dan

jika jumlah kalor yang dikeluarkan = jumlah kerja yang dikenakan pada sistem.

Artinya, tidak ada PERUBAHAN ENERGI DALAM yang terjadi pada sistem.

SISTEM w - (dikenakan)

8

Page 5: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

5

EnthalpyEntalpi adalah istilah dalam termodinamika yang menyatakan jumlah energiinternal dari suatu sistem termodinamika ditambah energi yang digunakanuntuk melakukan kerja. Entalpi tidak bisa diukur, tetapi nilai perubahannya bisa dihitung.Secara matematis, perubahan entalpi dapat dirumuskan sebagai berikut:ΔH = ΔU + PΔV

di mana:H = entalpi sistem (joule) U = energi dalam (joule) P k d (P ) P = tekanan dari sistem (Pa) V = volume sistem (m3)

http://id.wikipedia.org/wiki/Entalpi"9

Enthalpy reaksiEntalpi = H

= Kalor reaksi pada tekanan tetapPerubahan entalpi adalah

perubahan energi yang menyertai peristiwa perubahan kimiapada tekanan tetap.

a. Pemutusan ikatan membutuhkan energi (= endoterm)Contoh: H2 2H - A kJ ; ΔH= + A kJ

b. Pembentukan ikatan memberikan energi (= eksoterm)C h 2H H + A kJ ΔH A kJContoh: 2H H2 + A kJ ; ΔH = - A kJ

http://id.wikipedia.org/wiki/Entalpi"10

Page 6: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

6

Entalpi Pembentukan Standar ( ΔHf ):ΔH untuk membentuk 1 mol persenyawaan langsung dari unsur-unsurnyayang diukur pada 298 oK dan tekanan 1 atm.

Contoh: H2(g) + 1/2 O2(g) H20 (l) ; ΔHf = -241.8 kJ

11

Entalpi Penguraian Standar:ΔH dari penguraian 1 mol persenyawaan langsung menjadi unsur-unsurnya(= Kebalikan dari ΔH pembentukan).

Contoh: H2O (l) H2(g) + 1/2 O2(g) ; ΔH = +241.8 kJ

12

Page 7: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

7

Entalpi Pembakaran Standar (ΔHc ):ΔH untuk membakar 1 mol suatu senyawa dengan O2 dari udara yang diukur pada keadaan standar (298 oK dan tekanan 1 atm).

Contoh: CH4(g) + 2O2(g) CO2(g) + 2H2O(l) ; ΔHc = -802 kJ

13

Entalpi Reaksi:ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalampersamaan reaksi dinyatakan dalam satuan mol dan koefisien-koefisien

k i h b l t d hpersamaan reaksi harus bulat sederhana.

Contoh: 2Al + 3H2SO4 Al2(SO4)3 + 3H2 ; ΔH = -1468 kJ

http://wps.prenhall.com/wps/media/objects/3080/3154819/blb0507.html14

Page 8: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

8

Entalpi Netralisasi:ΔH yang dihasilkan (selalu eksoterm) pada reaksi penetralan asam ataubasa.

Contoh: NaOH(aq) + HCl(aq) NaCl(aq) + H2O(l) ; ΔH = - 890.4 kJ/mol

Hukum Lavoisier-Laplace:"Jumlah kalor yang dilepaskan pada pembentukan 1 mol zat dari unsur-unsurya = jumlah kalor yang diperlukan untuk menguraikan zat tersebutmenjadi unsur-unsur pembentuknya.“Contoh:N2(g) + 3H2(g) 2NH3(g) ; ΔH = - 92.220 J2NH3(g) N2(g) + 3H2(g) ; ΔH = + 92.220 J

15

Table: Enthalpy of Formation (ΔHf)

http://wps.prenhall.com/wps/media/objects/3080/3154819/blb0507.html16

Page 9: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

9

Table: Enthalpy of Formation (Hf), Gibbs Function (G), and Absolute Entropy (S) of Various Substances at 298 oK dan tekanan 1 atm

