Download - 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

Transcript
Page 1: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

1

Chapter 2. Optical Fibers

Geometrical Optics & Wave Optics in Fiber

Loss

Dispersion

Nonlinearity

Page 2: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

2

2.1 Geometrical Optics & Wave Optics in Fiber

2.1.1 Geometrical Optics

suited for a >> λ Multimode Step-Index Optical Fiber

( 1%)

1 2n n ,

2 21 2 1 2

21 1

n -n n -nΔ=

2n n

weak-waveguided fiber

Page 3: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

3

2.1.1 Geometrical Optics

0 i 1 r 1n sinθ =n sinθ =n cosφ

c 2 1Total internal reflection: sinφ n /n

0 i 1n sinθ =n 2Δ=NA (Numerical Aperture)

2 2 2 1/20 i 1 c 1 2n sinθ =n 1-sin φ =(n -n )

Page 4: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

4

2.1.1 Geometrical Optics

Δ , NA , η (coupling efficiency between light source & fiber)

dispersion (multiplath dispersion)

c

Lthe longest path:

sinφ

the shortest path: L2

1 1

c 2

n nL Ltime delay: ΔT= ( L)= Δ

c sinφ c n-

max B

1ΔT T = , (bit slot)

B

-322

1

n cBL< , Δ , BL (n=1.5, Δ=2 10 , BL<100Mb/s km)

n Δ

Page 5: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

5

2.1.1 Geometrical Optics Multimode Graded-Index Optical Fiber

α1

1 2

rn [1-Δ( ) ] r < a

n(r)= an (1-Δ)=n r a

α , SIOF

α=2 , parabolic-index

Page 6: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

6

2.1.1 Geometrical Optics

2mπZ= , all rays recover their initial positions and directions

p1/21

2

2n ΔP= ( )

a

Page 7: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

7

2.1.1 Geometrical Optics

21n ΔΔT

=L 8c

α = 2(1-Δ) ,

21

8cB L <

n Δ

Page 8: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

8

2.1.2 Wave Optics

E , ΗMaxwell's Equations Wave Equation

cylindrical coordinatesGuided wave equation Helmholtz's Equation

boundaryconditions

tangenticalcomponents

general solution eigenvalue equation

1. Derivation

(x, y, z)

t

separate variables

numerical solving

mnβ

suited for a ~λ, wave theory

Page 9: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

9

2.1.2 Wave Optics

2. Basic Concepts Normalize Frequency

Mode Index

01

2 20 1 2 1 0 01

21

TE2

V=k a n -n n 2 2.405 J (r) TM

HE

0

nk

模式在光纤中的分布光纤折射率分布

n2

n1

n2

n1

n2

>

Page 10: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

10

2.1.2 Wave Optics Birefringence 双折射

HE11 → two orthogonally polarized fiber modes x, y

Degeneracy!

Uniform:

Nonuniform:x yn n birefringency PMD

L L

00 0= dz n k dz

linear → elliptical → linear 线偏 → 椭圆 → 线偏

modal birefringence m x yB n n

beat length Bm x y

LB n n

7

m BB ~10 , L ~10m

y

x

Page 11: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

11

2.1.2 Wave Optics

Page 12: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

12

2.1.2 Wave Optics

PMF: Polarization —Maintaining Fiber 4

m BB 10 , L ~10mm Small random birefringence fluctuations do not affect the light polarization significantly

Spot Size 2

x 2

rE A exp( )exp(i z)

w w: field radius

1.2<V<2.4 3/ 2 6w / a 0.65 1.619V 2.879V

Confinement Factor a 2 2

xcore 022

total x0

| E | r drP 2a1 exp( )

P w| E | r dr

V=2, Γ≈75%

V=1, Γ=20%

2<V<2.4

Page 13: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

13

Chapter 2. Optical Fibers

Geometrical Optics & Wave Optics in Fiber

Loss

Dispersion

Nonlinearity

Page 14: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

14

2.2 Fiber Loss

2.2.1 Attenuation Coefficient

Pin Pout

dPP, :attenuation coefficient

dz

integrating out inP P exp( L) (1/ km)

Lout10 10

in

10

P10 10log ( ) log (e )

4.343

L P L

10l

(dB / k

og e (1/

m)

km)

