Download - A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

Transcript
Page 1: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

X

Page 2: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–3What are BHC?, II

Stars end their life as one of three kinds of different compact objects:

White Dwarf: ρ ∼ 105 . . . 106 g cm−3, R ∼ R, Equilibrium between gravitation

and pressure from degenerate electrons, M < 1.44 M(Chandrasekhar-limit).

Neutron Star: ρ ∼ 1013 . . . 1016 g cm−3, R ∼ 10 km, this density causes inv.

β-decay (p + e− → n), i.e., star consists (mainly) of neutrons.

1.44 M < M . 3 M (Oppenheimer-Volkoff limit).

Black Hole: For M & 3 M no stable configuration known

=⇒ Star collapses completely

=⇒ Black Hole

Size scale: RS = 2GM/c2 = 3(M/M) km

If mass of compact object M > 3 M: Black Hole Candidate

Page 3: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

X

Page 4: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–5What are BHC?, IV

17 Aug 1998

18 Aug 1998

4840.0 4850.0 4860.0

Wavelength [A]

4870.0 4880.0

0.8

1.01.20.8

1.01.20.8

1.01.2

Nor

mal

ized

Flu

x

0.8

1.01.20.8

1.0

1.21.0

0.81.2

19 Aug 1998

20 Aug 1998

21 Aug 1998

22 Aug 1998

Motion of the Hβ line in HDE 226868/Cyg X-1(Pottschmidt, Wilms)

In binary system: Determine mass

of compact object using Kepler’s 3rd

Law

a3

P 2=

G(M1 + M2)

4π2

(a: semi-major axis, P : period,

M1,2: Masses).

Derive from this the mass function

MF =M3

2 sin3 i

(1 + (M1/M2))2=

K21P

2πG

MF is lower mass for M2.

(K2 : velocity amplitude)

Page 5: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–6What are BHC?, V

???

???

5 10Mass (solar Masses)

15 20

B1802−07J1012+5307J0045−7319J1713+0747

B1855+09J1518+4904cJ1518+4904B2303+46cB2303+46

B2127+11CcB2127+11CB1913+16cB1913+16

B1534+12cB1534+12

Cyg X−2Vela X−1

Cyg X−1

LMC X−3LMC X−1

GRS 1915+105XTE J1550−564XTE J1859+226XTE J1118+480

A0620−00V404 Cyg

XN Mus 91XN Oph77

GRO J0422+32GRO J1655−40

GS 2000+254U 1543−47

GRS 1009−45V4641 Sgr

after Orosz (2004, priv. comm.)

• 1971: First BHC (Cyg X-1)

• 1983: LMC X-3

• Currently 20 dynamically

confirmed Galactic Black Holes

Statistics:

• 3 High Mass X-ray Binaries

• Low Mass X-ray Binary BHC:

mainly transient sources

• Masses < 20 M

Page 6: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–6What are BHC?, VI

Orosz (2004, priv. comm.)

• 1971: First BHC (Cyg X-1)

• 1983: LMC X-3

• Currently 20 dynamically

confirmed Galactic Black Holes

Statistics:

• 3 High Mass X-ray Binaries

• Low Mass X-ray Binary BHC:

mainly transient sources

• Masses < 20 M

Page 7: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–7Current Questions

Jet

Corona

DiscBH

What we want to learn:

1. What does the accretion region look like:

“accretion geometry”

2. What are the physical processes

responsible for the broad-band emission?

3. Is there evidence for GR effects?

Active Galactic Nuclei and BHC have similar geometry =⇒ study similar

physical processes!

X-rays produced close to event horizon, observations give one of the few

constraints to study physics in the strong gravitational field limit.

Page 8: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–8

Phenomenology 1

Long-Term Evolution

50000 50500 51000 51500 52000 52500 53000MJD

0204060 GX 339−4

020406080 Cyg X−1

012345

1996 1997 1998 1999 2000 2001 2002 2003 2004LMC X−3

RX

TE

AS

M C

ount

Rat

e

Black Holes: Variability on all time scales

Page 9: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–9

Phenomenology 2

Spectral States

Energy [keV]

10-4

10-3

10-2

10-1

E ×

ph

cm-2

s-1

keV

-1

3 5 10 20

Obs28

Obs29

Obs30Obs31

(LMC X-3; Wilms et al., 2001)

X-ray States:

• LX & 0.05 LEdd:

soft state/high state:

– thermally dominated

– low variability (few

percent rms)

• LX . 0.05 LEdd:

hard state/low state:

– power law spectrum,

– high variability (few 10

percent rms)

Page 10: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–10

Phenomenology 3

Hard State: Comptonization

T

E’, p’

E, p θ

Sunyaev & Trümper (1979): power

law continuum caused by

Comptonization

Page 11: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–10

Phenomenology 4

Hard State: Comptonization

T

E’, p’

E, p θ

Sunyaev & Trümper (1979): power

law continuum caused by

Comptonization

Frame of rest of electron: Photon’s energy change due to Compton scattering:

E ′ =E

1 + Emec2(1 − cos θ)

, for E mec2:

∆E

E∼ − E

mec2

Page 12: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–10

Phenomenology 5

Hard State: Comptonization

T

E’, p’

E, p θ

Sunyaev & Trümper (1979): power

law continuum caused by

Comptonization

Frame of rest of electron: Photon’s energy change due to Compton scattering:

E ′ =E

1 + Emec2(1 − cos θ)

, for E mec2:

∆E

E∼ − E

mec2

If electron not at rest: energy transfer onto photon possible.