Hf G SSubstance Formula

Hf dan G (kJ/kmol) ; S (kJ/kmol.oK)

http://schoolworkhelper.net/2010/07/standard-enthalpies-of-formation/17

Table: Enthalpy of Formation (Hf), Gibbs Function (G), and Absolute Entropy (S) of Various Substances at 298 oK dan tekanan 1 atm

Hf G SSubstance Formula

http://schoolworkhelper.net/2010/07/standard-enthalpies-of-formation/

Hf dan G (kJ/kmol) ; S (kJ/kmol.oK)

18

Page 10: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

10

Determine the standard heat of each of the following reactions at 298.15 K (25°C)

Ref. Smith V Ness p. 14419

20

Page 11: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

11

21

Definition of EnthalpyDefinition of Enthalpy

Enthalpy, H, is a thermodynamic property, or state variable, and it is defined by:

H U PV

EnthalpyEnthalpy(kJ)(kJ)

Molar EnthalpyMolar Enthalpy(kJ/mole)(kJ/mole)

Differential FormDifferential Form Integral FormIntegral Form

H = U + PV.

(kJ/mole)(kJ/mole)

Specific EnthalpySpecific Enthalpy(kJ/kg)(kJ/kg)

22

Page 12: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

12

H(T,P) for Real SubstancesReal Substances

U is a strong function of TU is a weak function of PU is a weak function of PH is a function of both T & P

Note : At most, but not all values of T & P, H increases as P increases

23

H(T) for Ideal GasesIdeal GasesMolar enthalpy:

Specific enthalpy:

Since U of an ideal gas is a function of T only and R and MW are constants, H of an ideal gas is also a function of T only.

24

Page 13: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

13

H(T,P) for Incompressible Liquids and Solids

U is a function of T only, but

H is a function of TH is a function of Tand also a weak function of P

25

Lesson Summary_Lesson 2ACHAPTER 3, LESSON A - INTERNAL ENERGY & ENTHALPYIn this lesson we studied the functional dependence of internal energy, U, on both T and P.

We considered three cases: real gases, ideal gases, and liquids and solids.

Next, we defined a new state variable called enthalpy, H.

We then considered and discussed the functional dependence of enthalpy on both T and P.

The conclusions that we drew from these two studies are summarized in the table, below.

REAL GASES - U is a strong function of T and a weak function of P.H is a function of both T and P.

IDEAL GASES - U is a function of T only.H is a function of T only.y

IncompressibleLiquids and Solids - U is a function of T only.

H is a function of both T and P.

In the next lesson, we will learn how to obtain values for both specific and molar internal energy and enthalpy from tables of data and databases.

26

Page 14: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

14

Sample Data from NIST WebBook

27

Thermophysical Properties of Fluid Systems

DensityEnthalpy

•Choose the chemical species for which you want data.Enthalpy

Specific volumeEntropyCp Internal energyCvSpeed of Sound

(Example: Water)•Choose the system of units that you would like to use.(Example: K, MPa, kJ...)•Choose the type of thermodynamic data you want to obtain.(Example: Saturation Properties - Temperature Increments)Ch d d h h •Choose a standard state convention, which we

call a reference state. (We will learn more about reference states later in this lesson.)•When you have finished steps 1-4 click the "Press to Continue" button.

28

Page 15: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

15

Liquid phase dataData on saturation curve

29

What is a Reference State ?

Every table or graph of thermodynamic data has a standard state convention or a reference state associated with it. But why ? It is not possible to determine the absolute value of U or H. We can only measure changes in U or H. In this regard, enthalpy and internal energy are much like altitude.The altitude of a mountain and the altimeters on airplanes are referenced to mean sea level. referenced to mean sea level.

A reference state is also needed when tabulating the measured changes in U or H. A reference state is usually specified by the temperature, pressure, and the phase at which either U or H is zero.