Page 15: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

15

2.2.2 Loss Mechanism

1. Absorption (light energy → heat energy, 能量转移 ) Intrinsic absorption

Impurity absorption

Infrared (λ>7μm): vibrational resonances

ultraviolet (λ< 0.4μm): electronic resonances

0.8~1.6 μm : < 0.1dB/km

OH : 0.95, 1.24, 1.39 m

0.85 1.31 1.55 m

- 吸收峰

, , 吸收谷值OH

- Dry fiber

All wave fiber

400nm Transitional metal (Fe, Cu, Co, Ni):

9101000dB / km eliminated

Page 16: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

16

2.2.2 Loss Mechanism

2. Scattering ( 方向偏折, 能量不转移 ) Rayleigh Scattering → Intrinsic, on a scale smaller than λ

R R4

1, ,

4

1.31

1.55

1.55

1.31

Mie scattering → Waveguide Imperfection, on a scale larger than λ

3. Bending ( 模式泄漏,能量不转换 )

Macro - bending Installing

Micro - bending Cabling

Page 17: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

17

课堂作业1. 某光纤通信线路长 80km ,使用的光纤芯层折射率为 1.45 ,

相对折射率差为 0.3 %,截止波长为 1m ,光纤损耗只于瑞利散射有关。工作在 1310nm 时,输入功率为 1mW ,接收到功率为- 28.5dBm 。请计算:( 1 )该光纤在 1550nm处的模场半径为多少?( 2 )光纤在 1550nm 处的损耗系数为多少 dB/km?

2. 如果模拟信号的带宽为 3.1kHz ,信噪比大于 30dB ,则转化数字信号后要求传输速率至少为:( )

A 、 31kb/s ; B 、 31Mb/s ; C 、 93kb/s ; D 、 91Mb/s 。

3. 请简要描述固定电话使用者是如何通过点对点光纤通信系统实现通话的?

Page 18: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

18

Chapter 2. Optical Fibers

Geometrical Optics & Wave Optics in Fiber

Loss

Dispersion

Nonlinearity

Page 19: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

19

Inter-symbol interference !!!

Bit 2 Bit 1 Bit 2 Bit 1 Bit 2 Bit 1

2.3 Dispersion in SMF

SMF

Page 20: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

20

2.3 Dispersion in SMF

Chromatic Dispersion (CD)

Group Velocity Dispersion (GVD)

Intra-modal Dispersion

High-order Dispersion

Polarization Mode Dispersion (PMD)

gV

Page 21: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

21

2.3.1 Group Velocity Dispersion

1. Dispersion parameter

L T= L /Vg

2

2 22

( / ) (1/ )( )

g gd L V d V d dT L L

d d d d

dL L T L

d

22 2

2 2 2, ( )

c c cT L

Page 22: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

22

2.3.1 Group Velocity Dispersion

2 2

2( )

cD T L D

- D: Dispersion Parameter, ps/(nm·km)

1B L D -1( / ) ( )g gd L V d V

T Ld d

2. D ~ λ

2

-1-1

2 2

2 2

2 2 2 2

1 2 1( ) ( )

( ) ( )

2 2 ( )

2 2 2

g g

g

d c dD

d V d V

d d dV n

d d d c

c d c d n dnD n

d c d c c d

c dn dn d n c dn d n

d d d d d

Page 23: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

23

2.3.1 Group Velocity Dispersion

2

1 2

1

-

-

22

0

M W

n nb

n n

V n a D D D

d

d

2 2

2

2 22 2

2 22

2 1

2

g gM

g gW

dn dnD

d c d

n dnVd Vb d VbD

n dV d dV

n2g: the group index of the cladding material

Page 24: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

24

2.3.2 Material Dispersion

Sellmeier equation:2M

j j22 2

j=1 j

j j

j j

M

β ωn (ω)=1+

ω -ω

ω : resonance frequency; β : oscillator strength

ω , β : fitting value according to experiments

pure silica fiber: λ=1.276μm, D =0

M 2

M 2

M ZD

λ<1.276μm, D <0, β >0,

λ>1.276μm, D >0, β <0,

1.25μm<λ<1.6μm,

D =122(1-λ /λ)

正常色散区,负色散

反常色散区,正色散

Page 25: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

25

2.3.3 Waveguide Dispersion

~ ,wD a

Page 26: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

26

2.3.3 Waveguide Dispersion

Page 27: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

27

2.3.3 Dispersion Compensation

w 0, G.652, D>0 ~17ps/(nm km) @1.55 m

lossDispersion shifted Fiber: lowest @ m

dispersion

Dispersion Compensating Fiber: D<0 @1.55 m

D

① SMF ② DCF

D=16ps/(nm ·km)

L1=50km

D’=-100ps/(nm ·km)

L2=?