For thermal electrons:

∆E

E∼ 4kTe − E

mec2

Page 13: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–11

Phenomenology 6

Hard State: Comptonization

0.01[keV]

10.00 1000.00

−1

keV

−1

−2

610

105

310

410

]s

[keV

cm

E N

(E)

102

110

0100.10 1.00

E100.00

τ=5kT=200 keV

Computation of spectrum either through solution of Kompaneets equation or

directly through Monte Carlo simulation

Page 14: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–11

Phenomenology 7

Hard State: Comptonization

1

0.01[keV]

10.00 1000.00

−1

keV

−1

−2

610

105

310

410

]s

[keV

cm

E N

(E)

102

110

0100.10 1.00

E100.00

τ=5kT=200 keV

Computation of spectrum either through solution of Kompaneets equation or

directly through Monte Carlo simulation

Page 15: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–11

Phenomenology 8

Hard State: Comptonization

12

0.01[keV]

10.00 1000.00

−1

keV

−1

−2

610

105

310

410

]s

[keV

cm

E N

(E)

102

110

0100.10 1.00

E100.00

τ=5kT=200 keV

Computation of spectrum either through solution of Kompaneets equation or

directly through Monte Carlo simulation

Page 16: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–11

Phenomenology 9

Hard State: Comptonization

12

3

0.01[keV]

10.00 1000.00

−1

keV

−1

−2

610

105

310

410

]s

[keV

cm

E N

(E)

102

110

0100.10 1.00

E100.00

τ=5kT=200 keV

Computation of spectrum either through solution of Kompaneets equation or

directly through Monte Carlo simulation

Page 17: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–11

Phenomenology 10

Hard State: Comptonization

12

3

4

0.01[keV]

10.00 1000.00

−1

keV

−1

−2

610

105

310

410

]s

[keV

cm

E N

(E)

102

110

0100.10 1.00

E100.00

τ=5kT=200 keV

Computation of spectrum either through solution of Kompaneets equation or

directly through Monte Carlo simulation

Page 18: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–11

Phenomenology 11

Hard State: Comptonization

12

3

4

5

0.01[keV]

10.00 1000.00

−1

keV

−1

−2

610

105

310

410

]s

[keV

cm

E N

(E)

102

110

0100.10 1.00

E100.00

τ=5kT=200 keV

Computation of spectrum either through solution of Kompaneets equation or

directly through Monte Carlo simulation

Page 19: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–11

Phenomenology 12

Hard State: Comptonization

12

3

4

5

0.01[keV]

10.00 1000.00

−1

keV

−1

−2

610

105

310

410

]s

[keV

cm

E N

(E)

102

110

0100.10 1.00

E100.00

τ=5kT=200 keV

Computation of spectrum either through solution of Kompaneets equation or

directly through Monte Carlo simulation

=⇒ Power law with exponential cutoff.

Page 20: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–12

Phenomenology 13

Hard State: Comptonization

Thin Accretion DiskBH

R S

90km

Hot Corona

10 100Energy [keV]

1

10

100

Flu

x [a

rbitr

ary

units

]

Γ=1.9

Black Hole X-Ray Spectrum:

• Comptonization of soft X-rays from

accretion disk in hot corona (T ∼ 108 K):

power law continuum.

Page 21: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–12

Phenomenology 14

Hard State: Comptonization

Thin Accretion DiskBH

R S

90km

Hot Corona

10 100Energy [keV]

1

10

100

Flu

x [a

rbitr

ary

units

]

Γ=1.9

Black Hole X-Ray Spectrum:

• Comptonization of soft X-rays from

accretion disk in hot corona (T ∼ 108 K):

power law continuum.

• Thomson scattering of power law photons in

disk: Compton Reflection Hump

Page 22: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–12

Phenomenology 15

Hard State: Comptonization

Thin Accretion DiskBH

R S

90km

Hot Corona

10 100Energy [keV]

1

10

Fe K

Fe K

100

Flu

x [a

rbitr

ary

units

]

Γ=1.9

α

β

Black Hole X-Ray Spectrum:

• Comptonization of soft X-rays from

accretion disk in hot corona (T ∼ 108 K):

power law continuum.