Then, U and H of every other state is equal to the change in U or H as the substance changes from the reference state to the state of interest

30

Page 16: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

16

Review : U & H as Functions of T & PIn this part of the lesson, we will plot enthalpy and internal energy data from the NIST WebBook. We will compare the results to what we expect for an incompressible liquid and for an ideal gas.Recall the conclusions we reached in the previous lesson:

31

Enthalpy & Internal Energy for Real Substances

Now, we can obtain data from the NIST WebBook for water to show the trends observed for a real liquid. We will obtain two tables of data:

1 Units: oC atm kg/m3 kJ/kg 1. Units: oC, atm, kg/m3, kJ/kg Type of data: Isothermal properties Standard State: ASHRAE Convention

T = 30oC, P = 1 to 10 atm by 0.5 atm

2. Units: oC, atm, kg/m3, kJ/kg Type of data: Isobaric properties Standard State: ASHRAE Convention

P = 1 atm, T = 5 to 95oC by 5oC

If you like, go ahead and obtain the data from NIST WebBook and plot the data in Excel to see the expected trends.

ASHRAE_American Society for Heating Refrigeration Air Conditioning Engineer

32

Page 17: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

17

http://www.spiraxsarco.com/resources/steam-engineering-tutorials/steam-engineering-principles-and-heat-transfer/entropy-a-basic-understanding.asp

33

The temperature/enthalpy diagramThe enthalpy/pressure diagram

NIST Thermodynamic Data for SubcooledWater

Subcooled liquid tables for water obtained from the NIST WebBookThe tables were imported into Excel and edited.

34

Page 18: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

18

U(P) & H(P) for Subcooled Water at Constant T

35

Comparison of Real and Incompressible Substances

Real Liquid (water) Incompressible Liquid( li id i l t l i ibl )(no liquid is completely incompressible)

Incompressible Liquid: U at constant T is not a function of P. H increases as P increases.Real Liquid : U can increase slightly, or like water, U can decrease slowly as P increases.

H increases as P increases.36

Page 19: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

19

U(T) and H(T) for Liquid Water at Constant P

Why does it seem like internal energy and enthalpy are the same here?

37

Comparison of U & H at Constant P

Why does it seem like internal energy and enthalpy are the same here?

38

Page 20: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

20

Thermodynamic Properties of an Ideal GasIdeal Gases U is a function of T only.

H is a function of T only.Now let's obtain data from the NIST WebBook for hydrogen and compare the trends we observe to the behavior we would expect for an ideal gas.1. Units: oC, atm, kg/m3, kJ/kg Type of data: Isothermal properties Standard State: ASHRAE Convention

T = 30oC, P = 1 to 10 atm by 0.5 atm2. Units: oC, atm, kg/m3, kJ/kg Type of data: Isobaric properties Standard State: ASHRAE Convention

P = 1 atm, T = 5 to 95oC by 5oCIf you like, go ahead and obtain the data from NIST WebBook and plot the data in Excel to see the expected trends.

39

Thermodynamic Properties of HydrogenThermodynamic data for hydrogen obtained from the NIST WebBook , then imported into Excel and edited.

40

Page 21: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

21

U and H of Hydrogen at Constant THydrogen data obtained from NIST WebBook , then imported into Excel, edited, and plotted.

To an accuracy of three significant figures in and ,

hydrogen can be considered an ideal gas over this range of P. 41

U and H of Hydrogen at Constant PHydrogen data obtained from NIST WebBook , then imported into Excel , edited, and plotted.

Does this plot show the expected trends for an ideal gas at constant pressure?42

Page 22: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

22

Comparison of U & H at Constant PDoes this plot show the expected trends for an ideal gas at constant pressure?

Internal energy is a function of temperature. plus RT/MW gives the specific enthalpy

43

Does this plot show the expected trends f id l t for an ideal gas at constant pressure?The difference between the H and the U curves grows linearly as temperature increases.Conclusion:Hydrogen does y gbehave like an ideal gas at1 atm between 5oC and 95oC

44

Page 23: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

23

Lesson Summary_Lesson 3BCHAPTER 3, LESSON B -THERMO PROPERTIES: NIST WEBBOOKIn this lesson we learned that NIST WebBook is a valuable tool to determine thermodynamic properties. First we showed, step-by-step, how to locate the NIST website and the NIST WebBook within the websitewebsite and the NIST WebBook within the website.

Be sure to bookmark the link to the Thermophysical Properties of Fluid Systems at http://webbook.nist.gov/chemistry/fluid/.

