Download - Anomalous Transport Processes in Turbulent Nonabelian Plasmas · Anomalous Transport Processes in Turbulent Nonabelian Plasmas Berndt Müller Saturation Workshop BNL - May 10, 2010

Transcript
Page 1: Anomalous Transport Processes in Turbulent Nonabelian Plasmas · Anomalous Transport Processes in Turbulent Nonabelian Plasmas Berndt Müller Saturation Workshop BNL - May 10, 2010

Anomalous Transport Processes

in Turbulent Nonabelian Plasmas

Berndt MüllerSaturation Workshop

BNL - May 10, 2010

Work done withM. Asakawa (Osaka)& S.A. Bass (Duke)

PRL 96, 252301 (2006)PTP 116, 725 (2006)

Monday, May 10, 2010

Page 2: Anomalous Transport Processes in Turbulent Nonabelian Plasmas · Anomalous Transport Processes in Turbulent Nonabelian Plasmas Berndt Müller Saturation Workshop BNL - May 10, 2010

2

In this talk…

…we ask the question:

Is strong coupling really necessary

for small η/s and large q ?^

Monday, May 10, 2010

Page 3: Anomalous Transport Processes in Turbulent Nonabelian Plasmas · Anomalous Transport Processes in Turbulent Nonabelian Plasmas Berndt Müller Saturation Workshop BNL - May 10, 2010

3

Stellar accretion disks“A complete theory of accretion disks requires a knowledge of the viscosity.

Unfortunately, viscous transport processes are not well understood. Molecular viscosity is so small that disk evolution due to this mechanism of angular momentum transport would be far too slow to be of interest. If the only source of viscosity was molecular,

then ν ~ η/ρ ~ λ vT, where λ is the particle mean free path and vT is the thermal velocity. Values appropriate for a disk around a newly formed star might be r ~ 1014 cm,

n ~ 1015 cm-3, σ ~ 10-16 cm2, so that λ ~ 10 cm, and vT ~ 105 cm/s . The viscous accretion time scale would then be r2/(12ν) > 1013  yr! Longer by a factor of 105 - 106

than the age conventionally ascribed to such disks. Clearly if viscous accretion explains such objects, there must be an anomalous source of viscosity. The same conclusion

holds for all the other astronomical objects for which the action of accretion disks have been invoked.”

(From James Graham – Astronomy 202, UC Berkeley)http://grus.berkeley.edu/~jrg/ay202/lectures.html

Monday, May 10, 2010

Page 4: Anomalous Transport Processes in Turbulent Nonabelian Plasmas · Anomalous Transport Processes in Turbulent Nonabelian Plasmas Berndt Müller Saturation Workshop BNL - May 10, 2010

3

Stellar accretion disks“A complete theory of accretion disks requires a knowledge of the viscosity.

Unfortunately, viscous transport processes are not well understood. Molecular viscosity is so small that disk evolution due to this mechanism of angular momentum transport would be far too slow to be of interest. If the only source of viscosity was molecular,

then ν ~ η/ρ ~ λ vT, where λ is the particle mean free path and vT is the thermal velocity. Values appropriate for a disk around a newly formed star might be r ~ 1014 cm,

n ~ 1015 cm-3, σ ~ 10-16 cm2, so that λ ~ 10 cm, and vT ~ 105 cm/s . The viscous accretion time scale would then be r2/(12ν) > 1013  yr! Longer by a factor of 105 - 106

than the age conventionally ascribed to such disks. Clearly if viscous accretion explains such objects, there must be an anomalous source of viscosity. The same conclusion

holds for all the other astronomical objects for which the action of accretion disks have been invoked.”

(From James Graham – Astronomy 202, UC Berkeley)http://grus.berkeley.edu/~jrg/ay202/lectures.html

The solution is: String theory?

Monday, May 10, 2010

Page 5: Anomalous Transport Processes in Turbulent Nonabelian Plasmas · Anomalous Transport Processes in Turbulent Nonabelian Plasmas Berndt Müller Saturation Workshop BNL - May 10, 2010

4

Anomalous viscosity

B

Differentially rotating disc with weak magnetic

field B shows an instability

(Chandrasekhar) Spontaneous angular momentum transfer from inner mass to outer mass is amplified by interaction with the rotating disk and leads to instability (Balbus & Hawley – 1991).