• Thomson scattering of power law photons in

disk: Compton Reflection Hump

• Photoabsorption of power law photons in

disk: fluorescent Fe Kα Line at ∼6.4 keV

Page 23: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

INTEGRAL

Page 24: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–14

Hard State 2

Broad Band Spectrum, II

Page 25: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–14

Hard State 3

Broad Band Spectrum, III

Page 26: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–15

Hard State 4

Broad Band Spectrum, IV

0.1

1.0

keV

(ke

V c

m−2 s

−1 k

eV−

1 )

10 100Energy [keV]

−4−2

024

χ

Fritz et al. (2006)see also Pottschmidt et al. (2003a)

Fit of Comptonization model

to RXTE /INTEGRAL.

kTmax = 1.21 keV,

τp = 1.01,

`h/`s = 2.70,

`nt/`th = 0.05,

Ω/2π = 0.3/2

χ2/dof = 466/348

Page 27: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–16

Hard State 5

Relativistic Lines

∆Φ

0

2

4

6

8

I ν o [a

rbitr

ary

units

]

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0Energy [keV]

−0.15−0.05 −0.100.000.100.200.30z=(E e/Eo) − 1

Total observed line profile affected by

• grav. Redshift

Page 28: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–16

Hard State 6

Relativistic Lines

0

2

4

6

8

I ν o [a

rbitr

ary

units

]

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0Energy [keV]

−0.15−0.05 −0.100.000.100.200.30z=(E e/Eo) − 1

5o

10o

20o

30o

40o

50o

60o

70o

80o

Total observed line profile affected by

• grav. Redshift

• Light bending

• rel. Doppler shift

Page 29: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–16

Hard State 7

Relativistic Lines

Line

Em

issi

vity constant

power law

0.0

0.2

0.4

0.6

0.8

1.0

I νo [

arbi

trar

y un

its]

4.5 5.0 5.5 6.0 6.5 7.0 7.5Energy [keV]

−0.15−0.05 −0.100.000.100.200.30z=(E e/Eo) − 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

io= 40 o

Total observed line profile affected by

• grav. Redshift

• Light bending

• rel. Doppler shift

• emissivity profile

Page 30: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–16

Hard State 8

Relativistic Lines

rotating Black Holeve

loci

ty

velo

city

nonrotating Black Hole

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

I νo [

arbi

trar

y un

its]

4.5 5.0 5.5 6.0 6.5 7.0 7.5Energy [keV]

−0.15−0.05 −0.100.000.100.200.30z=(E e/Eo) − 1

0.00 0.25 0.50 0.75 0.9981

io= 40 o

Total observed line profile affected by

• grav. Redshift

• Light bending

• rel. Doppler shift

• emissivity profile

• spin of black hole

Page 31: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

XMM-Newton

Page 32: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–18

Hard State 10

Relativistic Lines

10 1

Cyg X−1

−10−5

05

10

4 6 9Energy [keV]

norm

aliz

ed c

ount

s cm−

2 s−

1 ke

V−

Wilms et al. (2006)

XMM-Newton Observation of

Cyg X-1: Power-law fit to

E ≤ 5 keV and E ≥ 8 keV:

strong residuals in Fe Kα region

uses a modified timing mode of the

EPIC-pn camera on XMM-Newton;

inner 3 CCD columns ignored because

of pile-up

Page 33: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–19

Hard State 11

Relativistic Lines

10 1

Cyg X−1

−10−5

05

10

4 6 9Energy [keV]

norm

aliz

ed c

ount

s cm−

2 s−

1 ke

V−

Wilms et al. (2006a)

4–9 keV spectrum: well

explained (χ2red = 1.3) with:

• Power lawΓ = 1.90 ± 0.01

• narrow lineE = 6.52 ± 0.02 keV,σ = 80 ± 35 eV,EW=14 eV

• relativistic line (Kerr)E = 6.76 ± 0.1 keV,emissivity ∝ r−4.3±0.1,EW=400 eV

Parameters similar (but not equal) to

Chandra intermediate state

observations (Miller et al., 2002)

Page 34: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–20

Hard State 12

Relativistic Lines

10 1

10 2

obs1

01020

01020

01020

01020

Cyg X−1

χco

unts

/s/k

eV

4 6 9Energy [keV]

obs2

obs3

obs4Cyg X-1 (XMM-Newton, EPIC-pn

modified timing mode, 10–20 ksec

each)

(Fritz et al., 2007)

Page 35: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–21

Hard State 13

Relativistic Lines

2 4 6 8 10

2 4 6 8 10 2 4 6 8 10

2 4 6 8 100.9

1.0

1.1

1.2

0.9

1.0

1.1

1.2

1.0

1.2

0.8

1.1

1.0

Cygnus X−1

XTE J1550−564 GRO J1655−40

GRS 1915+105Dat

a/M

odel

Energy [keV]

