Download - 6.007 Lecture 42: Tunneling - MIT OpenCourseWare · Example: Barrier Tunneling . Question: What will T be if we double the width of the gap? • Let s consider a tunneling problem:

Transcript
Page 1: 6.007 Lecture 42: Tunneling - MIT OpenCourseWare · Example: Barrier Tunneling . Question: What will T be if we double the width of the gap? • Let s consider a tunneling problem:

Tunneling

Outline -  Review: Barrier Reflection -  Barrier Penetration (Tunneling) -  Flash Memory

1

Page 2: 6.007 Lecture 42: Tunneling - MIT OpenCourseWare · Example: Barrier Tunneling . Question: What will T be if we double the width of the gap? • Let s consider a tunneling problem:

A Simple Potential Step

Region 1 Region 2

CASE I : Eo > V

In Region 1: In Region 2:

ψA = Ae−jk1x

ψB = Be−jk1x

ψC = Ce−jk1x

E = Eo

E = 0

x = 0x

Eoψ = − �2

2m

∂2ψ

∂x2

(Eo − V )ψ = − �2

2m

∂2ψ

∂x2

k21 =2mEo

�2

k22 =2m (Eo − V )

�2

V

2

Page 3: 6.007 Lecture 42: Tunneling - MIT OpenCourseWare · Example: Barrier Tunneling . Question: What will T be if we double the width of the gap? • Let s consider a tunneling problem:

A Simple Potential Step

CASE I : Eo > V

is continuous: is continuous:

ψ1 = Ae−jk1x +Bejk1x ψ2 = Ce−jk2x

ψ1(0) = ψ2(0) A+B = C

∂ ∂ψ(0) =

∂x

kψ2(0) A

∂x− 2

B =

ψ

∂ψC

k1∂x

Region 1 Region 2

ψA = Ae−jk1x ψC = Ce−jk1x

ψB = Be−jk1x

E = 0

x = 0x

V

3

Page 4: 6.007 Lecture 42: Tunneling - MIT OpenCourseWare · Example: Barrier Tunneling . Question: What will T be if we double the width of the gap? • Let s consider a tunneling problem:

A Simple Potential Step

CASE I : Eo > V

B

A=

1− k2/k11 + k2/k1

=k1 − k2k1 + k2

C

A=

2

1 + k2/k1

=2k1

k1 + k2

A+B = C

A−B =k2k1

C

Region 1 Region 2

ψA = Ae−jk1x ψC = Ce−jk1x

ψB = Be−jk1x

E = Eo

E = 0

x = 0x

V

4

Page 5: 6.007 Lecture 42: Tunneling - MIT OpenCourseWare · Example: Barrier Tunneling . Question: What will T be if we double the width of the gap? • Let s consider a tunneling problem:

Example from: http://phet.colorado.edu/en/get-phet/one-at-a-time 5

Page 6: 6.007 Lecture 42: Tunneling - MIT OpenCourseWare · Example: Barrier Tunneling . Question: What will T be if we double the width of the gap? • Let s consider a tunneling problem:

Quantum Electron Currents

Given an electron of mass that is located in space with charge density and moving with momentum corresponding to

… then the current density for a single electron is given by

m

ρ = q |ψ(x)|2

< p > < v >= �k/m

J = ρv = q |ψ|2 (�k/m)

6

Page 7: 6.007 Lecture 42: Tunneling - MIT OpenCourseWare · Example: Barrier Tunneling . Question: What will T be if we double the width of the gap? • Let s consider a tunneling problem:

A Simple Potential Step

CASE I : Eo > V

JtransmittedTransmission = T =

Jincident=

JCJA

=|ψC |2(�k2/m)

|ψA|2(�k1/m)=

∣∣∣∣CA∣∣∣∣2k2

JreflectedReflection = R =

k1

Jincident=

JBJA

=|ψB |2(�k1/m)

|ψA|2(�k1/m)=

∣∣∣∣BA∣∣∣∣2

B

A=

1− k2/k11 + k2/k1

C

A=

2

1 + k2/k1

Region 1 Region 2

ψA = Ae−jk1x

ψB = Be−jk1x

ψC = Ce−jk1x

E = Eo

E = 0

x = 0x

V

7

Page 8: 6.007 Lecture 42: Tunneling - MIT OpenCourseWare · Example: Barrier Tunneling . Question: What will T be if we double the width of the gap? • Let s consider a tunneling problem:

A Simple Potential Step

CASE I : Eo > V

1

1

BReflection = R =

∣∣∣∣2

A

∣∣∣ =

∣∣k1 − k2∣ ∣∣2

k1 + k2

∣∣∣

Transmission = T = 1

∣−R

4k1k2=

T

R |k1 + k2|2T +R = 1

k2k1

=

√1− V

EoEo = V Eo = ∞

Region 1 Region 2

ψA = Ae−jk1x ψC = Ce−jk1x

ψB = Be−jk1x

E = 0

x = 0x

V

8

Page 9: 6.007 Lecture 42: Tunneling - MIT OpenCourseWare · Example: Barrier Tunneling . Question: What will T be if we double the width of the gap? • Let s consider a tunneling problem:

IBM Almaden STM of Copper

Image originally created by the IBM Corporation. © IBM Corporation. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

9

Page 10: 6.007 Lecture 42: Tunneling - MIT OpenCourseWare · Example: Barrier Tunneling . Question: What will T be if we double the width of the gap? • Let s consider a tunneling problem:

IBM Almaden Image originally created by the IBM Corporation.

© IBM Corporation. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

10

Page 11: 6.007 Lecture 42: Tunneling - MIT OpenCourseWare · Example: Barrier Tunneling . Question: What will T be if we double the width of the gap? • Let s consider a tunneling problem:

IBM Almaden Image originally created by the IBM Corporation.

© IBM Corporation. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

11

Page 12: 6.007 Lecture 42: Tunneling - MIT OpenCourseWare · Example: Barrier Tunneling . Question: What will T be if we double the width of the gap? • Let s consider a tunneling problem:

A Simple Potential Step

CASE II : Eo < V

In Region 1: In Region 2:

2�

Eoψ = − ∂2ψ

2m ∂x2

(Eo − V )ψ = − �2

2m

∂2ψ

∂x2

k21 =2mEo

�2

κ2 =2m (Eo − V )

ψC = Ce−κx

�2

Region 1 Region 2

ψA = Ae−jk1x

ψB = Be−jk1x

E = Eo

E = 0

x = 0x

V

12

Page 13: 6.007 Lecture 42: Tunneling - MIT OpenCourseWare · Example: Barrier Tunneling . Question: What will T be if we double the width of the gap? • Let s consider a tunneling problem:

A Simple

ψ2 = Ce−κx

Potential Step

is continuous: is continuous:

CASE II : Eo < V

ψ1 = Ae−jk1x +Bejk1x

ψ1(0) = ψ2(0) A+B = C

∂ ∂ψ(0) =

∂x

ψ

∂ψψ2(0)

∂x

κA

∂x−B = −j

ψC = Ce−κx

Ck1

Region 1 Region 2

ψA = Ae−jk1x

ψB = Be−jk1x

E = Eo

V

E = 0x

x = 0

13

Page 14: 6.007 Lecture 42: Tunneling - MIT OpenCourseWare · Example: Barrier Tunneling . Question: What will T be if we double the width of the gap? • Let s consider a tunneling problem:

A Simple Potential Step

CASE II : Eo < V

B

Total reflection Transmission must be zero

A=

1 + jκ/k1 C

1− jκ/k1 A=

2

1− jκ/k1

R =

∣∣∣∣BA∣∣∣∣2

= 1 T = 0

A+B = C

A−B = −jκ

ψC = Ce−κx

Ck1

Region 1 Region 2

ψA = Ae−jk1x

ψB = Be−jk1x

E = Eo

E = 0

x = 0x

V

14

Page 15: 6.007 Lecture 42: Tunneling - MIT OpenCourseWare · Example: Barrier Tunneling . Question: What will T be if we double the width of the gap? • Let s consider a tunneling problem:

2a = L

T = 0

Quantum Tunneling Through a Thin Potential Barrier

Total Reflection at Boundary

Frustrated Total Reflection (Tunneling)

R = 1 T = 0

15

Page 16: 6.007 Lecture 42: Tunneling - MIT OpenCourseWare · Example: Barrier Tunneling . Question: What will T be if we double the width of the gap? • Let s consider a tunneling problem:

CASE II : Eo < V

Region 1 Region 2 Region 3

In Regions 1 and 3: In Region 2:

A Rectangular Potential Step

for Eo < V :

κxψA = Ae−jk1x ψC = Ce−

ψB = Bejk1x

ψF = Fe−jk1x

ψD = Deκx

VE = Eo

E = 0 −a a0

Eoψ = − �2

2m

∂2ψ

∂x2

(Eo − V )ψ = − �2

2m

∂2ψ

∂x2

k21 =2mEo

�2

κ2 =2m(V − Eo)

�2

T =

∣∣∣∣FA∣∣∣∣2

=1

1 + 14

V 2

Eo(V−Eo)sinh2(2κa)

16

Page 17: 6.007 Lecture 42: Tunneling - MIT OpenCourseWare · Example: Barrier Tunneling . Question: What will T be if we double the width of the gap? • Let s consider a tunneling problem:

A Rectangular Potential Step

x=0 x=L

2a = L

Tunneling Applet: http://www.colorado.edu/physics/phet/dev/quantum-tunneling/1.07.00/

Real part of Ψ for Eo < V, shows hyperbolic

(exponential) decay in the barrier domain and decrease

in amplitude of the transmitted wave.

for Eo < V :

Transmission Coefficient versus Eo/V for barrier with

T =

∣∣∣∣FA∣∣∣∣2

=1

1 + 14

V 2

Eo(V−Eo)sinh2(2κa)

T =

∣∣∣∣FA∣∣∣∣2

≈ 1

1 + 14

V 2

Eo(V−Eo)

e−4κa

sinh2(2κa) =[e2κa − e−2κa

]2 ≈ e−4κa

2m(2a)2V/� = 16

17

Page 18: 6.007 Lecture 42: Tunneling - MIT OpenCourseWare · Example: Barrier Tunneling . Question: What will T be if we double the width of the gap? • Let s consider a tunneling problem:

Flash Memory

Electrons tunnel preferentially when a voltage is applied

Erased 1

Stored Electrons

Programmed 0

Image is in the public domain

Insulating Dielectric

CONTROL GATETunnel Oxide

FLOATING GATE

SOURCE CHANNEL

Substrate

Channel

Floating Gate

DRAIN

18

Page 19: 6.007 Lecture 42: Tunneling - MIT OpenCourseWare · Example: Barrier Tunneling . Question: What will T be if we double the width of the gap? • Let s consider a tunneling problem:

MOSFET: Transistor in a Nutshell

Conducting Channel

Tunneling causes thin insulating layers to become leaky !

Image is in the public domain

Conduction electron flow

Control Gate

Image courtesy of J. Hoyt Group, EECS, MIT. Photo by L. GomezSemiconductor

Image courtesy of J. Hoyt Group, EECS,MIT. Photo by L. Gomez

19

Page 20: 6.007 Lecture 42: Tunneling - MIT OpenCourseWare · Example: Barrier Tunneling . Question: What will T be if we double the width of the gap? • Let s consider a tunneling problem:

Reading Flash Memory

UNPROGRAMMED PROGRAMMED

To obtain the same channel charge, the programmed gate needs a higher control-gate voltage than the unprogrammed gate

How do we WRITE Flash Memory ?