Monday, May 10, 2010

Page 6: Anomalous Transport Processes in Turbulent Nonabelian Plasmas · Anomalous Transport Processes in Turbulent Nonabelian Plasmas Berndt Müller Saturation Workshop BNL - May 10, 2010

4

Anomalous viscosity

B

Differentially rotating disc with weak magnetic

field B shows an instability

(Chandrasekhar) Spontaneous angular momentum transfer from inner mass to outer mass is amplified by interaction with the rotating disk and leads to instability (Balbus & Hawley – 1991).

“Anomalous”, i.e. non-collisional

viscosity

Monday, May 10, 2010

Page 7: Anomalous Transport Processes in Turbulent Nonabelian Plasmas · Anomalous Transport Processes in Turbulent Nonabelian Plasmas Berndt Müller Saturation Workshop BNL - May 10, 2010

5

Can QCD transport be anomalous?

Monday, May 10, 2010

Page 8: Anomalous Transport Processes in Turbulent Nonabelian Plasmas · Anomalous Transport Processes in Turbulent Nonabelian Plasmas Berndt Müller Saturation Workshop BNL - May 10, 2010

5

Can QCD transport be anomalous?

Can the extreme opaqueness of the QGP (seen in experiments) be explained without invoking super-strong coupling ?

Monday, May 10, 2010

Page 9: Anomalous Transport Processes in Turbulent Nonabelian Plasmas · Anomalous Transport Processes in Turbulent Nonabelian Plasmas Berndt Müller Saturation Workshop BNL - May 10, 2010

5

Can QCD transport be anomalous?

Can the extreme opaqueness of the QGP (seen in experiments) be explained without invoking super-strong coupling ?

Answer may lie in the peculiar properties of turbulent plasmas.

Monday, May 10, 2010

Page 10: Anomalous Transport Processes in Turbulent Nonabelian Plasmas · Anomalous Transport Processes in Turbulent Nonabelian Plasmas Berndt Müller Saturation Workshop BNL - May 10, 2010

5

Can QCD transport be anomalous?

Can the extreme opaqueness of the QGP (seen in experiments) be explained without invoking super-strong coupling ?

Answer may lie in the peculiar properties of turbulent plasmas. Plasma “turbulence” = random, nonthermal excitation of coherent

field modes with power spectrum similar to the vorticity spectrum in a turbulent fluid; usually caused by plasma instabilities.

Monday, May 10, 2010

Page 11: Anomalous Transport Processes in Turbulent Nonabelian Plasmas · Anomalous Transport Processes in Turbulent Nonabelian Plasmas Berndt Müller Saturation Workshop BNL - May 10, 2010

5

Can QCD transport be anomalous?

Can the extreme opaqueness of the QGP (seen in experiments) be explained without invoking super-strong coupling ?

Answer may lie in the peculiar properties of turbulent plasmas. Plasma “turbulence” = random, nonthermal excitation of coherent

field modes with power spectrum similar to the vorticity spectrum in a turbulent fluid; usually caused by plasma instabilities.

Plasma instabilities arises naturally in expanding plasmas with an anisotropic momentum distribution (Weibel-type instabilities).

Monday, May 10, 2010

Page 12: Anomalous Transport Processes in Turbulent Nonabelian Plasmas · Anomalous Transport Processes in Turbulent Nonabelian Plasmas Berndt Müller Saturation Workshop BNL - May 10, 2010

5

Can QCD transport be anomalous?

Can the extreme opaqueness of the QGP (seen in experiments) be explained without invoking super-strong coupling ?

Answer may lie in the peculiar properties of turbulent plasmas. Plasma “turbulence” = random, nonthermal excitation of coherent

field modes with power spectrum similar to the vorticity spectrum in a turbulent fluid; usually caused by plasma instabilities.

Plasma instabilities arises naturally in expanding plasmas with an anisotropic momentum distribution (Weibel-type instabilities).