Relativistic lines are

seen in many

Galactic Black Holes

• GX 339−4:Nowak, Wilms & Dove(2002), Miller et al. (2004)

• GRO J1655−40:Bałucinska-Church & Church(2000)

• Cyg X-1: Miller et al. (2002),Fritz et al. (2007)

• XTE J1650−500:Miller et al. (2002)

. . . and a few more

(Chandra; after Miller 2007)

Page 36: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–22

Long-Term Evolution 1

Hard State Monitoring

51500 52000 52500 53000MJD

20406080

ASM

[cps

]

2

4

6

F dis

k

[10−

8 cgs]

2

4

6

l h/l s

0

10

20

00

15 G

Hz

[mJy

]

1999 2000 2001 2002 2003 2004

Cyg X-1 (Wilms et al., 2006b)

Never before have BHC

been studied with such

good coverage and over

such a wide energy range.

Compare to pre-RXTE: 1–2pointings per year!

Page 37: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–23

Long-Term Evolution 2

Hard State Monitoring

0 2 4 6 8lh/ls

1037

Ldi

sk [

erg

s−1 ]

Fdisk∝ lh−0.19

Clear anticorrelation between

accretion disk luminosity and coronal

compactness ratio, `h/`s.

0 2 4 6 8lh/ls

0

5

10

15

20

25

F rad

io, 1

5GH

z [m

Jy]

Radio flux is strongest during

intermediate states.

Page 38: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–24

Radio–X-ray connection 1

Radio–X-ray connection

0.01 0.10 1.00 10.00

10.0

1.0

0.1

Rad

io fl

ux d

ensi

ty [8

640

MH

z, m

Jy]

3−9keV flux (10 cgs)−10

Corbel et al. (2003): GX 339−4: During the hard state, there is a clear

correlation between X-ray flux and radio flux: F radio ∝ F 0.71X, 3–20 keV.

See also Hannikainen et al. (1998), Markoff et al. (2003).

Page 39: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–25

Radio–X-ray connection 2

Radio–X-ray connection

Gallo, Fender & Pooley (2003): Lradio ∝ L0.7X also works for sample of GBHs,

although there is more scatter (and Cyg X-1 does not work at all).

Page 40: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–26

Radio–X-ray connection 3

Radio–X-ray connection

5020 1002−10 keV flux (RXTE ASM cps)

10

15 G

Hz

Rad

io F

lux

(mJy

)

1 Cyg X-1: there is no

clear correlation

between radio and

X-rays in 2–10 keV!

(Nowak et al., 2005)

Page 41: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–27

Radio–X-ray connection 4

Radio–X-ray connection0.

11.

010

20−100 keV RXTE HEXTE flux (10 cgs)1 2 5 10 20

15 G

Hz

Rad

io F

lux

(mJy

)

−9

Cyg X-1: there is a

clear correlation

between radio and

X-rays in 20–100 keV.

=⇒Jet is related to

whatever makes

the hard spectral

componentNot surprising, but illustrates thedanger of ignoring pointedobservations and only usingRXTE-ASM.

(Nowak et al., 2005)

Page 42: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–28

Radio–X-ray connection 5

Radio–X-ray connection

Merloni, Heinz & di Matteo

(2003): for scale-invariant

jets (Heinz & Sunyaev,

2003), jet properties only

depend on MBH, M (, and a).

=⇒ scatter due to varying

black hole mass

=⇒ “the fundamental plane

of black holes” between

LX, Lradio, and MBH.

see Falcke, Körding & Markoff(2004) for similar results

log Lradio = (0.60 ± 0.11) log LX + (0.78+0.11−0.09) log MBH + 7.33+4.05

−4.07

Page 43: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–29

Radio–X-ray connection 6

Radio–X-ray connection

But note: while

generally

Fradio ∝ F 0.7X ,

normalization

constant can change

between outbursts of

the same object!

In addition, there are fourmore hard state BHC that arealso underluminous in theradio wrt. to the correlation,see Gallo (2007), see alsoXue & Cui (2007).

(GX 339−4; Nowak et al.,2005)

Page 44: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

195 200 205 210 215 220 225 230 235 240100

200

300

400

Time (MJD−53000)

PC

U2

coun

t rat

e

0.01 0.110

100

1000

PC

U2

coun

t rat

e

Hardness

Radio-X-ray connection: Radio

behavior is strongly correlated with

the X-ray behavior (“q-diagram”).

(GX 339−4; Belloni et al., 2006)

Page 45: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–31

Radio–X-ray connection 8

Radio–X-ray connection

jet l

ine

HS LSVHS/IS

Soft Hard

Γ > 2 Γ < 2

i

ii

iii

jet

Jet L

oren

tz fa

ctor

iiiiv

iv

iii

inte

nsity

hardnessX−ray

Dis

c in

ner

radi

us

no

(Fender, Belloni & Gallo, 2004)

Page 46: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–32

Microquasars 1

Microquasars, I

50

100

150

200

Cou

ntra

te (

coun

ts/s

)

1996 1997 1998

Some black holes show

very interesting long

and short term behavior

in all wavebands

RXTE-ASM 2–12 keV lightcurveof GRS 1915+105

Page 47: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

GRS 1915+105 1994 March/April: weekly radio

images show blob ejection events.