We considered how to specify what information we want to obtain such as the chemical species, phase, units for properties, and the reference state. We learned that a reference state is needed when tabulating the measured changes in internal energy or enthalpy. Often a reference state is fixed by the temperature, pressure, and phase.

We then plotted enthalpy and internal energy data obtained from the NIST WebBook for an incompressible liquid, an ideal gas, and a real substance. From this we reinforced internal energy and enthalpy trends we learned in lesson B.

We will be using NIST WebBook to obtain most of the data for this course. In the next lesson, we will learn how to use NIST WebBook to obtain data on a new property called heat capacity.

45

The Relationship Between Heat and Temperature

When heating a substance, we must add a certain amount of heat to raise the temperature a specified amount. This capacity to take in heat is unique to each substance and is defined with the symbol C.

Ch3, Lesson C, Page 1 - The Relationship Between Heat and TemperatureIf we add a Joule of energy to one gram of liquid water at 20oC it will raise the temperature to about 20.2oC.If we add 1 Joule of energy to one gram of liquid mercury at 20oC it will raise the temperature to about 27oC.If we add 1 Joule of energy to one gram of air at 20oC it will raise If we add 1 Joule of energy to one gram of air at 20oC it will raise the temperature to about 21oC.This capacity for absorbing heat is called the heat capacity or the specific heat.Flip the page and we’ll show you the formal definitions for heat capacity and specific heat.Then, we’ll show you how to use them to solve problems

46

Page 24: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

24

Definition of Constant V and P Heat Capacities

The molar heat capacity of a substance is defined as the energy required to raise the temperature of a mole of a substance by one degree. The specific heat of a substance is defined as the energy required to raise the temperature of a unit mass of a substance by one degree.

47

Ideal Gas Specific HeatsRecall from the previous lesson that the internal energy of an ideal gas is a function of T only: and Therefore, the heat capacities (or specific heats) for ideal gases reduce to:

Often, ideal gas specific heats and heat capacities are approximated as polynomials in terms of T:

where a, b, c, and d are constants for a given substance

48

Page 25: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

25

Gibbs Phase Rule

where:

oF = C - P + 2

oF is the number of degrees of freedom or the number of intensive propertiesthat can be independently specified. All other intensive properties are then fixed and can be determined. C is the number of different chemical substances in the system.P is the number of distinct phases within the system.Intensive Properties: Do not depend on the size of the system.Examples include:

Extensive Properties: Do depend on the size of the systemExtensive Properties: Do depend on the size of the system.Examples include:Since we are dealing with pure substances that exist in a single-phase,(C = 1 and P =1),Therefore: oF = 1 - 1 + 2 = 2

We only need to fix or specify 2 state variables in order to completely define the state of our system.

49

Change in U as a Function of Ideal-Gas Cv

50

Page 26: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

26

Change in H as a Function of Ideal-Gas Cp

51

Cp and Cv Relationship for an Ideal Gas

52

Page 27: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

27

Cp and Cv for Liquids & Solids

53

Ideal-Gas Cp Data from NIST WebBook

Here is our heat capacity polynomial

When you scroll down a bit farther on the Results Page of the NIST Webbook, you will find the constants for the heat capacity polynomial for Ammonia shown in a table like this:54

Page 28: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

28

3C-1 : Enthalpy Change of Ammonia Using the IG Heat Capacity

Determine the enthalpy change and internal energy change of ammonia in J/mole, as it is heated from 350 oK to 600 oK, using the ideal gas heat capacity given by the Shomate Equation.capacity given by the Shomate Equation.

55

56

Page 29: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

29

57

Isothermal Vaporization of WaterExample #3C-1

The temperature of 10 lbm of water is held constant at 205°F.The pressure is reduced from a very high value until vaporization is complete. Determine the final volume of the steam in ft3. 2C-1 : Specific Volume of Saturated Mixtures 4 ptsCalculate the specific volume for the following situations:

a.) Water at 200oC and 80% quality

b.) Freon 12 at -60oC and 90% quality

c.) Ammonia at 500 kPa and 85% quality

Read : This is an exercise designed to drive home the meaning and use of the new concept of the quality of a saturated mixture. It is crucial to

f remember that if a quality is given, then the system contains a saturated mixture and you probably need to look up properties of both the saturated liquid and the saturated vapor.