Strong color fields in the early glasma exhibit Sauter and Nielsen-Olesen-type instabilities that create turbulent color fields.

Monday, May 10, 2010

Page 13: Anomalous Transport Processes in Turbulent Nonabelian Plasmas · Anomalous Transport Processes in Turbulent Nonabelian Plasmas Berndt Müller Saturation Workshop BNL - May 10, 2010

5

Can QCD transport be anomalous?

Can the extreme opaqueness of the QGP (seen in experiments) be explained without invoking super-strong coupling ?

Answer may lie in the peculiar properties of turbulent plasmas. Plasma “turbulence” = random, nonthermal excitation of coherent

field modes with power spectrum similar to the vorticity spectrum in a turbulent fluid; usually caused by plasma instabilities.

Plasma instabilities arises naturally in expanding plasmas with an anisotropic momentum distribution (Weibel-type instabilities).

Strong color fields in the early glasma exhibit Sauter and Nielsen-Olesen-type instabilities that create turbulent color fields.

As we will see, soft color fields generate anomalous transport coefficients, which may dominate the transport properties of the plasma even at moderately weak coupling.

Monday, May 10, 2010

Page 14: Anomalous Transport Processes in Turbulent Nonabelian Plasmas · Anomalous Transport Processes in Turbulent Nonabelian Plasmas Berndt Müller Saturation Workshop BNL - May 10, 2010

1/Qs Nielsen-Olesen instability of longitudinal color-magnetic field(Itakura & Fujii, Iwazaki)

∂2φ∂τ 2

+1τ∂φ∂τ

+(kz − gAη )

2

τ 2− gBz

⎝⎜⎞

⎠⎟φ = 0

Glasma instabilities

6

Monday, May 10, 2010

Page 15: Anomalous Transport Processes in Turbulent Nonabelian Plasmas · Anomalous Transport Processes in Turbulent Nonabelian Plasmas Berndt Müller Saturation Workshop BNL - May 10, 2010

7

QGP instabilities

Color correlation length

Time

Length (z)

Quasi-abelian

Non-abelian

Noise

M. Strickland, hep-ph/0511212

Monday, May 10, 2010

Page 16: Anomalous Transport Processes in Turbulent Nonabelian Plasmas · Anomalous Transport Processes in Turbulent Nonabelian Plasmas Berndt Müller Saturation Workshop BNL - May 10, 2010

8

Anomalous viscosity

Monday, May 10, 2010

Page 17: Anomalous Transport Processes in Turbulent Nonabelian Plasmas · Anomalous Transport Processes in Turbulent Nonabelian Plasmas Berndt Müller Saturation Workshop BNL - May 10, 2010

Anomalous q-hat

9

Jet quenching parameter:

q̂ =ΔpT

2 L( )L

Momentum change in one coherent domain:

ΔpT = gQaB⊥arm

Anomalous jet quenching parameter:

q̂A =ΔpT

2

rm= g2Q2 B⊥

2 rm

Relation to anomalous shear viscosity:

ηA

s≈T 3

q̂A

Special case of general relationbetween η/s and q^ (A. Majumder,BM & Wang, PRL 99, 192301 (ʼ07).

p

Monday, May 10, 2010

Page 18: Anomalous Transport Processes in Turbulent Nonabelian Plasmas · Anomalous Transport Processes in Turbulent Nonabelian Plasmas Berndt Müller Saturation Workshop BNL - May 10, 2010

10

Turbulence ⇔ p-Diffusion

Monday, May 10, 2010

Page 19: Anomalous Transport Processes in Turbulent Nonabelian Plasmas · Anomalous Transport Processes in Turbulent Nonabelian Plasmas Berndt Müller Saturation Workshop BNL - May 10, 2010

10

Turbulence ⇔ p-Diffusion

Monday, May 10, 2010

Page 20: Anomalous Transport Processes in Turbulent Nonabelian Plasmas · Anomalous Transport Processes in Turbulent Nonabelian Plasmas Berndt Müller Saturation Workshop BNL - May 10, 2010

Turbulent fields

11

chromo-electric and -magnetic fields uncorrelated (?)