Scale ∼10000 AU

Ballistic motion of events =⇒ no deceleration!

Inferred speeds: (0.65 ± 0.08)c und (1.25 ± 0.15)c

=⇒ superluminal motion!

Page 48: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

1997 radio campaign: ∼10% higher

speeds;

Fender et al. (1998)

Page 49: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–35

Microquasars 4

Microquasars, IV

t 1

t 0

φ

Consider blob moving towards us with speed v and angle φ with respect to line of sight, emitting

light signals at t0 and t1 = t0 + ∆te

Light travel time: Observer sees signals separated by

∆to = ∆te − ∆tev

ccos φ =

(

1 − v

ccos φ

)

∆te (7.1)

Observed distance traveled in plane of sky:

∆`⊥ = v∆te sinφ (7.2)

Page 50: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–36

Microquasars 5

Microquasars, V

t 1

t 0

φ

Apparent velocity deduced from observations:

vapp =∆`⊥∆to

=v∆te sinφ

(

1 − vc cosφ

)

∆te

=v sin φ

(

1 − vc cos φ

) (7.3)

=⇒ For v/c large and φ small: vapp > c

previously only seen in Active Galaxies (“Quasars”) =⇒ Microquasars

Page 51: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–37

Microquasars 6

Microquasars, VI

0 45 90 135 18000φ [deg]

0

2

4

6

8

v app

/c

β=0.500β=0.900β=0.990

Superluminal motion: Microquasars have jet speeds close to c

Page 52: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

Jun 19.60 Jun 19.67

2

4

6

8

Time (Seconds)0 1000 2000 3000

Time (Seconds)0 1000 2000 3000

May 26.73 May 26.79

2468

10

Apr 29.84 Apr 29.91

2

3

Apr 20.57 Apr 20.64

2

3

4

5

Apr 17.57 Apr 17.63

2

3

4

5

Apr 09.70 Apr 09.77

2

4

6

Apr 06.23 Apr 06.36

2

4

6

8

GRS 1915+105,

RXTE/PCA, 2–60 keV, 1 s

resolution lightcurves

Brightness Sputters,

Large-Amplitude

Oscillations

=⇒Microquasars show

very complex short

term variability in the

X-rays!

Page 53: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–39

Radio–X-ray Correlation revisited 1

Har

d−ne

ss

42−

60 k

eV r

ate

[10

cps

]

80

60

40

20

0.15

0.008.0 8.2 8.4 8.6

Time [UT, h]

0

1

2

3

4

Flu

x de

nsity

[mJy

]

1997 Sept 09

(GRS 1915+105; after Mirabel et al., 1998)

Microquasars allow study of

dynamics of jet formationWorks much better than in AGN because ofshorter timescales involved.

Flaring episodes: clear

radio–X-ray relationship

=⇒ “disk-jet-connection”

(cf. Mirabel & Rodríguez, 1994;Pooley & Fender, 1997; Eikenberry et al.,1998; Klein-Wolt et al., 2002;Fender & Belloni, 2004;Rothstein, Eikenberry & Matthews,2005. . . )

Page 54: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–40

Radio–X-ray Correlation revisited 2

0

20

40

60

80

Ryl

e flu

x [m

Jy]

500

1000

1500

2000

2500

3000

PC

A R

ate [cps/PC

U]

3 42005 April 16

3476.63 3476.64 3476.65 3476.66 3476.67JD−2450000

(Cyg X-1, 2005 April 16; Wilms et al., 2007, Ryle: 15 GHz, PCA: 2–60 keV)

Correlated radio–X-ray flaring also seen in “normal” black holes.

Page 55: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–41

Radio–X-ray Correlation revisited 3

F

E

BH

Short-term radio–X-ray

correlations can be

explained with the

synchrotron bubble model

(van der Laan, 1966;

Hjellming & Johnston, 1988)

Page 56: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–41

Radio–X-ray Correlation revisited 4

F

E

F

E

BH

Short-term radio–X-ray

correlations can be

explained with the

synchrotron bubble model

(van der Laan, 1966;

Hjellming & Johnston, 1988)

Page 57: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

Gallo et al. (2005):

Interaction of jet with

interstellar medium:

galactic black hole jets

can be comparable in

power to their X-ray

luminosity.

Russell et al. (2007)For Cyg X-1, Ljet = 0.3 . . . 1.0 LX.

(Maccarone & Koerding, 2006, Figure by D. Russell)

Page 58: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–43

Radio–X-ray Correlation revisited 6

X-rays: Jet Models?