58

Page 30: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

30

Given : a.) Water :

T 200 oC T 200 oC x 0.80 kg vap/kg tot

b.) R-12 : T -60 oCx 0.90 kg vap/kg tot

c.) NH3 : P 500 kPaP 500 kPax 0.85 kg vap/kg tot

Find : V ??? m3/kg for each of the three parts of this problem.

59

Solution Part a.) Data from the Saturation Temperature Table of the Steam Tables at 200oC:

Vsat liq 0.001156 m3/kg q

Vsat vap 0.1274 m3/kg P* 1554 kPa

The key equation for this problem is the relationship between the properties of a saturated mixture and the properties of saturated liquid and vapor and the quality.

Eqn 1

Now, we can plug numbers into Eqn 1 to answer this part of the question. V 0 1022 3/k V 0.1022 m3/kg Notice that I kept 4 significan figures in this answer istead of the usual 2 or 3 because there are 4 significant digits in the sat'd liquid and sat'd vapor values.Perhaps I should have only retained 2 significant digits because there only appear to be 2 significant digits in the quality. I have assumed that there are more than 2, really 4 or more, digits in the quality. This may not be a good assumption.

60

Page 31: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

31

Part b.) Data from the Saturation Temperature Table of the R-12 Tables at -60oC:

Vsat liq 0.000637 m3/kg Vsat vap 0.63791 m3/kg sat vap gP* 22.6 kPa

Now, we can plug numbers into Eqn 1 to answer this part of the question. V 0.57418 m3/kg Significant figures are a bit tricky here.

Part c.) Data from the Saturation Pressure Table of the Ammonia Tables at 500 kPa:

Vsat liq 0.00158 m3/kg Vsat vap 0.25032 m3/kg sat vap gTsat 4.1396 oC Now,

we can plug numbers into Eqn 1 to answer this part of the question. V 0.21301 m3/kg

Significant figures are a bit tricky here as well.

61

Lesson Summary_Lesson 3CCHAPTER 3, LESSON C - HEAT CAPACITIESIn this lesson, we learned about new properties called heat capacity and specific heat.Heat capacity is the energy required to raise the temperature of a mole of a substance by one degree. Specific heat is the energy required to raise the temperature of a unit mass of a substance by one degree by one degree. Next, we studied the heat capacity of an ideal gas. We used the superscript o to identify heat capacities that apply only to ideal gases. We derived the following relationships for ideal gases:

Ideal-gas heat capacities are often expressed as polynomials, such as:

where a, b, c, and d are constants for a given substance.Next, we considered the heat capacities of liquids and solids.We found that over a moderate range of temperatures and pressures.Finally, we learned how to obtain heat capacity polynomials for a variety of substances from theNIST WebBook.

62

Page 32: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

32

What is a State ?Gibbs Phase RuleoF = C - P + 2F = derajat kebebasanC Jumlah senyawa kimia didalam At a given state all the properties

Initial State1C = Jumlah senyawa kimia didalamsistemP = Jumlah fase dalam sistem

At a given state all the properties of a system are fixed and can be measured or calculated

Ch3, Lesson D, Page 1 - What is a State ?Chapter 1

menjelaskan keadaan yang diberikanseluruh sifat materi didalam batasan sitsem yang ditetapkan

Chapter 2Gibbs Phase Rule untuk menetapkan berapa banyak sifat-sifat intensifuntuk menspesifikasi keadaan sistem

63

What is a State ?

Untuk menggunakan Gibbs Phase Rule, harus tahu spesies kimia apayang ada dalam sistem dan juga fase apa yang ada dalam sistem.Jika jumlah sifat-sifat intensif yang telah dispesifikasi= jumlah derajatkebebasan maka sifat-sifat intensif sistem tersebut dapat ditentukan.Jika air murni ada dalam sistem, maka

C=air murni = 1P = fase = cair = 1F=C-P+2=1-1+2 = 2

F 2 d t di ifik i 2 i b l i t ifF=2 dapat dispesifikasi 2 variabel intensif.Yaitu T dan PKarena bermanfaat dan mudah untuk mengukur. Kemungkinan juga densitas dan entalpi spesifik karena juga sifatintensif.

