Download - Black Hole Spectra - UMD

Transcript
Page 1: Black Hole Spectra - UMD

AGNandGalacticBlackHoleSpectra

TodaysBestAdvertisingforAGN-RyanHickox

2

Page 2: Black Hole Spectra - UMD

3

•  Differential Keplerian rotation •  Viscosity : gravity → heat •  Thermal emission: L = AσT4 •  Temperature increases inwards •  GR last stable orbit gives

minimum radius Rms

Spectra of accretion flow: disc- C. Done Review

Log ν

Log

ν f(ν)

Log ν

Log

ν f(ν)

4

•  GR last stable orbit gives minimum radius Rms

•  a=0: Tmax = (M/M� )-1/4 (L/LEdd )1/4

•  1 keV (107 K) for 10 M� if L=LEdd

•  10 eV (105 K) for 108 M� " "

•  a=0.998 Tmax ~ 2.2 Tmax (a=0) •  AGN: UV disc, ISM absorption,

mass more uncertain. XRB…

Spectra of accretion flow: disc- C. Done Review

Log ν

Log

ν f(ν)

Log ν

Log

ν f(ν)

Page 3: Black Hole Spectra - UMD

5

Relativisticeffects-C.Done

Fabian et al. 1989

Energy (keV) flu

x

•  Relativisticeffects(specialandgeneral)affectallemission(Cunningham1975)

•  Hardtoeasilyspotoncontinuumcomponents

•  FeKα linefromirradiateddisc–broadandskewed!(Fabianetal1989)

•  BroadeninggivesanindependentmeasureofRin–sospinifISO(Laor1991)

•  Modelspredictincreasingwidthasgofromlow/hardtohigh/softstates

6

WhatDoBroadBandSpectraofBlackHolesLookLike

Log(flu

x)

Log(frequency)

Thermalemissionfromaccretiondisk(softX-raysforGBHC;UVforAGN)

X-ray�tail�- not due to the accretion disk

T~(M/MEdd)1/4M-1/4

Page 4: Black Hole Spectra - UMD

How Hot is a Black Hole?? Lets go back to the accretion disk spectrum- Longair 14.52-14.54 T(R)=[3GMM/8πR3]1/4(R/Rin)]-3/4

Temperature at fixed number of Rs decreases as M-1/4

- disks around more massive black holes are cooler at a fixed R/RS and M/MEdd now recasting in terms of the Eddington limit where MEdd is the mass accretion rate for the Eddington limit and we assume that the conversion efficiency of mass into energy is 10% and M8 is the BH mass in units of 108 M¤ T~6.3x105[M/MEdd]1/4[M/M8]-1/4(R/Rin)]-3/4k-UV T~6.3x107[M/MEdd]1/4[M/M!]-1/4(R/Rin)]-3/4k-Xray

8

GalacticBlackHoles•  Relativelylowmassandsothe

diskare'hot'

L~ 7x1038 f(M10)2(Tin)4 erg/s Where M10 is the mass in units of 10 M� and Tin is in keV f is a factor taking some complex physics into account !

AdaptedfromMilleretal2003

DiskBB

"Powerlaw"

Page 5: Black Hole Spectra - UMD

9

GalacticBlackHoles-GBH

•  Relativelylowmassandsothediskare'hot'-mostofthefluxappearinginthex-rays

0.1 1.0 Tin (keV)

L x104

0 ergs/sec

AdaptedfromMilleretal2003

GBHULX

10

ReminderofAccretionDiskSpectrum•  Derivationofpreviouseq•  L=2πRin2f(cosi)-1;fisthefluxfromthesurfaceofthedisk,Ristheradius•  Usingtheblackbodylaw L=4πσR2Tin4σ istheStefan-Boltmannconstant

InfittingthespectrumTinisdirectlyobservableWecanthustakethe2equationstogettheinnermostradius

Rin=sqrt(L/4πσTin4)andTin~3M10

-1/4keV T(r)=6.3x105 (M/MEdd)1/4M8

-1/4(r/rs)-3/4(MEdd is the accretion rate in Eddington units, T=Tinforr=rs)

Page 6: Black Hole Spectra - UMD

11

RealObjects•  Dataforgalactic

blackholesagreeswiththesimpletheory

•  E.gassumethatMBHdoesnotchangeandallchangesluminosityduetochangesinM-ifsothenexpectTin~M 1/4~L1/4

Makishimaetal2000

FittedTin

Diskbolom

etricluminosity

x10

38

12

Miller(2013)

kT(Kev)

Diskflux

blackholetransient

Page 7: Black Hole Spectra - UMD

ModificationstoDiskBlackBody

13

Miller(2013)

14

•  CanFitAGNUV-opticaldatawithaccretiondiskmodels

MalkanandSun1989

Effectsofinclinationondiskspectrumfor5x108M¤BH

Page 8: Black Hole Spectra - UMD

15

AGN•  AGNareverymassiveand

sothepredictedspectrumoftheaccretiondiskis'cool'-peakinginUV-EUV

•  T~8x104kforaEddingtonlimitedM~108M¤blackhole

•  ProblemswithobservingintheEUVandsodonotobservehighenergyexponentialcutoff

FitofSSADmodelstoAGNspectrum(MalkanandSun1989

16

FittedParametersforUVDiskFits

•  Resultsare'reasonable'butnotunique

•  Nowhaveindependentmassestimates-resultscanbechecked–  Findthatvaluesarenotquite

right-needmorecomplexaccretiondiskmodels(surfaceisnotsimpleBB,needtoinclude

relativisticeffects)