3−9k

eV F

lux

(10

c

gs)

−10

lg 8.6 GHz Flux [mJy]

1

0

−1

−2

0 1−1

(Markoff & Nowak, 2004) (Markoff et al., 2003)

Synchrotron+SSC from a jet can explain observed long-term correlations

between radio and X-rays

Page 59: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–44

Radio–X-ray Correlation revisited 7

X-rays: Jet Models?

14 2018161210

−2

0

+2

−4

Total spectrum

Outer jet syn.Jet base syn.diskbb

SSC / EC

GX 339−4

(Markoff, Nowak & Wilms, 2005)

Page 60: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–45

Radio–X-ray Correlation revisited 8

X-rays: Jet Models?

(Markoff, Nowak & Wilms, 2005)

Fit of synchrotron radio jet

model gives χ2 comparable

to Comptonization

(χ2red = 1.17).

X-rays mainly due to synchrotronself-Compton radiation from fairly largejet base (10–15 rg).

Systematics caused by ionisation orsmearing of reflection hump?

Is the Compton corona the base of the jet?

Page 61: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–45

Radio–X-ray Correlation revisited 9

X-rays: Jet Models?

(Markoff, Nowak & Wilms, 2005)

Fit of synchrotron radio jet

model gives χ2 comparable

to Comptonization

(χ2red = 1.17).

X-rays mainly due to synchrotronself-Compton radiation from fairly largejet base (10–15 rg).

Systematics caused by ionisation orsmearing of reflection hump?

Is the Compton corona the base of the jet?

Page 62: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–46

Timing 1

Timing: PSDs, I

10−4

10−3

10−2

Cyg X−1

Frequency [Hz]

f ×

PS

D [(

rms/

mea

n) ]

σ

−2

2

−2 −1 0 1 210101010 10

2

(Pottschmidt et al., 2003b)

Power spectrum in the hard

state can be well described

as superposition of broad

Lorentzians.

(Nowak, 2000)

Page 63: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–47

Timing 2

Timing: PSDs, II

0 2 4 6 8 10 12νpeak;1,2,3 [Hz]

1.8

2.0

2.2

2.4

Γ

(Pottschmidt et al., 2000)

Peak frequencies are strongly

correlated with spectral shape:

Does timing imply a simple

disk with a varying radius?

Page 64: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–48

Timing 3

Timing: PSDs: Energy Dependence, I

0.001 0.010 0.100 1.000 10.000Frequency (Hz)

10

10

10

10

10

/Hz

RM

S2

−1

−2

−3

−4

−5 RMS (0−3.9 keV) = 30%

(Nowak et al., 1999a)

PSD is energy dependent: softer bands: higher rms at low frequencies.

Page 65: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–48

Timing 4

Timing: PSDs: Energy Dependence, II

RMS (14.1−45 keV) = 26%

0.001 0.010 0.100 1.000 10.000Frequency (Hz)

10

10

10

10

10

/Hz

RM

S2

−1

−2

−3

−4

−5 RMS (0−3.9 keV) = 30%

(Nowak et al., 1999a)

PSD is energy dependent: softer bands: higher rms at low frequencies.

Page 66: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–49

Timing 5

Timing: PSDs: Energy Dependence, III

Energy [keV]2 10 70

0.30

0.25

[rm

s/m

ean]

R

0.20

0.15

1

hard state

Amplitude of individual

Lorentzians is energy and

state dependent

(Pottschmidt et al., 2003b)

Page 67: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–49

Timing 6

Timing: PSDs: Energy Dependence, IV

Energy [keV]2 10 70

0.30

0.25

[rm

s/m

ean]

R

0.20

0.15

1

hard state

intermediate state

Amplitude of individual

Lorentzians is energy and

state dependent

(Pottschmidt et al., 2003b)

Page 68: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–50

Timing 7

Timing: PSDs: Transitions, I

10-3

10-2

0

40

80

May Jun Jul

1998

0

40

80

Nov Dec Jan

1999

f ×

PSD

[(r

ms/

mea

n)2 ]

f ×

PSD

[(r

ms/

mea

n)2 ]

Frequency [Hz] Frequency [Hz]10-2 10-1 10 0 10 1 10 2

10-3

10-2

0

40

80

Sep Oct Nov Dec

2000

10-2 10-1 10 0 10 1 10 2

0

40

80

Jan Feb Mar

2001

PSD shows dramatic

changes during failed

state transitions.

(Pottschmidt et al., 2003b)

Page 69: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–51

Timing 8

Timing: PSDs: Transitions, II

0

40

80

Nov Dec Jan

0

40

80

MarFebJan

10−2 100 102101f x

PS

D [(

rms/

mea

n)

]2

10−2

10−2

10−3

10−3

10−1

2001

1999

Frequency [Hz]

"Filter"

"Response""Source"

(Psaltis & Norman, 2001; Nowak et al., 1999b; Miyamoto & Kitamoto, 1989)

Page 70: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–52

Timing 9

Timing: Lags

0.100

0.010

0.001

0.1 1.0 10.0 100Frequency (Hz)

Lag

(se

c.)

tK

tD

tFF

tSC

tLC

Miyamoto & Kitamoto

(1989): Hard X-rays

lag soft X-rays

Lag has strong

dependence on

Fourier frequency:

inconsistent with

simple variability

models.