Iterated Vlasov force term:

Random force assumption (with finite correlation length / time):

Memory time:

Monday, May 10, 2010

Page 21: Anomalous Transport Processes in Turbulent Nonabelian Plasmas · Anomalous Transport Processes in Turbulent Nonabelian Plasmas Berndt Müller Saturation Workshop BNL - May 10, 2010

Turbulent fields

11

chromo-electric and -magnetic fields uncorrelated (?)

Iterated Vlasov force term:

Random force assumption (with finite correlation length / time):

Memory time:

Monday, May 10, 2010

Page 22: Anomalous Transport Processes in Turbulent Nonabelian Plasmas · Anomalous Transport Processes in Turbulent Nonabelian Plasmas Berndt Müller Saturation Workshop BNL - May 10, 2010

Turbulent fields

11

chromo-electric and -magnetic fields uncorrelated (?)

Iterated Vlasov force term:

Random force assumption (with finite correlation length / time):

Memory time:

Monday, May 10, 2010

Page 23: Anomalous Transport Processes in Turbulent Nonabelian Plasmas · Anomalous Transport Processes in Turbulent Nonabelian Plasmas Berndt Müller Saturation Workshop BNL - May 10, 2010

12

Weibel regime

Take moments of with pz2

Self-consistency

compare with

ηC

s

1g4 lng−1

Monday, May 10, 2010

Page 24: Anomalous Transport Processes in Turbulent Nonabelian Plasmas · Anomalous Transport Processes in Turbulent Nonabelian Plasmas Berndt Müller Saturation Workshop BNL - May 10, 2010

12

Weibel regime

Take moments of with pz2

Anomalous shear viscosity dominates over collisional shear viscosity at fixed ∇u in the limit g → 0.

Self-consistency

compare with

ηC

s

1g4 lng−1

Monday, May 10, 2010

Page 25: Anomalous Transport Processes in Turbulent Nonabelian Plasmas · Anomalous Transport Processes in Turbulent Nonabelian Plasmas Berndt Müller Saturation Workshop BNL - May 10, 2010

Glasma regime

13

In the glasma, most of the energy density is in the form of color fields:

Anomalous transport dominates over Boltzmann (collision) transport.

 

ηA ≈Nc2 −1

15π 2C2g2

E2 + B

2 τmdp p5 f (p)

0

∫ ≈Nc2 −1( )Qs

2

C2g2τm

⋅εpartε field

Anomalous jet quenching:

 

q̂A ≈C2g

2 E2 + B2 τmNc2 −1

≈g2ε fieldQs

≈Qs3

(Qsτ )≈10 GeV2 /fm

Qsτ

In line with estimates of q^ ~ 2 - 4 GeV2/fm from fits to data.

Monday, May 10, 2010

Page 26: Anomalous Transport Processes in Turbulent Nonabelian Plasmas · Anomalous Transport Processes in Turbulent Nonabelian Plasmas Berndt Müller Saturation Workshop BNL - May 10, 2010

What’s to be done

14

Time to get quantitative! The quantity to be calculated is:

Dij v( ) = dτ Fi r + vτ ,t + τ( )Fj r,t( )−∞

0

∫where F is the color Lorentz force on a parton.

Note that C2g2D⊥⊥ = q̂ ⇒ η ∝1 / q̂

t

rDij (v) is the color force autocorrelation function along the light-cone.

Numerical evaluation by real-time latticesimulations are urgently needed, both inthe stationary regime for fixed momentumanisotropy and in the CGC-seeded glasma.

Monday, May 10, 2010

Page 27: Anomalous Transport Processes in Turbulent Nonabelian Plasmas · Anomalous Transport Processes in Turbulent Nonabelian Plasmas Berndt Müller Saturation Workshop BNL - May 10, 2010

15

Monday, May 10, 2010

Page 28: Anomalous Transport Processes in Turbulent Nonabelian Plasmas · Anomalous Transport Processes in Turbulent Nonabelian Plasmas Berndt Müller Saturation Workshop BNL - May 10, 2010

15

The END

Monday, May 10, 2010