Page 9: Black Hole Spectra - UMD

17

EffectsofStrongGravity(Spin),

InclinationAngleonSpectrumofDisk(Merloni2010)

aisspininGRunits

18

RelativisticEffects•  Lightraysarebentbystronggravity-makingthegeometry

rathercomplicated

Page 10: Black Hole Spectra - UMD

19

•  Possiblestrongeffectoflightbending.

•  ifweonlyknewwherethex-rayscomefrom(hs~rs)fromtimevariabilityarguments

20

EffectsofStrongGravity(Spin),InclinationAngleonSpectrumofDisk(Merloni2010)

ToppanelisADspectrumvsenergyforfixedinclinationangle,spinvariesBottompanelfixedspin,inclinationanglevaries.

Page 11: Black Hole Spectra - UMD

21

Next...

•  AccretionDiskfitstoAGNspectra

•  Broadbandspectraarenotsosimple-what'sthereinadditiontotheaccretiondisk–  thegeometryoftheinnermostregions–  briefreviewofComptonization

•  Effectsof'reprocessing'-thedisk'sees'thehardx-rayradiationandtherearemeasurableeffects

22

LifeisNotSoSimple

•  ThebroadbandspectraofbothAGNandGalacticblackholeshavemajordeviationsfromdiskspectra

AdaptedfromPolettaetal2007

Emissionfromdust?

diskemission

Page 12: Black Hole Spectra - UMD

23

AGN•  Ahugeamountofwork

hasgoneintoobservingAGNacrosstheentireelectromagneticspectrum

•  Thereisastrongrelationshipbetweentheoptical-UVandthex-ray

Brusaetal2009

diskemission

24

X-raytoUVRelationship•  Over103in

luminositytheUVandx-raytrackeachintypeIAGN

•  Directconnectionofdiskemission(seeninUV)tox-rays

Lussoetal2010LUV

L xray

Page 13: Black Hole Spectra - UMD

25

•  AverageSpectralEnergyDistributionsfor2ClassesofObjectsSelectedasX-rayEmittingAGNinagivenx-rayluminositybin(Pollettaetal2007)

Effectofreddeningbydust

x-ray

GeneralShapeoftheOptical-X-

raySED

•  Astheluminosityofthesourceincreasestheratioofx-raytoopticalluminosity(αox)decreasesslightly

•  e.gmoreluminousAGNarex-ray'quieter"

26

Coffeyetal2019

αox=[log(Fx)-log(FUV)]/2.605

Page 14: Black Hole Spectra - UMD

27

EffectsofDustCanBeDominant•  RememberfortheM~108

T~5x105Kso'rollover'isintheFUV–effectsofdustaremaximumintheUV

•  Emax~3kT~1016hz•  Theeffectsofdust(Reddening)

goatλ-2

•  muchbiggereffectsatshorter(UV)wavelengths-majoreffectondeterminationoftemperatureofaccretiondiskfitstoquasars.

Laor1990

averageamountofreddeningintheMilkywayatb=500

28

AGN-SummaryofSpectralComponents•  3Broadbandsofenergy•  Diskdominatesinoptical-UV•  ComptonizationinX-ray•  ReprocessedradiationinIR

Magdziarz et al 1998

Page 15: Black Hole Spectra - UMD

29

AGN•  AGNareverymassiveand

sothepredictedspectrumoftheaccretiondiskis'cool'-peakinginUV-EUV

•  T~8x104kforaEddingtonlimitedM~108M¤blackhole

•  ProblemswithobservingintheEUVandsodonotobservehighenergyexponentialcutoff

FitofSSADmodelstoAGNspectrum(MalkanandSun1989

ConnectionofFeKlineandtheReprocessingRegions•  Themostprominentspectral

featuresinmostx-rayAGNspectraare–  theFeKlinecomplex–  TheComptonreflection�hump�

•  Wherearetheseregions•  Howaretheyconnected•  Whatdowelearnaboutthegeometryandchemicalabundanceofthecentralregions?

•  Whatisthephysicalstateofthegasandhowisitconnectedtoother�places�-e.gtheregionsresponsibleforproducingtheoptical/UV/IRradiation

•  Whatcanwelearnaboutaccretion

X-ray source

reflection

MCG-5-23-16Suzakudata(Reevesetal2006

Cartoonorreality??

Comptonhump

FeKcomplex

Page 16: Black Hole Spectra - UMD

MoreComplexity•  ComptonizationandX-rayAGNSpectra

•  X-raySpectralComponentsandreprocessing

•  Directevidencefordisksandsmallx-raysizefromgravlensing

•  BroadFeKLinesandSpin

31

32

Optically-thickpartoftheaccretiondiskemitsthermalspectrum…blackbodyradiationwith

X-ray�tail�probablycomesfromahotcoronax-raysproducedbyinverseComptonscatteringofthermaldiskemissionbyelectronswithT~109K

WheredotheSpectralComponentsArise?