1 1

2 2 2

T 16 50

T ' 100

D L

D L L

①:

② : 1 2 2T T 8L km

Dispersion flattened Fiber: 1.3 ~1.6 m D - 很小

Page 28: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

28

Dispersion Shifted Fiber

Refractive Index Profile of Optical Fiber

Page 29: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

29

Dispersion Compensation

Chirped Bragg grating

• • • 

long short

G.652: Positive Dispersion@1550nm

Page 30: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

30

2.3.4 High - Order Dispersion

ZD ZDλ=λ λ λ

2

2 3 22 2 3

m

m m

D = SΔλ2

2

B L Δλ D 1, D 0 B L

D 0, D 0, D ~ f(λ)

dD d 2πc 2πc 4πcS= = β = β + β

dλ dλ λ λ λ

d ββ =

B L Δλ D 1 B L (Δλ) S 1

Δλ = 2nm

S=0.05ps/ nm km B L

λ =1.55μm

<5Tbit/s km

Really?

Page 31: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

31

2.3.5 PMD

nx

nyEx

Ey

Pulse As It Enters the Fiber Spreaded Pulse As It Leaves the Fiber

Page 32: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

32

1x 1y 1gx gy

1 x y 0 m 0

L LΔT L β β L β

V V

Δβ n n k B k

statistic modal birefringence

22 2 2T 1 C

C C

C

L Lσ = < ΔT > 2(Δβ ) L exp(- ) + -1

L L

L : correlation length

L: fiber length

Page 33: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

33

2.3.5 PMD

C T 1 C p

p

P

L <<L, σ Δβ 2L L = D L

D : PMD parameter, ps/ km

G.652 D : 0.01 ~ 1ps/ km

A limiting factor for high bit rates lightwave systems

Page 34: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

34

2.4 Dispersion - Introduced Limitations

Optical pulse: 2

00

1 ic tA(0, t) A exp

2 T

T0: half-width at 1/e intensity point C: frequency chirp

FWHM 0T 2 ln 2T (full-width at half-maximum)

Page 35: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

35

2.4 Dispersion - Introduced Limitations

When the source spectrum is Gaussian with the RMS spectral width σw 22 22

2 2 2 32 22 2 2 3

0 0 0 0

LC L L1 (1 V ) (1 C V )

2 2 4 2

L: fiber length σ0: RMS width of the input Gaussian pulse

0V 2 2

20

: dispersion-introduced broadening of Gaussian input pulses

Page 36: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

36

2.4 Dispersion - Introduced Limitations

1. Optical Sources with a Large Spectral Width

non-zero-dispersion wavelength 3neglecting

2 22 2 2 2 20 2 0 0 D

D

D 0 D

B

L DL

D L dispersion induced broadenin

T / 4, 95% energy of Gaussian pulse remains within a

g

,

14B 1 L

bit slo

D

t4

V 1, C 0

Page 37: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

37

2.4 Dispersion - Introduced Limitations

zero-dispersion wavelength 2 0

2 22 2 2 2 20 3 0

2

1 1L SL

2 2

L S 1/ 8

2. Optical Sources with a Small Spectral Width V 1, C 0

non-zero-dispersion wavelength 3neglecting

22 2 2 20 2 0 0 D

1/ 2

D 0 2

2

L / 2

L / 2

1B L

4

Page 38: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

38

2.4 Dispersion - Introduced Limitations

zero-dispersion wavelength 2 0

22 2 2 20 2 0 0 D

1/3

D 0 3

1/3

3

L / 4 / 2

L / 4

L 0.324

Page 39: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

39

2.5 Nonlinearities in Optical Fiber

2.5.1 Stimulated light scattering

SRS (Stimulated Raman Scattering)

