Download - A Note on Sparse Stochastic Inference for Latent Dirichlet Allocation

Transcript
Page 1: A Note on Sparse Stochastic Inference for Latent Dirichlet Allocation

A derivation of Eqs. (4) and (5) of

Sparse stochastic inference for latent Dirichlet allocation

Tomonari MASADA @ Nagasaki University

May 23, 2013

The evidence can be written as follows:

p(w|α, η) =

∫ ∑z

∏k

p(βk|η)∏d

{p(θd|α)p(zd|θd)p(w|zd,β)

}dθdβ . (1)

By integrating θ out, we have

p(w|α, η) =

∫ ∑z

∏k

p(βk|η)∏d

{p(zd|α)p(w|zd,β)

}dβ . (2)

By applying Jensen’s inequality, we have a lower bound of the evidence as follows:

log p(w|α, η) = log

∫ ∑z

∏k

p(βk|η)∏d

p(zd|α)p(w|zd,β)dβ

= log

∫ ∑z

(∏d

q(zd)∏k

q(βk)

∏k p(βk|η)

∏d p(zd|α)p(w|zd,β)∏

d q(zd)∏k q(βk)

)dβ

≥∫ ∑

z

∏d

q(zd)∏k

q(βk) log

(∏k p(βk|η)

∏d p(zd|α)p(w|zd,β)∏

d q(zd)∏k q(βk)

)dβ

=∑k

∫q(βk) log p(βk|η)dβk +

∑d

∑zd

q(zd) log p(zd|α)

+

∫ ∏k

q(βk)∑d

∑zd

q(zd) log p(w|zd,β)dβ +H(q)

=∑k

∫q(βk) log p(βk|η)dβk +

∑d

∑zd

q(zd) log p(zd|α)

+

∫ ∏k

q(βk)∑d

∑zd

q(zd)

Nd∑i=1

log βzdiwdidβ +H(q) , (3)

whereH(q) =∑k

∫q(βk) log q(βk)dβk+

∑d

∑zdq(zd) log q(zd). Let L denote the lower bound in Eq. (3).

By picking up the terms related to zd from L, we define Lzdas follows:

Lzd=∑zd

q(zd) log p(zd|α) +

∫ ∏k

q(βk)∑zd

q(zd)

Nd∑i=1

log βzdiwdidβ −

∑zd

q(zd) log q(zd) . (4)

We obtain a functional derivative of Lzdwith respect to q(z′d) as follows:

δLzd

δq(z′d)= limε→0

∑zd{q(zd) + εδ(zd − z′d)} log p(zd|α)−

∑zdq(zd) log p(zd|α)

ε

+ limε→0

∫ ∏k q(βk)

∑zd

[{q(zd) + εδ(zd − z′d)}

∑Nd

i=1 log βzdiwdi−∑zdq(zd)

∑Nd

i=1 log βzdiwdi

]dβ

ε

− limε→0

∑zd{q(zd) + εδ(zd − z′d)} log{q(zd) + εδ(zd − z′d)} −

∑zdq(zd) log q(zd)

ε, (5)

1

Page 2: A Note on Sparse Stochastic Inference for Latent Dirichlet Allocation

where

limε→0

∑zd{q(zd) + εδ(zd − z′d)} log{q(zd) + εδ(zd − z′d)} −

∑zdq(zd) log q(zd)

ε

= limε→0

∑zdq(zd) log

q(zd)+εδ(zd−z′d)

q(zd) +∑zdεδ(zd − z′d) log{q(zd) + εδ(zd − z′d)}ε

= limε→0

∑zdq(zd)

{ εδ(zd−z′d)

q(zd) +O(ε2)}

ε+ limε→0

∑zd

δ(zd − z′d) log{q(zd) + εδ(zd − z′d)}

=∑zd

δ(zd − z′d) +∑zd

δ(zd − z′d) log q(zd) = 1 + log q(z′d) . (6)

Therefore,

δLzd

δq(z′d)= log p(z′d|α) +

∫ ∏k

q(βk)

Nd∑i=1

log βz′diwdidβ − 1− log q(z′d) (7)

By solvingδLzdδq(z′

d) = 0, we obtain

q(zd) ∝ p(zd|α) · exp

(∫ ∏k

q(βk)

Nd∑i=1

log βzdiwdidβ

)

= p(zd|α) ·Nd∏i=1

exp

(∫ ∏k

q(βk) log βzdiwdidβ

)∝ Γ(Kα)

Γ(Kα+Nd)

∏k

Γ(α+∑i Izdi=k)

Γ(α)×∏i

exp

(Eq[

log βzdiwdi

])(8)

We assume that q(βk) =Γ(

∑w λkw)∏

w Γ(λkw)

∏w β

λkw−1kw . By picking up the terms related to λ from L, we

define Lλ as follows:

Lλ =∑k

∫q(βk) log p(βk|η)dβk +

∫ ∏k

q(βk)∑d

∑zd

q(zd)

Nd∑i=1

log βzdiwdidβ

−∑k

∫q(βk) log q(βk)dβk . (9)

Each term in Eq. (9) can be rewritten as below.∫q(βk) log p(βk|η)dβk = log Γ(Wη)−

∑w

log Γ(η) +∑w

(η − 1){

Ψ(λkw)−Ψ(∑w

λkw)}

(10)

∫q(βk) log q(βk)dβk = log Γ(

∑w

λkw)−∑w

log Γ(λkw) +∑w

(λkw − 1){

Ψ(λkw)−Ψ(∑w

λkw)}

(11)

∫ ∏k

q(βk)∑d

∑zd

q(zd)

Nd∑i=1

log βzdiwdidβ

=

∫ ∏k

q(βk)∑d

∑zd

q(zd)

Nd∑i=1

∑k

∑w

{I(zdi = k,wdi = w) · log βkw

}dβ

=

∫ ∏k

q(βk)∑k

∑w

log βkw

{∑d

∑zd

q(zd)

Nd∑i=1

I(zdi = k,wdi = w)}dβ

=∑k

∑w

{Ψ(λkw)−Ψ(

∑w

λkw)}{∑

d

∑zd

q(zd)

Nd∑i=1

I(zdi = k,wdi = w)}

(12)

2

Page 3: A Note on Sparse Stochastic Inference for Latent Dirichlet Allocation

Therefore,

∂Lλ∂λkw

=(η − λkw +

∑d

∑zd

q(zd)

Nd∑i=1

I(zdi = k,wdi = w))

Ψ′(λkw)

−(η − λkw +

∑d

∑zd

q(zd)

Nd∑i=1

I(zdi = k,wdi = w))

Ψ′(∑w

λkw) . (13)

By solving ∂Lλ∂λkw

= 0, we obtain

λkw = η +∑d

∑zd

q(zd)

Nd∑i=1

I(zdi = k,wdi = w) . (14)

3