Page 17: Black Hole Spectra - UMD

33

EvenMorePossibleGeometries

FromC.Done

34

RealDataForGalacticBH

Wheredothehighenergyphotonsarise?InbothAGNandBlackHolebinariesitisthoughtthatthisspectralcomponentisduetoComptonizationofa'seedphoton'populationoffofhighlyenergeticelectronsproduced'above'thedisk

disknotdisk

Possiblegeometries-blueisx-rayemittingregion

Page 18: Black Hole Spectra - UMD

35

ComptonizedSpectraLongair9.4.1

Done2007

n y~4kT/mec2(maxτ,τ2)n slopeα~-3/2+(9/4+y)1/2

•  Thefreeparameterforthepowerlawslopeisywhichcontrolsthespectralslope

•  Howeverthesmallerτis,thelargerThastobetogetthesameslope-the'bumpier'thespectraare

•  spectrumsteepsathighE(maxT)

•  y~1istheusualcase•  seeUnwrappingtheX-ray

SpectraofActiveGalacticNucleiC.ReynoldsarXiv:1510.07638

• 

ThermalComptonizedContinuum•  Thedetailedsolutionisabitmessy

(Zdziarski,Johnson&Magdziarz(1996)butfory>1oneformsaspectrumwhichcanbeapproximatedbyapowerlawofslopeΓwithahighenergycutoffrelatedtothetemperatureofthehotelectrons.

•  power-lawindexofthephotoncountrateasafunctionof

energy,dN(E)/dE � E−Γ,

36

Page 19: Black Hole Spectra - UMD

ThermalComptonizedContinuum•  Thedetailed

solutionisabitmessy(Zdziarski,Johnson&Magdziarz(1996)butfory>1oneformsaspectrumwhichcanbeapproximatedbyapowerlawofslopeΓwithahighenergycutoffrelatedtothetemperatureofthehotelectrons.

•  , 37

Typicalslopesare~-2whichgivesτe~1andy =3/4y=4kTemec2max(τe,τ2e)typicaltemperaturesare50-300keV

ThermalComptonizedSpectra•  Typicalslopesare~-2

•  whichgivesτe~1andy =3/4

y=4kTemec2max(τe,τ2e)•  typicaltemperaturesare50-300keV

38

NumericalcalculationsofComptonizedspectrafordifferentT,τ combinations

Page 20: Black Hole Spectra - UMD

39

AGN-SummaryofSpectralComponents

Hickok & Alexander 2018

40

MoreOnBHSpectra•  Relationshipofcomponents•  Whydowethinkdiskexists•  Geometryofcentralregions•  Reprocessing-howcanwelearnaboutthe

materialinandaroundtheblackholefromspectralandtemporalsignaturesinthespectra

•  Spinanditsinfluence

Page 21: Black Hole Spectra - UMD

41

Howdoweknowthattherereallyisadisk??

•  RecentmicrolensingobservationsofafewQSOshave'resolved'thex-rayandopticalsources

•  Theopticalsourcesizeanddependenceofluminosityonwavelengthareconsistentwithstandarddisktheory-e.g.

•  Microlensingperturbationstothefluxratiosofgravitationallylensedquasarimagescanvarywithwavelengthbecauseofthechromaticdependenceofthesourcesapparentsize.

42

MicroLensing•  AswesawlasttimeinadiskT(r)~Tmaxr-3/4

•  Writingitoutinfull•  Teff(r)={(3G2MBH

2mpfEdd)/2cσSBεr3)}1/4(1-rin/r)1/4–  fEddistheEddingtonratio,MBHistheBHmass,σSBtheStefanBoltzman

constant,ε istheefficiency

•  Thusthediskemitsmostofitsshortwavelengthlightatsmallradiiandlongwavelengthlightatlargeradii

•  Integratingthedisktemperatureprofile(Blackburneetal2010)onegetsthatthehalflightradiusasafunctionofsizeis

r1/2~1.7x1016cm(MBH/109M�)2/3(fEdd/ε)1/3 (λ/µ)4/3•  Inotherwordstheeffectivesize~λ4/3

Page 22: Black Hole Spectra - UMD

43

•  ThesizeofthediskisinEinsteinradiusunitswhichareconvertedtocgsunitswithamodelofthegravpotentialofthelensinggalaxy

•  Sourceisbiggeratlongerwavelengths-lineiswhataSSdiskshouldbe

•  Tocomparetomodeldisks,havetoassumeMBH,fEdd/ε

SizeofPG1115inEinsteinradiusunits

logr(cm

)

44

X-rayMicroLensingAlso

•  Probabilitydistributionofopticalandx-raysourcesize(Zimmeretal2010,Chartasetal2008)-x-rayisMUCHsmaller

Page 23: Black Hole Spectra - UMD

45

ResultsareInRoughAgreementWithTheory•  X-raysareemittingnear

theSchwarzschildradius

•  Optical~10xfurtherout

Chartas2008