64

Page 33: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

33

What Happens When a Property of a State Changes ?

When the value of a When the value of a property changes, the system is at a new state1

2

At a given state all the properties of a system are fixed and can be measured or calculated

Initial State

Ch3, Lesson D, Page 2 - What Happens When a Property of a State Changes ?If any property of the system changes then If any property of the system changes, then the system is in a different state.

65

What is a Process Path ?Process Path: A process path is the actual series of states that the system passes through as it moves from the initial state to the final state during a processg p

Initial State

When the value of a property changes, the system is at a new state

Ch3 Lesson D Page 3 What is a Process Path ?

At a given state all the properties of a system are fixed and can be measured or calculated.

Ch3, Lesson D, Page 3 - What is a Process Path ?A system can continue to change one or more of its properties. As it does so, it moves from one state to another. The series of states through which a system moves. During a process, a system moves from an initial state to a final state, but its properties do not abruptly jump from the values at the initial state and instantly take the values associated with the final state. The properties of the system change smoothly as the process progresses from the initial state to the final state. The series of states in which the system exists during the process is called the process path.

66

Page 34: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

34

State Variables & Hypothetical Process Paths

Process Path A process path is the actual series of states that the system passes through as it moves from the initial state to the final state during a process

Final State

state during a process.The system occupies an infinite number of states between the initial state and the final state. We use a smooth curve to represent the smooth path.

Initial State Changes in state variables are not path dependent. Therefore, when solving problems we can choose any path that connects the initial and final states.The trick is to choose a path that makes the problem easy to solve. This path is called a hypothetical process path (HPP).

67

You Must Be Able to …

Final State

Initial State 1. Ideal Gases2. Liquids and solids for which 3. Real substances for which tables

f h dof thermodynamic properties are available.

68

Page 35: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

35

Ideal Gas: Change in H Using an HPP

What hypothetical process pathwill allow us to easily calculate the change in enthalpy of the air?

Let's consider a process in which air changes from the initial state to the Let s consider a process in which air changes from the initial state to the final state, as shown in the diagram above.Determine the change in the molar enthalpy of the air for this process.

69

HPP for an Ideal Gas

70

Page 36: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

36

Change in H for an Ideal Gas at Constant T

Therefore, state 1 is an ideal gas state.From state 1 to state 2, the pressure decreases but we are t t t at constant

temperature.Recall from Lesson A that for an ideal gas:

71

Change in H for an Ideal Gas at Constant T

From state 3 to state 4 the pressure increases but we are at constant temperature.

Therefore, state 4 is also an ideal gas state72

Page 37: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

37

Change in H for an Ideal Gas at Constant P

From state 2 to state 3, the temperature increases at constant pressure.

Therefore:

Step 2-3 involves an ideal gas being heated from 25oC to 125oC at a constant pressure. That’s exactly like what we studied in the previous lesson ! So, ΔH-wiggle 2-3 is just the integral of the ideal gas Cp from T2 to T3. Now, all we need to do is obtain ideal gas Cp data for air. Does that sound familiar ?

73

Heat Capacity Polynomial Data from NIST WebBook

74

Page 38: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

38

Summary of HPP for an Ideal Gas

75

Ideal Gas HPP Simplification

Ch3, Lesson D, Page 13 - Ideal Gas HPP SimplificationSo, we figured out that for a process in which the initial and final states are both ideal gas states, changes in pressure have no affect on the change in enthalpy. Therefore, to determine ΔH-wiggle for these processes, all we need to do is integrate the ideal gas heat capacity from the initial temperature to the final temperature. Cool. That’s not so hard. What do we do if one or more of our states is NOT an ideal gas state ? Flip the page and we will begin to deal with that problem.

76

Page 39: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

39

Properties of Solids & Liquids

77

HPP's for Liquids and Solids

78

Page 40: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

40

Heat Capacities of Solids and Liquids

Solids and Liquids:

If a polynomial for the heat capacity is available is is generally of the form:

Often, just one value of is known. In this case

use the known value as79

Thermodynamic Properties of Real Substances

The best way to determine a value for a change in any property is to look up the value of the property for the initial and final states in a thermodynamic table and calculate the difference between themcalculate the difference between them.