(Nowak et al., 1999b, lines show typical timescales based on coronal radius of 50GM/c2 for

M = 10 M)

Page 71: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–53

Timing 10

Timing: Lags

1.0 10.0 100

0.001

0.010

0.100

Lag

(se

c.)

Frequency (Hz)0.1

Possible explanation

for X-ray lags:

• Nowak et al.

(1999b): wave

propagation in

accretion disk

See alsoManmoto et al.(1996)

• Körding & Falcke

(2004): pivoting

power law spectra

plus Lorentzian

PSDs

(Nowak et al., 1999b, solid: time lag for cp = 0.01c, dashed: cp = 0.1c)

Page 72: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–54

Timing 11

Timing: Lags

0.1 1.0 10.0Frequency [Hz]

10-3

10-2

10-1

Tim

e L

ag [

sec]

(a) :1996 May 29

hard to soft

:1998 Jul 15 "failed trans."

:1996 Dec 16 hard

0.1 1.0 10.0Frequency [Hz]

(b) :1996 Jun 15

soft

:1996 Dec 16 hard

(Pottschmidt et al., 2000)

• Lags are variable:

“shelves” consistent with

Lorentzians!

• Lags change during

transitions

=⇒ changing geometry?

• Soft state and hard state

lag ∼similar.

contradicts geometry change?

Page 73: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DRI

L

A I

N

RDNXA

EA

ESII

C

M

LMV

A

AI

AD

R

E

L G

E

7–55

Timing 12

Timing: Lags

-20

0

20

40

60

80

100

120

ASM

Cou

nt R

ate

[cps

]

0

5

10

15

20

25

Mea

n T

ime

Lag

[m

s]

M J J A S O N D J F M A M J J A S O N D J F M1996 1997 1998

200 300 400 500 600 700 800 900JD-2450000

Mean Time Lag:(<4.0 keV) vs (∼8-13 keV)3.2-10.0 Hz

-20

0

20

40

60

80

100

120

ASM

Cou

nt R

ate

[cps

]

0

5

10

15

20

25

Mea

n T

ime

Lag

[m

s]

N D J F M A M J J A S O N D J F M A M J J A S O N D J F1997 1998 1999

800 900 1000 1100 1200 1300 1400 1500JD-2450000

(Pottschmidt et al., 2000)

Enhanced lag during

(failed) transitions

=⇒ Extremely sharp

transition indicator!

Also true in other BHC (e.g.,Kalemci et al., 2001, 2003, 2005)

Page 74: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

7–55

Bałucinska-Church, M., & Church, M. J., 2000, MNRAS, 312, L55

Belloni, T., et al., 2006, MNRAS, 367, 1113

Corbel, S., Nowak, M. A., Fender, R. P., Tzioumis, A. K., & Markoff, S., 2003, A&A, 400, 1007

Eikenberry, S. S., Matthews, K., Morgan, E. H., Remillard, R. A., & Nelson, R. W., 1998, ApJ, 494, L61

Falcke, H., Körding, E., & Markoff, S., 2004, A&A, 414, 895

Fender, R., & Belloni, T., 2004, Ann. Rev. Astron. Astrophys., 42, 317

Fender, R. P., Belloni, T. M., & Gallo, E., 2004, MNRAS, 355, 1105

Fritz, S., Wilms, J., Kendziorra, E., et al., 2007, A&A, in preparation

Fritz, S., Wilms, J., Pottschmidt, K., Nowak, M. A., Kendziorra, E., Kirsch, M., Kreykenbohm, I., & Santangelo, A., 2006, in The 6th Integral Workshop: The ObscuredUniverse, ed. R. Sunyaev, S. Grebenev, C. Winkler, (Noordwijk: ESA Publications Division), in press

Gallo, E., 2007, Jets from the faintest black holes

Gallo, E., Fender, R., Kaiser, C., Russell, D., Morganti, R., Oosterloo, T., & Heinz, S., 2005, Nature, 436, 819

Gallo, E., Fender, R. P., & Pooley, G. G., 2003, MNRAS, 344, 60

Hannikainen, D. C., Hunstead, R. W., Campbell-Wilson, D., & Sood, R. K., 1998, A&A, 337, 460

Heinz, S., & Sunyaev, R. A., 2003, MNRAS, 343, L59

Hjellming, R. M., & Johnston, K. J., 1988, ApJ, 328, 600

Kalemci, E., Tomsick, J. A., Buxton, M. M., Rothschild, R. E., Pottschmidt, K., Corbel, S., Brocksopp, C., & Kaaret, P., 2005, ApJ, 622, 508

