Download - An exact microscopic multiphonon approach to nuclear spectroscopy

Transcript
Page 1: An exact microscopic multiphonon approach to nuclear spectroscopy

An exact microscopic multiphonon approach to nuclear

spectroscopyN. Lo Iudice

Università di Napoli Federico II

Naples(Andreozzi, Lo Iudice, Porrino) Prague (Knapp, Kvasil)

Collaboration

Tokyo 07

Page 2: An exact microscopic multiphonon approach to nuclear spectroscopy

Eigenvalue problem in a multiphonon space

H | Ψ ν > = Eν | Ψ ν >

| Ψ ν > H = Σn Hn ( n= 0,1.....N )where

Hn ∋ |n, α > ~ | ν1 ν2 …..νn >

| νi > = Σph c ph(νi ) a

†p ah |0>

First goal: Generate the basis states |n, α >

We do it by constructing a set of equations of motion and solving them iteratively

Page 3: An exact microscopic multiphonon approach to nuclear spectroscopy

EOM: Construction of the Equations • Crucial ingredient < n; β | [H, a†

p ah] | n-1; α>

• Preliminary step: Derive< n; β | [H, a†

p ah] | n-1; α> = ( Eβ

(n) - Eα

(n-1)) < n; β | a

p ah| n-1; α >

(LHS) (RHS)

The RHS comes from

* property < n; β | a†

pa

h | n’; γ > = δ

n’,n-1 < n; β | a†

pa

h | n-1; γ >

** request

< n; β | H | n; α > = E α

(n) δαβ

Page 4: An exact microscopic multiphonon approach to nuclear spectroscopy

Commutator expansion

< n; β | [H, a†p ah] | n-1; α > =

(εp- εh) < n; β | a†p ah| n-1; α >. +

1/2 Σijp’

Vhjpk < n; β | a†p’ ah a

†i aj | n-1; α > + …

Linearization

< n; β | [H, a†p ah] | n-1; α > =

Σp’h’γ [(εp- εh) δγβ

+ 1/2 Σij

Vhjp’k’ < n-1; γ | a†i aj | n-1; α > +

………] < n; β | a†p’ ah’ | n-1; γ >

= Σp’h’γ

Aαγ(n)(ph;p’h’) < n; β | a†

p’ ah’ | n-1; γ >

Î = Σ γ |n-1; γ >< n-1; γ|

Equations of Motion : LHS

Page 5: An exact microscopic multiphonon approach to nuclear spectroscopy

LHS=RHS AX = EX

jγ Aαγ(n) ( ij) Xγβ

(n)(j) = (Eβ

(n) - Eα(n1)) Xαβ

(n)(i) where

Xαβ(n) (i )

= < n; β | a†

p ah| n-1; α >

Aαγ(n) ( ij) = [εp–εh] δij

(n-1) δαβ (n-1)

+ [VPHρH + VHPρP + VPPρP + VHHρH ]αiβj

ρH ≡ {< n,γ|a†

hah’|n,α>} ρP ≡ {< n,γ|a†

pap’|n,α>} n =1 (ρP = 0 ρH = δhh’)

A(1) Xα(1) = (Eα

(1) - E0 (0) ) Xα

(1) Tamm-Dancoff

A(1) (ij)= δij[εp–εh] + V(p’hh’p)

Page 6: An exact microscopic multiphonon approach to nuclear spectroscopy

Structure of multiphonon states: Overcompletness

The eigenvalue equations yield states of the structure

|n; β> = Σ α ph cα

ph a†

p ah | n-1; α >

• Problem: The multiphonon states are not fully antysymmetrized !!!

a†p ah | n-1; α > ≡

p h p h

The multiphonon states form an overcomplete set

Page 7: An exact microscopic multiphonon approach to nuclear spectroscopy

Solution of the redundancy Reminder

Insert |n; β> = Σα ph Cαph a†

p ah | n-1; α >

Xαβ

(n)(ph)

= < n; β | a†

p ah | n-1; α >

X = DC (AD)C = H C = E DC

where

Dij = < n-1; α’| ah’ a†

p’ a†

p ah | n-1; α> overlap or metric matrix

Problem due to redundancy Det D = 0

γ Aαγ(n) Xγβ(n)= (Eβ

(n) - Eα(n-1 ) )Xαβ(n)

A X = E X

Page 8: An exact microscopic multiphonon approach to nuclear spectroscopy

Solution of the redundancy *Removal of redundancy: Choleski decomposition(no

diagonalization)

D Ď ** Matrix inversion

Exact eigenvectors

|n; β> = Σ αph Cαph a

p ah | n-1; α > H n (phys)

● Now compute in Hn

i. X(n)

ii. ρ(n) recursive formula

X= D C

ρ(n) = C X (n) + C ρ (n-1) X (n)

HC = (Ď-1AD)C = E C

Page 9: An exact microscopic multiphonon approach to nuclear spectroscopy

Iterative generation of phonon basis Starting point |0>

Solve Ĥ(1) C(1)

= E(1)

C(1)

|n=1, α> X(1) ρ(1)

Solve Ĥ(2) C (2) = E (2) C (2) |n=2,α> X(2) ρ(2)

……… X(n-1) ρ(n-1)

Solve Ĥ(n) C (n) = E (n) C (n)

X(n) ρ(n) |n,α

.>

The multiphonon basis is generated !!!