In this course, this is the only method presented that is applicable for non-ideal gases !

Final State

Use themodynamic tables for liquids whenever possible because they are more accurate than the methods discussed on the previous three pagesHow much error is involved if we assume a gas to be ideal when it is not ?

Initial State

80

Page 41: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

41

Change in H for a Real Gas: Steam

Ch3, Lesson D, Page 18 - Change in H for a Real Gas: SteamLet’s consider a process in which steam is compressed from 100 kPa to 1 MPa.During this process, the temperature of the steam rises from 100oC to 200oC.By now, you probably have some intuition about the temperatures and pressure at which gases can be assumed to y ow, you p obab y ave so e tu t o about t e te pe atu es a p essu e at w c gases ca be assu e to be ideal.If you check the molar volumes at the initial and final states, you will see that the initial state can be safely assumed to be an ideal gas state, but the final state CANNOT.The easiest way to determine ΔH-hat for this process is just to look up H-hat for the initial and final states in the NIST WebBook, and that is exactly what you should do in practice.But just to make a point, let’s construct an HPP and do a little extra work on this problem. We might find something interesting.Flip the page and let’s see.

81

HPP for a Real Substance

82

Page 42: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

42

Summary of the Solution for a Real Substance

83

What If We Treated Steam as an Ideal Gas?

84

Page 43: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

43

Error from the Ideal Gas Assumption

85

Lesson Summary_Lesson 3DCHAPTER 3, LESSON D - HYPOTHETICAL PROCESS PATHSWe began this lesson by refreshing your memory about states and defined a process path as the actual series of states that the system passes through as it moves from the initial state to the final state during a g gprocess. We emphasized that state variables are not dependent on the actual process path and therefore a hypothetical process path (HPP) can be used to determine changes in thermodynamic properties during a process. We focused on determining the change in enthalpy and internal energy for processes. You must be able to determine and for:1. Ideal Gases2 Li id d lid f hi h 2. Liquids and solids for which 3. Real substances for which tables of thermodynamic properties are available.

For ideal gases, all you need to do is integrate Cv or Cp from T1 to T2 to determine ΔU or ΔH. We found that Cp data for solids and liquids is limited and Cv data is not available at all. For liquids, the Cp equation is often linear and for solids, a single Cv value is the norm.

86

Page 44: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

44

HPP's for Phase Changes

In the previous lesson, we used hypothetical process paths to make it easier to determine the change in the properties of an ideal gas, liquids and solids for which is constant and real substances for which we liquids and solids for which is constant, and real substances for which we have thermodynamic tables.

Final State

PHASE CHANGE

BUT only in one phase !

Initial State

PHASE CHANGE

In this lesson, we will learn how to use hypothetical process paths to determine the change in properties associated with a phase change.

87

What is Enthalpy of Vaporization ?

Vaporization (or boiling): Saturated Liquid Saturated Vapor

Condensation: Saturated Vapor Saturated LiquidCondensation: Saturated Vapor Saturated Liquid

Enthalpy of Vaporization( latent heat of vaporization):the amount of energy that must be added to the system to be added to the system to convert 1 mole of saturated liquid into 1 mole of saturated vapor

88

Page 45: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

45

Is the Heat of Vaporization ConstantWould it take the same amount of energy to boil 1 kg of water at sea level it would at an elevation of 14,000 ft?What is the Heat of Vaporization is at the critical point ?

Berapa banyak energi yang harus diberikan untukmenguapkan a kg cairjenuh jika proses terjadipadaT & P kritis ?

89

Saturation, Vaporization and Vapor Pressure

The latent heat of vaporizationdidefiniskan sebagai jumlah energi yang diinginkan untukmenguapkan cairan secara sempurna pada Tsat (temperatur jenuh) dan P* (uap atau tekanan jenuh).

Tsat = Saturation temperatureP* = Vapor pressure or saturation pressure

90

Page 46: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

46

Heat of Vaporization from the NIST WebBook

In Chapter 3, Lesson C we learned how to obtain data (including enthalpy) from NIST WebBook

To determine the latent heat of vaporizationwe the difference between the two enthalpy values.