SBS (Stimulated Brillouin Scattering)

Rayleigh Scattering - not to generate new frequency

Raman Scattering - photon → stokes photon + optical phonon

能量大,频移大,单个原子振动 Brillouin Scattering - photon → stokes photon + acoustic phonon

能量小,频移小,多原子振动

both directions, frequency shift is large

backward directions, frequency shift is small

Page 40: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

40

2.5.1 Stimulated light scattering

1. SRS

R th eff eff

R

th

eff eff

eff eff

3R

2

g P L / A 16

g : Raman gain coefficient

P threshold power

1 exp LL : effective interaction length L km

A effective core area A w

g 1 10 m / W

w 50 m

0.2dB / km

th

in

P 570 mW

P 10 mW,

SRS 影响小

Page 41: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

41

Figure 2.18: (a) Raman gain spectrum of fused silica at λp = 1μm and (b) energy levels participating in the SRS process.

Page 42: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

42

2.5.1 Stimulated light scattering

2. SBS

Note: frequency shift < 10GHz, channel spacing ~ 100GHz ,

B th eff eff

11B th

g P L / A 21

g 5 10 m / W P 10 mW

not to generate crosstalk, but the loss of signal power

Page 43: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

43

Figure 2.17: Brillouin-gain spectra measured using a 1.525-μm pump for three fibers with different germanium doping: (a) silica-core fiber; (b) depressed-cladding fiber; (c) dispersion-shifted fiber. Vertical scale is arbitrary.

Page 44: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

44

2.5.2 Phase ModulationSPM : Self Phase Modulation

XPM : Cross Phase Modulation

--

Power dependence of refractive index

1. SPM nonlinear refraction

j j 2 eff

2

eff

n ' n n P / A j=1, 2. core, cladding respectively

n : nonlinear index coefficient

A :effective mod e area

propagation constant

0 2 eff 2 eff' k n P / A P, 2 n /(A )

Page 45: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

45

2.5.2 Phase Modulation

1. SPM nonlinear phase shift

L L

NL in eff in0 0

NL in eff eff

in in1 1

' dL P(z)dz P L P(z) P exp( z)

11, P L L

0.2 dB / kmP / , P 22 mW

2 W km

Page 46: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

46

2.5.2 Phase Modulation

2. XPM

MNL

j eff j mm j

NLj j j

L P 2 P

/ 2M 1 P , P 1mW

assuming equal channel power

SPM → distortion of optical pulse

XPM → intensity noise How to solve

Solution: effA Corning: Large Effective Area Fiber (LEAF)

Page 47: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

47

2.5.3 Four-Wave Mixing

Also originates from the three-order nonlinear susceptibility

1 2 3 4

4 1 2 3

4 1 2 3

h h h h energy conservation

k k k k momentum conservation

��������������������������������������������������������

Easily to realize phase-matching at zero-dispersion wavelength !

1 24 1 2 3

4 1 2 3 4 1 3

4 1 2 3

h h h h2

k k k k

��������������������������������������������������������

DWDM: large effective area non-zero dispersion-shifted fiber

YOFC: LAPOSH

Page 48: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

48

2.5.4 Evolvement of Fiber

1. G.651 MMF

2. G.652 SMF

3. G.653 DSF

4. G.655 NZDSF

6. Dry fiber, All-wave fiber

5. LEAF LAPOSH

7. DCF: D= - 100ps/(nm·km), 0.6 dB / km (Lucent)

RDCF: SMF, D’=16ps/(nm·km) reverse

C band: 1530 ~ 1570 nm S band: 1490 ~ 1530 nm

L band: 1570 ~ 1610 nm O band & E band: 1260 ~ 1490 nm

Problems: 2.5, 2.8, 2.11, 2.13, 2.16, 2.19

Page 49: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

49

Fiber evolutionG.651

G.652

G.653

G.654

G.655

G.656

DCF

DCF Module

RDCF

LEAF

Dry fiber

C+L+S fiber

Page 50: 1 Chapter 2. Optical Fibers Geometrical Optics & Wave Optics in Fiber Loss Dispersion Nonlinearity.

50

Cable

Optical fibers

Tube

Strain relief(e.g., Kevlar)Innerjacket

Sheath

Outerjacket

Connector