Page 10: An exact microscopic multiphonon approach to nuclear spectroscopy

H: Spectral decomposition, diagonalization

H = Σ nα

E α

(n) |n; α><n;α| + (diagonal)

+ Σ nα β

|n; α><n;α| H |n’;β><n’;β| (off-diagonal)

n’ = n ±1, n±2

Off-diagonal terms: Recursive formulas

< n; α | H| n-1; β > = Σphγ

ϑαγ

(n-1)(ph) Xγβ

(n)(ph)

< n; α | H| n-2; β > = Σ V pp’hh’

Xγβ

(n) (ph)

Xγβ

(n-1) (p’h’)

Outcome of diagonalization H |Ψν> = Eν |Ψν>

|Ψν> = Σnα Cα(ν) (n) | n;α> |n;α> = Σγ Cγ

(n) | n-1;γ>

Page 11: An exact microscopic multiphonon approach to nuclear spectroscopy

Numerical test: A = 16 ∙ Calculation up to 3-phonons and 3ħω

Hamiltonian

H = H0 + V = Σi hNils

(i)+ Gbare

( VBonnA

⇨ Gbare)

• CM motion (F. Palumbo Nucl. Phys. 99 (1967))

H H + Hg

Hg = g [ P2/(2Am) + (½) mA ω2 R2 ] • Consistent choice of ph space: It must includes all ph

configurations up to 3ħω

Page 12: An exact microscopic multiphonon approach to nuclear spectroscopy

Ground state

|Ψ0> = C(0)

0 |0>

+ Σλ C

λ

(0) |λ, 0>

+ Σ λ1λ2 Cλ1λ2

(0) |λ 1 λ

2, 0

>

|λ, 0> |λ 1 λ

2, 0

>

1 = < Ψ0|Ψ

0> = P

0 + P

1 + P

20

10

20

30

40

50

60

70

80

0ph 2ph 4ph 6ph

EMNocoreHJ

0

10

20

30

40

50

60

70

80

0ph 1ph 2ph

P(n) %noCMcorr

Page 13: An exact microscopic multiphonon approach to nuclear spectroscopy

16O negative parity spectrum • Up to three phonons

Page 14: An exact microscopic multiphonon approach to nuclear spectroscopy

IVGDR

|1->IV ~ |1(p-h) (1ħω)>

Page 15: An exact microscopic multiphonon approach to nuclear spectroscopy

ISGDR |1->IS ~ |1(p-h) (3 ħω)> + |2(p-h) (1ħω + 2ħω)> + |3(p-h) (1ħω )>

Toroidal

Page 16: An exact microscopic multiphonon approach to nuclear spectroscopy

Octupole modes |3->IS ~ |1(p-h) (3 ħω)> + |2(p-h) (1ħω + 2ħω)> + |3(p-h) (1ħω )>

Low-lying

Page 17: An exact microscopic multiphonon approach to nuclear spectroscopy

Effect of CM motion

Page 18: An exact microscopic multiphonon approach to nuclear spectroscopy

Effect of the CM motion

Page 19: An exact microscopic multiphonon approach to nuclear spectroscopy

Concluding remarks• The multiphonon eigenvalue equations

- have a simple structure - yield exact eigensolutions of a general H

• The 16O test shows that - an exact calculation in the full multiphonon space is feasible at least up to 3 phonons and 3 ħω.

• To go beyond - Truncation of the space needed !!! - Truncation is feasible (the phonon states are correlated).

- A riformulation for an efficient truncation is in progress

Page 20: An exact microscopic multiphonon approach to nuclear spectroscopy

THANK YOU

Page 21: An exact microscopic multiphonon approach to nuclear spectroscopy

E2 response up to 3 ħω: Running sum

Sn = Σn (En – E0(0) ) Bn(E2,0→2+

n)

Rn = Sn/SEW(E2)

• It is necessary to enlarge the space!!

Page 22: An exact microscopic multiphonon approach to nuclear spectroscopy

E2 response up to 3 ħω

S(ω,E2) = Σn Bn(E2,0→2+n) ρΔ(ω-ωn)

ρΔ(x) = (Δ/2π) / [x2 + (Δ/2)2]

M(E2μ) = Σ(p)ep rp2 Y 2μ

Page 23: An exact microscopic multiphonon approach to nuclear spectroscopy

Effect of CM on the E2 response

Page 24: An exact microscopic multiphonon approach to nuclear spectroscopy

Growing evidence of multiphonon excitations

* Low-energy M. Kneissl. H.H. Pitz, and A. Zilges, Prog. Part. Nucl. Phys. 37, 439 (1996); M. Kneissl. N.