Kalemci, E., Tomsick, J. A., Rothschild, R. E., Pottschmidt, K., Corbel, S., Wijnands, R., Miller, J. M., & Kaaret, P., 2003, ApJ, 586, 419

Kalemci, E., Tomsick, J. A., Rothschild, R. E., Pottschmidt, K., & Kaaret, P., 2001, ApJ, 563, 239

Klein-Wolt, M., Fender, R. P., Pooley, G. G., Belloni, T., Migliari, S., Morgan, E. H., & van der Klis, M., 2002, MNRAS, 331, 745

Körding, E., & Falcke, H., 2004, A&A, 414, 795

Page 75: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

7–55

Maccarone, T., & Koerding, E., 2006, Astronomy and Geophysics, 47(6), 29

Manmoto, T., Takeuchi, M., Mineshige, S., Matsumoto, R., & Negoro, H., 1996, ApJ, 464, L135

Markoff, S., Nowak, M., Corbel, S., Fender, R., & Falcke, H., 2003, A&A, 397, 645

Markoff, S., & Nowak, M. A., 2004, ApJ, 609, 972

Markoff, S., Nowak, M. A., & Wilms, J., 2005, ApJ, 635, 1203

Merloni, A., Heinz, S., & di Matteo, T., 2003, MNRAS, 345, 1057

Miller, J., 2007, Ann. Rev. Astron. Astrophys., in press

Miller, J. M., et al., 2004, ApJ, 606, L131

Miller, J. M., et al., 2002, ApJ, 578, 348

Miller, J. M., et al., 2002, ApJ, 570, L69

Mirabel, I. F., Dhawan, V., Chaty, S., Rodríguez, L. F., Martí, J., Robinson, C. R., Swank, J., & Geballe, T. R., 1998, A&A, 330, L9

Mirabel, I. F., & Rodríguez, L. F., 1994, Nature, 371, 46

Miyamoto, S., & Kitamoto, S., 1989, Nature, 342, 773

Nowak, M. A., 2000, MNRAS, 318, 361

Nowak, M. A., Vaughan, B. A., Wilms, J., Dove, J. B., & Begelman, M. C., 1999a, ApJ, 510, 874

Nowak, M. A., Wilms, J., & Dove, J. B., 2002, MNRAS, 332, 856

Nowak, M. A., Wilms, J., Heinz, S., Pooley, G., Pottschmidt, K., & Corbel, S., 2005, ApJ, 626, 1006

Nowak, M. A., Wilms, J., Vaughan, B. A., Dove, J. B., & Begelman, M. C., 1999b, ApJ, 515, 726

Pooley, G. G., & Fender, R. P., 1997, MNRAS, 292, 925

Pottschmidt, K., et al., 2003a, A&A, 411, L383

Pottschmidt, K., Wilms, J., Nowak, M. A., Heindl, W. A., Smith, D. M., & Staubert, R., 2000, A&A, 357, L17

Page 76: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

7–55

Pottschmidt, K., et al., 2003b, A&A, 407, 1039

Psaltis, D., & Norman, C., 2001, ApJ, submitted (astro-ph/0001391)

Rothstein, D. M., Eikenberry, S. S., & Matthews, K., 2005, ApJ, 626, 991

Russell, D. M., Fender, R. P., Gallo, E., & Kaiser, C. R., 2007, MNRAS, 376, 1341

Sunyaev, R. A., & Trümper, J., 1979, Nature, 279, 506

van der Laan, H., 1966, Nature, 211, 1131

Wilms, J., Kendziorra, E., Nowak, M. A., Pottschmidt, K., Haberl, F., Kirsch, M., & Fritz, S., 2006a, in Proc. X-ray Universe 2005, ed. A. Wilson, (Noordwijk: ESA PublicationsDivision), 217

Wilms, J., Nowak, M. A., Pottschmidt, K., et al., 2006b, A&A, 447, 245

Wilms, J., Nowak, M. A., Pottschmidt, K., Heindl, W. A., Dove, J. B., & Begelman, M. C., 2001, MNRAS, 320, 327

Wilms, J., Pottschmidt, K., Pooley, G. G., Nowak, M. A., Markoff, S., & Kreykenbohm, I., 2007, ApJ, submitted

Xue, Y. Q., & Cui, W., 2007, A&A, 466, 1053

Page 77: A E FRID M I E R D E I C O A C A LE M X V A L N L I G I S ...pulsar.sternwarte.uni-erlangen.de/wilms/teach/xrb/xrbchap7.pdf · of compact object using Kepler’s 3rd Law a3 P2 = G

I

EF

CO

DR

I

L

AI

N

RDNXAEA

ESI

I

C

M LMVA

AI

AD

R

E

LGE

8–1

XR

BE

volu

tion