CONTROL GATE

FLOATING GATE

SILICON

CONTROL GATE

FLOATING GATE

20

Page 21: 6.007 Lecture 42: Tunneling - MIT OpenCourseWare · Example: Barrier Tunneling . Question: What will T be if we double the width of the gap? • Let s consider a tunneling problem:

0 L

V0

x

Eo

metal metal

air gap

Example: Barrier Tunneling

Question: What will T be if we double the width of the gap?

•  Let s consider a tunneling problem:

An electron with a total energy of Eo= 6 eV approaches a potential barrier with a height of V0 = 12 eV. If the width of the barrier is L = 0.18 nm, what is the probability that the electron will tunnel through the barrier?

L = 2a

T =

∣∣∣∣FA∣∣∣∣2

≈ 16Eo(V − Eo)

V 2e−2κL

κ =

√2me

�2(V − Eo) = 2π

√2me

h2(V − Eo) = 2π

√6eV

1.505eV-nm2 ≈ 12.6 nm−1

T = 4e−2(12.6 nm−1)(0.18 nm) = 4(0.011) = 4.4%

21

Page 22: 6.007 Lecture 42: Tunneling - MIT OpenCourseWare · Example: Barrier Tunneling . Question: What will T be if we double the width of the gap? • Let s consider a tunneling problem:

Multiple Choice Questions

Consider a particle tunneling through a barrier:

1. Which of the following will increase the likelihood of tunneling?

a. decrease the height of the barrier b. decrease the width of the barrier c. decrease the mass of the particle

2. What is the energy of the particles that have successfully escaped ?

a. < initial energy b. = initial energy c. > initial energy

0 L

V

x

Eo

Although the amplitude of the wave is smaller after the barrier, no energy is lost in the tunneling process

22

Page 23: 6.007 Lecture 42: Tunneling - MIT OpenCourseWare · Example: Barrier Tunneling . Question: What will T be if we double the width of the gap? • Let s consider a tunneling problem:

Application of Tunneling: Scanning Tunneling Microscopy (STM)

Due to the quantum effect of barrier penetration, the electron density of a material extends beyond its surface:

material STM tip One can exploit this to measure the ~ 1 nm electron density on a material s surface:

Sodium atoms on metal:

STM images

Single walled carbon nanotube:

V E0

STM tip material

Image originally created by IBM Corporation

© IBM Corporation. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse Image is in the public domain .

23

Page 24: 6.007 Lecture 42: Tunneling - MIT OpenCourseWare · Example: Barrier Tunneling . Question: What will T be if we double the width of the gap? • Let s consider a tunneling problem:

Reflection of EM Waves and QM Waves

Then for optical material when μ=μ0:

= probability of a particular = probability of a particular photon being reflected electron being reflected

photonsP = �ω ×

s cm2

P =|E|2η

PreflectedR =

E=

Pincident

∣r∣o∣∣

2

Eio

∣∣∣∣

R =

∣∣B∣∣A∣∣∣∣2

=

∣∣∣∣k1 − k2k1 + k2

∣∣∣∣2

=

∣∣∣∣n1 + n2

electronsJ = q ×

2

n1 + n2

∣∣∣∣

s cm2

J = ρv = q |ψ|2 (�k/m)

JreflectedR =

=| B |

Jincident |ψA|2

R =

∣∣B∣∣2

A

∣∣∣ =

∣∣k1 − k2∣ ∣∣2

k1 + k2

∣∣∣∣

24

Page 25: 6.007 Lecture 42: Tunneling - MIT OpenCourseWare · Example: Barrier Tunneling . Question: What will T be if we double the width of the gap? • Let s consider a tunneling problem:

MIT OpenCourseWarehttp://ocw.mit.edu

6.007 Electromagnetic Energy: From Motors to LasersSpring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.