Pietralla, and A. Zilges, J.Phys. G, 32, R217 (2006) : • Two- and three-phonon multiplets Q2 × Q3|0>, Q2×Q2×Q3|0>• Proton-neutron (F-spin) mixed-symmetry states (N. Pietralla et al. PRL 83, 1303 (1999))

[Q2(p) - Q2

(n)] (Q2(p) + Q2

(n)) N|0>,

** High-energy (N. Frascaria, NP A482, 245c(1988); T. Auman, P.F. Bortignon, H. Hemling, Ann. Rev. Nucl.

Part. Sc. 48, 351 (1998))

• Double and (maybe) triple dipole giant resonances D × D |0>

Page 25: An exact microscopic multiphonon approach to nuclear spectroscopy

From TDA to RPA

A(n)

B(n)

X(n)

= (E(n)

- E(n-1)

)

B(n)

A(n)

-Y(n)

Page 26: An exact microscopic multiphonon approach to nuclear spectroscopy

Aαγ(n) (ph;p’h’)=δhh’δpp’δαγ(n-1)[εp–εh]

+ Σh1 V(p’h1h

’p) ραγ

(n-1) (h1h)

+ Σp1 V(p’hp

1h’) ραγ

(n-1) (pp1)

+ δhh’ [ Σp2p3 V(p’p2pp3)ραγ

(n-1) (p2p3)

+ Σh2h3 V(p’h2ph3)ραγ

(n-1)(h2h3)]

+ δpp’ [ Σh2h3 V(hh2h

’h3)ραγ

(n-1)(h2h3)

+ Σp2p3 V(hp2h

’p3)ραγ

(n-1)(p2p3)]

Bαγ

(n) (ph;p’h’)=

Σh2 V(p p’h2 h

’)ραγ

(n-1)(h2h)

+ Σp2 V(h’hp2p

’)ραγ

(n-1)(pp2)

Page 27: An exact microscopic multiphonon approach to nuclear spectroscopy

AX = EXwhere

Aαγ

(n)

(ph;p’h’)=δhh’δpp’δαγ

(n-1)[εp–εh]

+ Σh1 V(p’h1h’p) ραγ

(n-1)(h1h)

+ Σp1 V(p’hp1h’) ραγ

(n-1)(pp1)

+ δhh’1/2 Σp2p3 V(p’p2pp3) ραγ

(n-1)(p2p3)

+ δpp’1/2 Σh2h3 V(hh2h’h3) ραγ

(n-1)(h2h3)

(ραγ

(n)(ij) = <n,α|a†

iaj|n,α>)

Page 28: An exact microscopic multiphonon approach to nuclear spectroscopy

Choleski decomposition• Any real non negative definite

symmetric matrix can be written as

D = L LT

( L {lij} lower triangular matrix) Det{D} = (Det{L})2

= l112 l22

2 ...lii2…..

= λ21 …λ2

i… (D | λi > = λi | λi > )

Definition of L: Recursive formulas

l211 = d11

l11 lj1 = dj1 j=2,….,nl2

ii = dii – Σk=1,i-1 l2

ik

lii lji = dji – Σk=1,i-1 lik ljk

(It reminds the Schimdt orthogonalization method)

The decomposition goes on until lnn = 0

lnn = 0 → Det{L} =0→Det{D} =0 ⇨

⇨ | λn > (D | λi > = λi | λi > ) linearly dependent ⇨ to be discarded

• For numerical stability we need maximum overlap

λj ≤ λi j > i

• Sequence order

lii ≤ ljj j > i

Once lnn = 0 → lii = 0 i >n

1) We can stop at the nth step

2) We get Ď (Nn < N

r) with maximum determinant

(overlaps)

Page 29: An exact microscopic multiphonon approach to nuclear spectroscopy

Elimination of CM spuriosity F. Palumbo Nucl. Phys. 99 (1967)

• HSM H = HSM + Hg

• Hg = g [ P2/(2Am) + (½) mA ω2 R

2 ] = g/A [ Σi hi + Σi<j vij ]

hi = pi

2/(2m) + (1/2) m(Aω)2ri

2

vij = (1/m) pi· pj + m (Aω)2ri · rj

Hg effective only in Jπ = 1

- ph channel.

H Ψ = (HSM + Hg) Ψ =E Ψ

In the full space

Ψ = ψ

int Φn

CM

For the physical states

Ψn = ψn Φ0

CM

with CM energy

E0

CM = 3/2 g ħω

For the spurious ones

Ψn

(1)

= ψn

Φ1

CM

at the very high CM energy

E1

CM

- E0

CM

= g ħω

They can therefore be tagged and eliminated