Download - Capacitance and Myelination vs. Conduction Velocity Mengqi Xing, Basheer Subei, Rafael Romero.

Transcript
Page 1: Capacitance and Myelination vs. Conduction Velocity Mengqi Xing, Basheer Subei, Rafael Romero.

Capacitance and Myelination vs.

Conduction Velocity

Mengqi Xing, Basheer Subei, Rafael Romero

Page 2: Capacitance and Myelination vs. Conduction Velocity Mengqi Xing, Basheer Subei, Rafael Romero.

Membrane Thickness

• Soliton Model of Action Potentials– Soliton (mechanical wave) propagates

along membrane that causes AP– Thermodynamically sound– Δ in membrane thickness = Δ in

Capacitance• Piezoelectricity

𝐶=ε r ε 0𝐴𝑑

Page 3: Capacitance and Myelination vs. Conduction Velocity Mengqi Xing, Basheer Subei, Rafael Romero.

Myelin Distribution• Myelin sheaths– Δ membrane thickness Δ membrane

capacitance – Speed up AP propagation

• Distribution of Myelin– Nodes of Ranvier• Hodgkin-Huxley Model

–Myelination• Passive Cable Model

Page 4: Capacitance and Myelination vs. Conduction Velocity Mengqi Xing, Basheer Subei, Rafael Romero.

Methods• Testing Spatial Distribution of Myelin:– 6 Different Distributions– Control, Full, Short, Long, Mid Gap,

Multiple Gap– Scaled up axon dimensions

• Studying:– Effect of Membrane Thickness/Distribution– Significance of Nodes of Ranvier– Conductance velocity

Page 5: Capacitance and Myelination vs. Conduction Velocity Mengqi Xing, Basheer Subei, Rafael Romero.

Different Distributions

Control

Short Myelin

Full

Long Myelin

Mid Gap Multiple Gap

Page 6: Capacitance and Myelination vs. Conduction Velocity Mengqi Xing, Basheer Subei, Rafael Romero.

Control

Page 7: Capacitance and Myelination vs. Conduction Velocity Mengqi Xing, Basheer Subei, Rafael Romero.

Full Myelin

Page 8: Capacitance and Myelination vs. Conduction Velocity Mengqi Xing, Basheer Subei, Rafael Romero.

Short Myelin

Page 9: Capacitance and Myelination vs. Conduction Velocity Mengqi Xing, Basheer Subei, Rafael Romero.

Long Myelin

Page 10: Capacitance and Myelination vs. Conduction Velocity Mengqi Xing, Basheer Subei, Rafael Romero.

Mid Gap Myelin

Page 11: Capacitance and Myelination vs. Conduction Velocity Mengqi Xing, Basheer Subei, Rafael Romero.

Multiple Gap

Page 12: Capacitance and Myelination vs. Conduction Velocity Mengqi Xing, Basheer Subei, Rafael Romero.

Average Conduction Velocity

Control Multiple Gap Mid Gap Full0

1000

2000

3000

4000

5000

6000

7000

2 mA Current

Myelin Distribution

Aver

age

Velo

city

(m/s

)

Control Multiple Gap Mid Gap FullVelocity (m/s) 191.36 438.55 620.4 6049

Page 13: Capacitance and Myelination vs. Conduction Velocity Mengqi Xing, Basheer Subei, Rafael Romero.

Discussion• Main Points:–Myelination • Fast conduction BUT AP decays• No gates ∴ no current to recharge AP

– No myelination • Signal Slow• Gates throughout axon allow propagation

• Nodes of Ranvier– Recharge AP & prevent signal decay

Page 14: Capacitance and Myelination vs. Conduction Velocity Mengqi Xing, Basheer Subei, Rafael Romero.

Thanks!