91

Vaporization of Subcooled WaterSubcooled Liquid : T < Tsat

or: P > P*

92

Page 47: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

47

Heat Liquid Water to the Tsat

Evaluated at:

Integration using Excel, followed by a unit conversion, yields

93

Enthalpy Change for Vaporization of Subcooled Water

We determined the latent heat of vaporizationof water at 100oC and 1 atm on page 5 of this lesson:

On the previous page, we determined the enthalpy change associated with heating of water from 75oC to 100oC at a constant pressure of 1 atm:

The total change in enthalpy associated with the change from State 1 to State 3 is the sum of these two values:94

Page 48: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

48

Vaporization of Subcooled Water: Shortcut Method

Since we have NIST WebBookas a tool, we can determine the enthalpy at State 1 and State 3 and then determine the difference. We get the following values:

Enthalpy of Vaporization

The change in enthalpy is:

This is the same answer obtained from using the hypothetical process path ! 95

The Clapeyron Equation

For many processes, such as distillation, it is very important to know how vapor pressure, P*, depends on temperature, T.The Clapeyron Equation provides such a thermodynamic relationship The Clapeyron Equation provides such a thermodynamic relationship.

Where:

The equation also allows us to determine the the latent heat of vaporization when we know , P*, and T for the phase change96

Page 49: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

49

The Clausius-Clapeyron Equation

We will start with the Clapeyron Equation

At moderate pressure, not close to the critica point, Therefore:

If we also assume we have an ideal gs because we are at moderate pressure, we can substitute:

A little algebra and calculus helps us put the equation into a form that we can easily integrate:

Integrating, we obtain the Clausius-Clapeyron Equation:

97

Using The Clausius-Clapeyron Equation

98

Page 50: Chemical Engineering Thermodynamics · PDF file`Entalpi Reaksi: ΔH dari suatu persamaan reaksi, di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan

9/27/2011

50

Other Latent HeatsThis lesson has focused on vaporization because it is the most important phase change in this course.HPP's can be used in the same way to calculate the change in properties that occur when melting and sublimation phase changes occur in a process. Latent Heat of Vaporization

amount of energy absorbed during vaporizationamount of energy released during condensation

Latent Heat of Fusionamount of energy absorbed during meltingamount of energy absorbed during meltingamount of energy released during freezing

Latent Heat of Sublimationamount of energy absorbed during sublimationamount of energy released during desublimation

99

Lesson Summary_Lesson 3ECHAPTER 3, LESSON E - PHASE CHANGES

Pada pelajaran ini, kami belajar bagaimana variabel keadaan berubah selama perubahan fase. Kami menggunakan alur proses hipotetik (hypothetical process paths_HPP's) untuk membantumenetapkan perubahan-perubahan dalam sifat termodinamis selama proses perubahan fase. p p p p pKami menentukan perubahan dalam entalpi karena variabel tersebut merupakan variabelkeadaan didalam proses perubahan fase.

Kami fokus belajar pada proses penguapan. Panas laten penguapan yaitu jumlah energi yang harus menjadi input agar supaya menguapkan a mol atau a kg cairan. Sumber data panaspenguapan yatiu

NIST dll dan data dari NIST WebBook menunjukkan bahwa ΔHvap turun sebagaimanakenaikan temperatur terhadap Tc.

Kami menggunakan HPP dan NIST WebBook untuk menghitung perubahan entalpi terkaitd i j h d i di i d k 2 t k ik b b ddengan penguapan cair jenuh dan cair dingin dengan menggunakan 2 teknik yang berbeda.

Kemudian, kami mendiskusikan hubungan antara Tsat, P* dan ΔHvap. Kami mulai dariClapeyron Equation dan turunan Clausius-Clapeyron Equation.

Kami mendiskusikan penggunaan-penggunaan Clausius-Clapeyron Equation danmemperkenalkan perhitungan untuk memprediksi tekanan uap jenuh sebagai fungsi T.

2 perubahan fase yang umum : sublimation dan fusion.

100